

Webapps in Go
the anti textbook

Suraj Patil

This book is for sale at http://leanpub.com/antitextbookGo

This version was published on 2017-04-01

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2017 Suraj Patil

http://leanpub.com/antitextbookGo
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Suraj Patil by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought Webapps in Go by @igeeko.

The suggested hashtag for this book is #WebDevGoAntiTextbook.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#WebDevGoAntiTextbook

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20Webapps%20in%20Go%20by%20@igeeko.
https://twitter.com/search?q=%23WebDevGoAntiTextbook
https://twitter.com/search?q=%23WebDevGoAntiTextbook

Akshay Agarwal: For introducing me to the FOSS world.

Hrishikesh Nandedkar: For guiding me in the right direction.

Contents

Installation . 1
System requirements . 1
Install the Go tools . 1

Tools . 5
The toolchain . 5

Hello, Go . 9
Why Go? . 9

Variables & Data structures . 12
Variables . 12
Underlying data structures . 16
Important points . 17
array, slice, map . 19

Control statements and Functions . 28
Control statement . 28
Functions . 31

Struct . 41
Basics of Struct . 41

Object-oriented . 48
methods . 48

Interface . 57
Interface . 57

Concurrency . 68

Managing the Workspace . 74
Packages . 74
Internal deployment . 75

Web Programming Basics . 77

CONTENTS

HTTP Methods . 78
What is a template? . 79
Static Files . 81

Basic web application . 83
Handling URLs . 84
Serving static files . 85
Homework . 86

Designing our web app . 87
The Design . 87
Homework . 89

Using databases in Go . 90
Creating and configuring database . 90
Installing sqlite driver . 92

Accessing the database . 93
Importing driver . 93

Retrieving Result Sets . 95
Fetching Data from the Database . 95
How Scan() Works . 98
Preparing Queries . 98
Single-Row Queries . 99

Modifying Data and Using Transactions . 101
Statements that Modify Data . 101
Working with Transactions . 102

Using Prepared Statements . 104
Prepared Statements And Connections . 104
Avoiding Prepared Statements . 104
Prepared Statements in Transactions . 105
Parameter Placeholder Syntax . 106

Handling Errors . 107
Errors From Iterating Resultsets . 107
Errors From Closing Resultsets . 107
Errors From QueryRow() . 108
Identifying Specific Database Errors . 109
Handling Connection Errors . 110

Working with NULLs . 111

CONTENTS

Working with Unknown Columns . 113

The connection pool . 115

Surprises, Antipatterns and Limitations . 116
Resource Exhaustion . 116
Large uint64 Values . 116
Connection State Mismatch . 117
Database-Specific Syntax . 117
Multiple Result Sets . 117
Invoking Stored Procedures . 117
Multiple Statement Support . 118

Database Encapsulation . 120

An Example . 123
Homework . 126

Working with Forms . 127
CSRF . 130
Input Validation . 135

Uploading files . 137

Templates . 140
Sub templating . 142
Homework . 148

Authentication . 149
Cookies . 149
Sessions . 150
Users . 154

Files . 158

Routing . 160

Middlewares . 162
Example . 163

Building an API . 165
JWT . 166
Making an API call . 168
Formatting a JSON document . 170
Testing API . 170

CONTENTS

Writing an client . 172
Getting the token . 172
Error handling . 173
Example . 173
Advanced Usage . 175

Unit Testing . 176

Version Control Basics . 180
Using git . 180
Branching . 181
Remote . 182

Installation
If you know about installation or have installed Go, you can skip to Tools¹.

This chapter is taken from install page² verbatim, except for the changes to be made to adapt to this
book’s styling format.

System requirements

Go binary distributions are available for these supported operating systems and architectures. Please
ensure your system meets these requirements before proceeding. If your OS or architecture is not
on the list, you may be able to install from source or use gccgo instead

Operating system Architectures Notes

FreeBSD 8-STABLE or later amd64 Debian GNU/kFreeBSD not
supported

Linux 2.6.23 or later with glibc amd64, 386, arm CentOS/RHEL 5.x not
supported; install from source
for ARM

Mac OS X 10.7 or later amd64 use the clang or gcc† that
comes with Xcode‡

Windows XP or later amd64, 386 use MinGW gcc†. No need for
cygwin or msys

†gcc is required only if you plan to use cgo.

‡You only need to install the command line tools for Xcode. If you have already installed Xcode
4.3+, you can install it from the Components tab of the Downloads preferences panel.

Install the Go tools

If you are upgrading from an older version of Go you must first remove the existing version. Linux,
Mac OS X, and FreeBSD tarballs

Download the archive and extract it into /usr/local, creating a Go tree in /usr/local/go. For
example:

tar -C /usr/local -xzf go$VERSION.$OS-$ARCH.tar.gz

¹0.1tools.md
²https://golang.org/doc/install

0.1tools.md
https://golang.org/doc/install
0.1tools.md
https://golang.org/doc/install

Installation 2

Choose the archive file appropriate for your installation. For instance, if you are installing Go version
1.2.1 for 64-bit x86 on Linux, the archive you want is called go1.2.1.linux-amd64.tar.gz.

(Typically these commands must be run as root or through sudo.)

Add /usr/local/go/bin to the PATH environment variable. You can do this by adding this line to
your /etc/profile (for a system-wide installation) or $HOME/.profile:

export PATH=$PATH:/usr/local/go/bin

Installing to a custom location

The Go binary distributions assume they will be installed in /usr/local/go (or c:\Go under
Windows), but it is possible to install the Go tools to a different location. In this case you must
set the GOROOT environment variable to point to the directory in which it was installed.

For example, if you installed Go to your home directory you should add the following commands
to $HOME/.profile:

export GOROOT=$HOME/go

export PATH=$PATH:$GOROOT/bin

Note: GOROOT must be set only when installing to a custom location.

Mac OS X package installer

Download the package file, open it, and follow the prompts to install the Go tools. The package
installs the Go distribution to /usr/local/go.

The package should put the /usr/local/go/bin directory in your PATH environment variable.
You may need to restart any open Terminal sessions for the change to take effect.

Windows

The Go project provides two installation options for Windows users (besides installing from source):
a zip archive that requires you to set some environment variables and anMSI installer that configures
your installation automatically.

MSI installer

Open the MSI file and follow the prompts to install the Go tools. By default, the installer puts the
Go distribution in c:Go.

The installer should put the c:\Go\bin directory in your PATH environment variable. You may need
to restart any open command prompts for the change to take effect.

Installation 3

Zip archive

Download the zip file and extract it into the directory of your choice (we suggest c:Go).

If you chose a directory other than c:\Go, you must set the GOROOT environment variable to your
chosen path.

Add the bin subdirectory of your Go root (for example, c:\Go\bin) to your PATH environment
variable.

Setting environment variables under Windows

Under Windows, you may set environment variables through the “Environment Variables” button
on the “Advanced” tab of the “System” control panel. Some versions ofWindows provide this control
panel through the “Advanced System Settings” option inside the “System” control panel.

Test your installation

Check that Go is installed correctly by setting up a workspace and building a simple program, as
follows.

Create a directory to contain your workspace, $HOME/work for example, and set the GOPATH
environment variable to point to that location.

1 $ export GOPATH=$HOME/work

You should put the above command in your shell startup script ($HOME/.profile for example) or,
if you use Windows, follow the instructions above to set the GOPATH environment variable on your
system.

Next, make the directories src/github.com/user/hello inside your workspace (if you use GitHub,
substitute your user name for user), and inside the hello directory create a file named hello.go with
the following contents:

1 package main

2

3 import "fmt"

4

5 func main() {

6 fmt.Printf("hello, world\n")

7 }

Then compile it with the go tool:

Installation 4

1 $ go install github.com/user/hello

The above command will put an executable command named hello (or hello.exe) inside the bin
directory of your workspace. Execute the command to see the greeting:

1 $ $GOPATH/bin/hello

hello, world

If you see the “hello, world” message then your Go installation is working.

Before rushing off to write Go code please read the How to Write Go Code document, which
describes some essential concepts about using the Go tools.

Uninstalling Go

To remove an existing Go installation from your system delete the go directory. This is usually
/usr/local/go under Linux, Mac OS X, and FreeBSD or c:\Go under Windows.

You should also remove the Go bin directory from your PATH environment variable. Under Linux
and FreeBSD you should edit /etc/profile or $HOME/.profile. If you installed Go with the Mac
OS X package then you should remove the /etc/paths.d/go file. Windows users should read the
section about setting environment variables under Windows.

Getting help

For real-time help, ask the helpful gophers in #go-nuts on the Freenode IRC server.

The official mailing list for discussion of the Go language is Go Nuts.

Report bugs using the Go issue tracker.

Links

-Next section³

³0.1tools.md

0.1tools.md
0.1tools.md

Tools
HTML: Brackets, a text editor for the web by Adobe.

Go: Any IDE of your choice which has a Go language plugin.

The toolchain

The Go programming language comes with a set of tools along with the standard installation.

gofmt

Usage:

gofmt main.go : Prints the formatted source code of main.go file on the console.

gofmt -w main.go: Writes the formatted code in the file main.go

gofmt -w Tasks: Runs gofmt on all the files in the folder Tasks.

go fmt can be used in place of gofmt -w.

Most IDEs can be configured to run gofmt on save.

It is highly recommended to run gofmt before committing to version control.

godoc

It extracts documentation comments on all the Go projects present in $GOPATH/src, and the standard
library present in $GOROOT.

It has two interfaces:

• Web:

Usage: godoc -http=:6060

The documentation of net/http is present at localhost:6060/pkg/net/http. godoc also
allows users to read the Go source code of the packages. Since Go is now implemented in
Go itself, we can read the source code of Go language.

Note: Verbose Flag

Tools 6

Depending on how much projects are in your $GOPATH, it’ll take time for godoc to get
up and running, please use -v flag. Using the -v flag, we come to know when the server
got up.

• Commandline:

Usage: godoc net/http

This will provide the documentation of net/http on the terminal, like the man command. The
catch here is that we need to know the exact library name.

The packages were comments aren’t present show up as blank pages in godoc.

Documentation

The documentation covered by godoc is the documentation about the API, since only the exported
functions have documentation comments in godoc. This documentation is different from the logic
documentation.

go test

Go has testing support built into the language. For each code file file.go, the corresponding test
cases should be present in a file named as file_test.go in the same folder. The Go compiler ignores
all the *_test.go files while building the application.

go build

We can build our application using go build. It parses all the .go files except the *_test.go files
in the entire folder and all sub folders along with imported libraries if any, and creates a statically
linked binary. The binary name is the same as the project folder name, if we want a custom name
we should use the -o flag.

Example: go build -o tasks

Build time

By default, go build builds the entire application and the depending libraries, into a static binary
and later throws all away. This results in rebuilding everything every single time go build is
executed. For caching the library builds, use go install first and go build later.

Cross compilation

Go allows cross compilation. We have to pass the OS name as linux/darwin/windows as GOOS as
shown in the below commands.

Tools 7

1 env GOOS=darwin GOARCH=386 go build -o tasks.app

2 env GOOS=windows GOARCH=386 go build -o tasks.exe

go install

Creates a statically linked binary and places it in $GOPATH/bin. Also creastes a .a file of the library
and puts it in the $GOPATH/pkg folder. In future builds this library file will be reused until the
underlying code is changed.

For using tools built with Go like we use unix commands, we need to add $GOPATH/bin to the
environment variable $PATH.

Note: $PATH

On Linux/Unix the $PATH environment variable is a list of directories which are known
to have executables. When we call some executable from any terminal, the shell goes
through all folders present in $PATH one at a time until it finds the executable.

In Linux/Unix, this is done using: export PATH=$PATH:$GOPATH/bin. This line needs to be added to
either .bashrc or .profile, whichever is being used by the shell.

The profile files are present in the home folder. Do a cd ∼ and check for either of the files mentioned
above.

go run

go run combines building and running the application in one command.

It generates a binary in the temp folder and executes it. The binary file isn’t retained after the run.

go get

This is the package manager in Go. It internally clones the version control repository parameter
passed to it, can be any local/remote git repository. It then runs go install on the library, making
the library available in $GOPATH/pkg. If the repository doesn’t have any buildable files then go get
might complain, but that happens after the repository is cloned.

go clean

This command is for cleaning files that are generated by compilers, including the following files:

Tools 8

1 _obj/ // old directory of object, left by Makefiles

2 _test/ // old directory of test, left by Makefiles

3 _testmain.go // old directory of gotest, left by Makefiles

4 test.out // old directory of test, left by Makefiles

5 build.out // old directory of test, left by Makefiles

6 *.[568ao] // object files, left by Makefiles

7

8 DIR(.exe) // generated by go build

9 DIR.test(.exe) // generated by go test -c

10 MAINFILE(.exe) // generated by go build MAINFILE.go

Other commands

Go provides more commands than those we’ve just talked about.

1 go fix // upgrade code from an old version before go1 to a new version after go1

2 go version // get information about your version of Go

3 go env // view environment variables about Go

4 go list // list all installed packages

5 go run // compile temporary files and run the application

For details about specific commands, go help <command>.

Links

-Previous section⁴ -Next section⁵

⁴0.0installation.md
⁵02.1IntroductionGo.md

0.0installation.md
02.1IntroductionGo.md
0.0installation.md
02.1IntroductionGo.md

Hello, Go
Why Go?

Go was built at Google, a company synonymous with Search and Distributed Computing, with
Kubernetes. They wanted a language that was fast, worked well with automated code review and
formatting and allowed a large team to write large scale software effectively, catered to the multi-
core and networking era. All other major languages are at least a decade old. They were created in
an era where memory was costly, where there were no massive clusters or multi-core processors.

When switching from other languages to Go, it’ll be more or less frusterating to see the restrictions
Go has. But as you tag along, the nusiances pay off. The language takes care of other things like
formatting, and its goal is to provide a scalable approach to build the application over a long period
of time.

In the C family of languages, there are two factions:

1 public static void main() {

2

3 }

vs

1 public static void main()

2 {

3

4 }

The same can be said of Python spaces/tabs.

Technically speaking, this was an unintended consequence of doing away with the semi
colons, since the Go compiler adds semicolons at the end of each line, we can’t have the
#2 definition in Go.

This might seem to be a shallow problem, but when the codebase and team size grows, then it is
difficult to maintain the consistency because of different user preferences. Anyone can write code
these days, few can write elegant code. Other languages had to solve this problem as an afterthought.

Hello, Go 10

In Go they have been built into the language. Go isn’t just a language, it is an ecosystem and it caters
to the entire software development cycle.

It aims to provide the efficiency of a statically-typed compiled language with the ease of program-
ming of a dynamic language.

A list of features:

1. Unused imports/variables are compiler errors.
2. Semi-colons not needed, the compiler adds them at the line end.
3. A folder $GOPATH, as it is called contains all your Go code.
4. There is only one standard way to write Go code, use gofmt.
5. Batteries included standard library.
6. Compiled language, thus very fast.
7. Webapps can be written without a framework.
8. Has concurrency built in, just attach the word go before a function call to run it in it’s own

goroutine.
9. Supports Unicode.
10. No language change from 1.0 to 1.7

Let’s start with the customary Hello World.

First Program

1 package main

2

3 import "fmt"

4

5 func main() {

6 fmt.Printf("Hello, world or καλημ ρα κóσμ\n")

7 }

It prints following information.

1 Hello, world or καλημ ρα κóσμ

Explanation

We import the format package, fmt for short. Write the main function of the main package and run
the code. We can access only the Exported objects of any library in Go. Exported means that the
names should start with a capital letter. The compiler will find the main function of the main package
whenever we build or execute any Go code.

We printed non ASCII characters. Go supports UTF-8 by default.

Hello, Go 11

The main package

It is mandatory for each Go program to be a part of a package. The package can be main or not.

Every package except main should be a distinct folder on the $GOPATH. Main is a special package for
which having a folder on $GOPATH is optional.

Building applications differs when we have a main folder and when we don’t.

$GOPATH/src/github.com/thewhitetulip/Tasks

• main.go
• view.go

or

$GOPATH/src/github.com/thewhitetulip/Tasks

• main/main.go
• view.go

In scenarios like this, we need to understand two different ways of executing the application

• With the main folder:

1 [Tasks] $ go build main/main.go

2 [Tasks] $./main/main

This will function correctly, because we are in the Tasks directory while executing our binary, all
the templates and other files are present in this folder.

• Without the main folder

1 [Tasks/main] $ go build main.go

2 [Tasks/main] $./main

Here, we are in the Tasks/main directory, the binary will expect all the other files in the Tasks/main
directory when they are in the Tasks directory, one level up.

There can be only one main package & function per executable program. The main function takes
no arguments passed and returns nothing.

Links

-Previous section⁶ -Next section⁷

⁶0.1tools.md
⁷02.2VariablesDataStruct.md

0.1tools.md
02.2VariablesDataStruct.md
0.1tools.md
02.2VariablesDataStruct.md

Variables & Data structures
Variables

We use the keyword var to define a variable. The variable type comes after the variable name.

1 // define a variable with name "numberOfTimes" and type "int"

2 // the examples are of int, but you can use any other data type.

3 var numberOfTimes int

4

5 // define three variables which types are "int"

6 var var1, var2, var3 int

7

8 // define a variable with name numberOfTimes”, type "int"

9 // and value "3"

10 var numberOfTimes int = 3

11

12 /*

13 Define three variables with type "int", and

14 initialize their values.

15 var1 is 1, var2 is 2, var3 is 3.

16 */

17 var var1, var2, var3 int = 1, 2, 3

Variable declaration Shortcut

1 /*

2 Define three variables without type "type" and

3 without keyword "var", and initialize their values.

4 vname1 is v1�vname2 is v2�vname3 is v3

5 */

6 vname1, vname2, vname3 := v1, v2, v3

:= can only be used inside functions, for defining global variables we have to stick to using var. It
throws a syntax error otherwise.

Variables & Data structures 13

Blank variable

_ is called the blank variable and it is used to ignore a value.

Suppose we have a function divide, which takes two arguments, and will return the quotient and
remainder of arg1 divided by arg2. But we only want the remainder, so we ignore the quotient using

1 _ , remainder := divide(10, 3)

Unused variables cause compilation errors. Compile the following code and see what happens.
Sometimes, we use this notations to import libraries which we do not want to use as prefix, while
working with databases we do not want to prefix the library name to each function call of the library,
so we use the blank variable. We will see that in a future chapter.

1 package main

2

3 func main() {

4 var i int

5 }

Constants

Constants are the values that are determined during compile time that cannot be changed during
runtime. In Go, you can use number, boolean or string as types of constants.

Defining constants

1 const constantName = value

2 // you can assign type of constants if it's necessary

3 const Pi float32 = 3.1415926

More examples. golang const Pi = 3.1415926 const i = 10000 const MaxThread = 10 const

prefix = "astaxie_" ## Elementary types

Boolean

The keyword bool is used to define a variable of the boolean type. There are two boolean values,
true or false; falsewill be the default value. Unlike other languages, Go doesn’t allow us to convert
boolean into number.

Variables & Data structures 14

1 // sample code

2 var isActive bool // global variable

3 var enabled, disabled = true, false // omit type of variables

4 func test() {

5 var available bool // local variable

6 valid := false // brief statement of variable

7 available = true // assign value to variable

8 }

Numerical types

Integers

Integer types include signed and unsigned integer types, int and uint respectively. They have the
same length, but the specific length depends on your operating system. They use 32-bit in 32-bit
operating systems, and 64-bit in 64-bit operating systems. Go also has types that have specific length
including rune, int8, int16, int32, int64, byte, uint8, uint16, uint32, uint64. Note that rune is
alias of int32 and byte is alias of uint8.

Go doesn’t allow assigning values between data types. The following operation will cause compila-
tion errors.

1 var a int8

2

3 var b int32

4

5 c := a + b

Although int32 has a longer length than int8, and has the same type as int, you cannot assign values
between them. (c will be asserted as type int here)

Fractions

Float types have the float32 and float64 types and no type called float. The latter one is the
default type if using brief statement.

Complex numbers

Go supports complex numbers as well. complex128 (with a 64-bit real and 64-bit imaginary part) is
the default type, if you need a smaller type, there is one called complex64 (with a 32-bit real and
32-bit imaginary part). Its form is RE+IMi, where RE is real part and IM is imaginary part, the last i
is the imaginary number. There is a example of complex number.

Variables & Data structures 15

1 var c complex64 = 5+5i

2 //output: (5+5i)

3 fmt.Printf("Value is: %v", c)

String

Go uses the UTF-8 character set. Strings are represented by double quotes "" or backticks ``.

1 // sample code

2 var frenchHello string // basic form to define string

3 var emptyString string = "" // define a string with empty string

4 func test() {

5 no, yes, maybe := "no", "yes", "maybe" // brief statement

6 japaneseHello := "Ohaiou"

7 frenchHello = "Bonjour" // basic form of assign values

8 }

String objects do not now allow value change. You will get errors when you compile the following
code.

1 var s string = "hello"

2 s[0] = 'c'

For changing a string, a new string has to be created using the old string. Go doesn’t allow
modifications to a string variable, but you can always create a new one.

1 s := "hello"

2 c := []byte(s) // convert string to []byte type

3 c[0] = 'c'

4 s2 := string(c) // convert back to string type

5 fmt.Printf("%s\n", s2)

+ operator cane be used to concatenate two strings.

1 s := "hello,"

2 m := " world"

3 a := s + m

4 fmt.Printf("%s\n", a)

and also.

Variables & Data structures 16

1 s := "hello"

2 s = "c" + s[1:] // returns substring from index 1 till the end.

3 fmt.Printf("%s\n", s)

‘ (backtick) is used to have a multiple-line string.

1 m := `hello

2 world`

\ ‘ (backtick) will not escape any characters in a string.

Error types

Go doesn’t have the try catch block. There is one error type for the purpose of dealing with errors
in the package called errors. Go requires us to explicitly handle our errors or ignore them. Typical
error handling forms a if err != nil ladder.

1 err := errors.New("emit macho dwarf: elf header corrupted")

2 if err != nil {

3 fmt.Print(err)

4 }

Underlying data structures

The following picture comes from an article about Go data structure⁸ in Russ Cox’s Blog⁹. As you
can see, Go utilizes blocks of memory to store data.

⁸http://research.swtch.com/godata
⁹http://research.swtch.com/

http://research.swtch.com/godata
http://research.swtch.com/
http://research.swtch.com/godata
http://research.swtch.com/

Variables & Data structures 17

Go underlying data structure

Important points

Define by group

If you want to define multiple constants, variables or import packages, you can use the group form.

Basic form.

1 import "fmt"

2 import "os"

3

4 const i = 100

5 const pi = 3.1415

6 const prefix = "Go_"

7

8 var i int

9 var pi float32

10 var prefix string

Group form.

Variables & Data structures 18

1 // if you have imports from both standard library and custom

2 // imports, the standard library imports go first,

3 // followed by others.

4

5 import(

6 "fmt"

7 "os"

8

9 "github.com/thewhitetulip/Tasks/views"

10)

11

12 // value of first const will be 0 unless it is assigned to iota

13 // If there are no assigned values for the elements except the last one,

14 // all constants will have the same value as the last one.

15

16 const(

17 i = 100

18 pi = 3.1415

19 prefix = "Go_"

20)

21

22 var(

23 i int

24 pi float32

25 prefix string

26)

iota enumerate

Go has a keyword called iota, this keyword is to make enum, it begins with 0, increased by 1.

1 const(

2 x = iota // x == 0

3 y = iota // y == 1

4 z = iota // z == 2

5 w // If there is no expression after the constants name,

6 // it uses the last expression,

7 // so it's saying w = iota implicitly. Therefore w == 3,

8 // and y and z both can omit "= iota" as well.

9)

10

11 const v = iota // once iota meets keyword `const`, it resets to `0`, so v = 0.

Variables & Data structures 19

12

13 const (

14 e, f, g = iota, iota, iota // e=0,f=0,g=0 values of iota are same in one line.

15)

Some rules

Go is concise because it has some default behaviors.

• Any variable that begins with a capital letter means it will be exported, private otherwise.
• The same rule applies for functions and constants, no public or private keyword exist in Go.

array, slice, map

array

array is an array, we define one as follows.

1 var arr [n]type

in [n]type, n is the length of the array, type is the type of its elements. Like other languages, we use
[] to get or set element values within arrays.

1 var arr [10]int // an array of type [10]int

2 arr[0] = 42 // array is 0-based

3 arr[1] = 13 // assign value to element

4 fmt.Printf("The first element is %d\n", arr[0])

5 // get element value, it returns 42

6 fmt.Printf("The last element is %d\n", arr[9])

7 // it returns default value of 10th element in this array,

8 // which is 0 in this case.

Since length is a part of the array type, [3]int and [4]int are different types. We cannot change
the length of arrays.

Arrays are passed as copy rather than references when passed to a function as arguments. For
references, we have to use slice. More about slices below.

It’s possible to use := when you define arrays.

Variables & Data structures 20

1 a := [3]int{1, 2, 3} // define an int array with 3 elements

2

3 b := [10]int{1, 2, 3}

4 // define a int array with 10 elements, of which the first three are assigned.

5 //The rest of them use the default value 0.

6

7 c := [...]int{4, 5, 6} // use `…` to replace the length parameter and Go will ca\

8 lculate it for you.

You may want to use arrays as arrays’ elements. Let’s see how to do this.

1 // define a two-dimensional array with 2 elements, and each element has 4 elemen\

2 ts.

3 doubleArray := [2][4]int{[4]int{1, 2, 3, 4}, [4]int{5, 6, 7, 8}}

4

5 // The declaration can be written more concisely as follows.

6 easyArray := [2][4]int{{1, 2, 3, 4}, {5, 6, 7, 8}}

Array underlying data structure.

Multidimensional array mapping relationship

slice

The main disadvantage of arrays is that we need to know the size prehand. At times this isn’t
possible. For this, we need a “dynamic array”. This is called a slice in Go.

slice is not really a dynamic array. It’s a reference type. slice points to an underlying arraywhose
declaration is similar to array, but doesn’t need length.

1 // just like defining an array, but this time, we exclude the length.

2 var fslice []int

Then we define a slice, and initialize its data.

Variables & Data structures 21

1 slice := []byte {'a', 'b', 'c', 'd'}

slice can redefine existing slices or arrays. slice uses array[i:j] to slice, where i is the start index
and j is end index, but notice that array[j] will not be sliced since the length of the slice is j - i.

1 // define an array with 10 elements whose types are bytes

2 var ar = [10]byte {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'}

3

4 // define two slices with type []byte

5 var a, b []byte

6

7 // 'a' points to elements from 3rd to 5th in array ar.

8 a = ar[2:5]

9 // now 'a' has elements ar[2],ar[3] and ar[4]

10

11 // 'b' is another slice of array ar

12 b = ar[3:5]

13 // now 'b' has elements ar[3] and ar[4]

Notice the differences between slice and array when you define them. We use […] to let Go
calculate length but use [] to define slice only. Slices do not have length, slices point to arrays
which have lengths.

Their underlying data structure.

Correspondence between slice and array

slice has some convenient operations.

• slice is 0-based, ar[:n] equals to ar[0:n]

• The second index will be the length of slice if omitted, ar[n:] equals to ar[n:len(ar)].
• You can use ar[:] to slice whole array, reasons are explained in first two statements.

More examples:

Variables & Data structures 22

1 // define an array

2 var array = [10]byte{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'}

3 // define two slices

4 var aSlice, bSlice []byte

5

6 // some convenient operations

7 aSlice = array[:3] // equals to aSlice = array[0:3] aSlice has elements a,b,c

8 aSlice = array[5:] // equals to aSlice = array[5:10] aSlice has elements f,g,h,i\

9 ,j

10 aSlice = array[:] // equals to aSlice = array[0:10] aSlice has all elements

11

12 // slice from slice

13 aSlice = array[3:7] // aSlice has elements d,e,f,g�len=4�cap=7

14 bSlice = aSlice[1:3] // bSlice contains aSlice[1], aSlice[2], so it has elements\

15 e,f

16 bSlice = aSlice[:3] // bSlice contains aSlice[0], aSlice[1], aSlice[2], so it h\

17 as d,e,f

18 bSlice = aSlice[0:5] // slice could be expanded in range of cap, now bSlice cont\

19 ains d,e,f,g,h

20 bSlice = aSlice[:] // bSlice has same elements as aSlice does, which are d,e,f\

21 ,g

slice is a reference type, so any changes will affect other variables pointing to the same slice or
array. For instance, in the case of aSlice and bSlice above, if you change the value of an element
in aSlice, bSlice will be changed as well.

slice is like a struct by definition and it contains 3 parts.

• A pointer that points to where slice starts.
• The length of slice.
• Capacity, the length from start index to end index of slice.

1 Array_a := [10]byte{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'}

2 Slice_a := Array_a[2:5]

The underlying data structure of the code above as follows.

Variables & Data structures 23

Array information of slice

There are some built-in functions for slice.

• len gets the length of slice.
• cap gets the maximum length of slice
• append appends one or more elements to slice, and returns slice .
• copy copies elements from one slice to the other, and returns the number of elements that
were copied.

Attention: appendwill change the array that slice points to, and affect other slices that point to the
same array.

Also, if there is not enough length for the slice ((cap-len) == 0), append returns a new array for
this slice. When this happens, other slices pointing to the old array will not be affected.

map

Map is a key value pair, like a dictionary in Python. Use the form map[keyType]valueType to define
it.

The ‘set’ and ‘get’ values in map are similar to slice, however the index in slice can only be of type
‘int’ while map can use much more than that: for example int, string, or whatever you want. Also,
they are all able to use == and != to compare values.

Variables & Data structures 24

1 // use string as the key type, int as the value type, and `make` initialize it.

2 var numbers map[string] int

3 // another way to define map

4 numbers := make(map[string]int)

5 numbers["one"] = 1 // assign value by key

6 numbers["ten"] = 10

7 numbers["three"] = 3

8

9 fmt.Println("The third number is: ", numbers["three"]) // get values

10 // It prints: The third number is: 3

Some notes when you use map.

• map is disorderly. Everytime you print map you will get different results. It’s impossible to get
values by index. You have to use key.

• map doesn’t have a fixed length. It’s a reference type just like slice.
• len works for map also. It returns how many keys that map has.
• It’s quite easy to change the value through map. Simply use numbers["one"]=11 to change the
value of key one to 11.

You can use form key:val to initialize map’s values, and map has built-in methods to check if the
key exists.

Use delete to delete an element in map.

1 // Initialize a map

2 rating := map[string]float32 {"C":5, "Go":4.5, "Python":4.5, "C++":2 }

3 // map has two return values. For the second return value, if the key doesn't

4 //exist�'ok' returns false. It returns true otherwise.

5 csharpRating, ok := rating["C#"]

6 if ok {

7 fmt.Println("C# is in the map and its rating is ", csharpRating)

8 } else {

9 fmt.Println("We have no rating associated with C# in the map")

10 }

11

12 delete(rating, "C") // delete element with key "c"

As I said above, map is a reference type. If two maps point to same underlying data, any change will
affect both of them.

Variables & Data structures 25

1 m := make(map[string]string)

2 m["Hello"] = "Bonjour"

3 m1 := m

4 m1["Hello"] = "Salut" // now the value of m["hello"] is Salut

make, new

make does memory allocation for built-in models, such as map, slice, and channel, while new is for
types’ memory allocation.

new(T) allocates zero-value to type T’s memory, returns its memory address, which is the value of
type *T. By Go’s definition, it returns a pointer which points to type T’s zero-value.

new returns pointers.

The built-in function make(T, args) has different purposes than new(T). make can be used for slice,
map, and channel, and returns a type Twith an initial value. The reason for doing this is because the
underlying data of these three types must be initialized before they point to them. For example, a
slice contains a pointer that points to the underlying array, length and capacity. Before these data
are initialized, slice is nil, so for slice, map and channel, make initializes their underlying data
and assigns some suitable values.

make returns non-zero values.

The following picture shows how new and make are different.

Variables & Data structures 26

Underlying memory allocation of make and new

Zero-value does not mean empty value. It’s the value that variables default to in most cases. Here is
a list of some zero-values.

Variables & Data structures 27

1 int 0

2 int8 0

3 int32 0

4 int64 0

5 uint 0x0

6 rune 0 // the actual type of rune is int32

7 byte 0x0 // the actual type of byte is uint8

8 float32 0 // length is 4 byte

9 float64 0 //length is 8 byte

10 bool false

11 string ""

Links

-Previous section¹⁰ -Next section¹¹

¹⁰02.1IntroductionGo.md
¹¹02.3CntrlStmtFunctions.md

02.1IntroductionGo.md
02.3CntrlStmtFunctions.md
02.1IntroductionGo.md
02.3CntrlStmtFunctions.md

Control statements and Functions
Control statement

if

if doesn’t need parentheses in Go. golang if x > 10 { //when x is greater than 10 //pro-

gram enters this block fmt.Println("x is greater than 10") } else { //when x is smaller

than 10 //program enters this block fmt.Println("x is less than or equal to 10") }

Go allows us to initialize and use variables in if like this: “‘golang // initialize x, then check if x
greater than if x := computedValue(); x > 10 { fmt.Println(“x is greater than 10”) } else { fmt.Println(“x
is less than 10”) }

// the following code will not compile fmt.Println(x) “‘

For multiple conditions we use the else if block golang if integer == 3 { fmt.Println("The in-

teger is equal to 3") } else if integer < 3 { fmt.Println("The integer is less than 3")

} else { fmt.Println("The integer is greater than 3") }

goto

Go has a goto keyword, but be careful when you use it. goto reroutes the control flow to a previously
defined label within the body of same code block.

1 func myFunc() {

2 i := 0

3 Here: // label ends with ":"

4 fmt.Println(i)

5 i++

6 goto Here // jump to label "Here"

7 }

The label name is case sensitive.

for

Go does not have while, do while. Just a for, which is the most powerful control logic. It can read
data in loops and iterative operations, just like while. Like if, for doesn’t need parenthesis.

Control statements and Functions 29

1 for expression1; expression2; expression3 {

2 //...

3 }

1 package main

2 import "fmt"

3

4 func main(){

5 sum := 0;

6 for index:=0; index < 10 ; index++ {

7 sum += index

8 }

9 fmt.Println("sum is equal to ", sum)

10 }

11 // Print: sum is equal to 45

12 ```golang

13

14 We can omit one or more expressions.

15

16 ```golang

17 sum := 1

18 for ; sum < 1000; {

19 sum += sum

20 }

21

22 for {

23 //this is an infinite loop

24 }

25 ```golang

26

27 Using `for` like a `while`

28

29 ```golang

30 sum := 1

31 for sum < 1000 {

32 sum += sum

33 }

break and continue

break: jumps out of the loop. If you have nested loops, use break along with labels.

continue skips the current loop and starts the next one

Control statements and Functions 30

1 for index := 10; index>0; index-- {

2 if index == 5{

3 break // or continue

4 }

5 fmt.Println(index)

6 }

7 // break prints 10�9�8�7�6

8 // continue prints 10�9�8�7�6�4�3�2�1

for can read data from slice and map when it is used together with range.

1 for k,v:=range map {

2 fmt.Println("map's key:",k)

3 fmt.Println("map's val:",v)

4 }

Because Go supports multi-value returns and gives compile errors when you don’t use values that
were defined, as discussed earlier, _ is used to discard certain return values.

1 for _, v := range map{

2 fmt.Println("map's val:", v)

3 }

switch

Switch is an easier way to avoid long if-else statements.

1 switch sExpr {

2 case expr1:

3 some instructions

4 case expr2:

5 some other instructions

6 case expr3:

7 some other instructions

8 default:

9 other code

10 }

The type of sExpr, expr1, expr2, and expr3 must be the same.

Conditions don’t have to be constants and it checks the cases from top to bottom until it matches
conditions and executes only the matching case.

If there is no statement after the keyword switch, then it matches true.

The default case is when there is no match to the switch.

Control statements and Functions 31

1 i := 10

2 switch i {

3 case 1:

4 fmt.Println("i is equal to 1")

5 case 2, 3, 4:

6 fmt.Println("i is equal to 2, 3 or 4")

7 case 10:

8 fmt.Println("i is equal to 10")

9 default:

10 fmt.Println("All I know is that i is an integer")

11 }

Cases can have more than one values separated by a comma. By default switch executes only the
matching case, however we can make switch execute the matching case and all cases below it using
the fallthrough statement.

1 integer := 6

2 switch integer {

3 case 4:

4 fmt.Println("integer <= 4")

5 fallthrough

6 case 5:

7 fmt.Println("integer <= 5")

8 fallthrough

9 case 6:

10 fmt.Println("integer <= 6")

11 fallthrough

12 case 7:

13 fmt.Println("integer <= 7")

14 fallthrough

15 case 8:

16 fmt.Println("integer <= 8")

17 fallthrough

18 default:

19 fmt.Println("default case")

20 }

This program prints the following information.

integer <= 6 integer <= 7 integer <= 8 default case

Functions

func keyword is used to define a function.

Control statements and Functions 32

1 func funcName(input1 type1, input2 type2) (output1 type1, output2 type2) {

2 // function body

3 // multi-value return

4 return value1, value2

5 }

• Functions may have zero, one or more than one arguments. The argument type comes after
the argument name and arguments are separated by ,.

• Functions can return multiple values.
• There are two return values named output1 and output2, you can omit their names and use
their type only.

• If there is only one return value and you omitted the name, you don’t need brackets for the
return values.

• If the function doesn’t have return values, you can omit the return parameters altogether.
• If the function has return values, you have to use the return statement somewhere in the
body of the function.

A simple program to calculate maximum value.

1 package main

2 import "fmt"

3

4 // returns the greater value between a and b

5 func max(a, b int) int {

6 if a > b {

7 return a

8 }

9 return b

10 }

11

12 func main() {

13 x := 3

14 y := 4

15 z := 5

16

17 max_xy := max(x, y) // call function max(x, y)

18 max_xz := max(x, z) // call function max(x, z)

19

20 fmt.Printf("max(%d, %d) = %d\n", x, y, max_xy)

21 fmt.Printf("max(%d, %d) = %d\n", x, z, max_xz)

22 fmt.Printf("max(%d, %d) = %d\n", y, z, max(y,z)) // call function here

23 }

Control statements and Functions 33

In a function call, if two or more arguments have the same data type, then we can put the data type
only after the last argument.

func max(a,b int, c,d string): this means we have four arguments, a,b: integers and c,d: string.

Multi-value return

1 package main

2 import "fmt"

3

4 // return results of A + B and A * B

5 func SumAndProduct(A, B int) (int, int) {

6 return A+B, A*B

7 }

8

9 func main() {

10 x := 3

11 y := 4

12

13 xPLUSy, xTIMESy := SumAndProduct(x, y)

14

15 fmt.Printf("%d + %d = %d\n", x, y, xPLUSy)

16 fmt.Printf("%d * %d = %d\n", x, y, xTIMESy)

17 }

SumAndProduct will return two values without names. Go allows us to have named return
arguments. By using named arguments, the respective variables are returned automatically, we
would just need to use return.

If functions are going to be used outside of current program, it is better to explicitly write return
statements for the sake of readability.

1 func SumAndProduct(A, B int) (add int, multiplied int) {

2 add = A+B

3 multiplied = A*B

4 return

5 }

6 // Since return arguments are named, the function automatically

7 // returns them

Variadic arguments to functions

In many cases, we do not know how many arguements can be passed, in such cases, we use variadic
arguments.

Control statements and Functions 34

func myfunc(arg …int) {}

arg …int tells Go that this is a function that has variable arguments. Notice that these arguments
are type int. In the body of function, the arg becomes a slice of int.

for _, n := range arg { fmt.Printf(“And the number is: %d\n”, n) }

Pass by value and pointers

Argument are passed by value to the functions, the argument change inside the function doesn’t
affect the arguments used to call the function.

1 package main

2 import "fmt"

3

4 // simple function to add 1 to a

5 func add1(a int) int {

6 a = a+1 // we change value of a

7 return a // return new value of a

8 }

9

10 func main() {

11 x := 3

12

13 fmt.Println("x = ", x) // should print "x = 3"

14

15 x1 := add1(x) // call add1(x)

16

17 fmt.Println("x+1 = ", x1) // should print "x+1 = 4"

18 fmt.Println("x = ", x) // should print "x = 3"

19 }

The original value of x doesn’t change, because we passed x as a value, so the function add1 created
a copy of x. Despite having the same names, the both variables are totally independant of each other.

In cases where we want to be able to modify the argument’s value, we use pass by reference using
pointers.

In reality, a variable is nothing but a pointer to a location in memory. Each variable has a unique
memory address. So, if we want to change the value of a variable, we must change its memory
address. Therefore the function add1 has to know the memory address of x in order to change its
value. Here we pass &x to the function, and change the argument’s type to the pointer type *int. Be
aware that we pass a copy of the pointer, not copy of value.

Control statements and Functions 35

1 package main

2 import "fmt"

3

4 // simple function to add 1 to a

5 func add1(a *int) int {

6 *a = *a+1 // we changed value of a

7 return *a // return new value of a

8 }

9

10 func main() {

11 x := 3

12

13 fmt.Println("x = ", x) // should print "x = 3"

14

15 x1 := add1(&x) // call add1(&x) pass memory address of x

16

17 fmt.Println("x+1 = ", x1) // should print "x+1 = 4"

18 fmt.Println("x = ", x) // should print "x = 4"

19 }

Advantages of pointers:

• Allows us to use more functions to operate on one variable.
• Low cost by passing memory addresses (8 bytes), copy is not an efficient way, both in terms
of time and space, to pass variables.

• string, slice and map are reference types, so they use pointers when passing to functions
by default. (Attention: If you need to change the length of slice, you have to pass pointers
explicitly)

defer

Defer postpones the execution of a function till the calling function has finished executing. You can
have many defer statements in one function; they will execute in reverse order when the program
reaches its end. In the case where the program opens some resource files, these files would have to
be closed before the function can return with errors. Let’s see some examples.

Control statements and Functions 36

1 func ReadWrite() bool {

2 file.Open("file")

3 // Do some work

4 if failureX {

5 file.Close()

6 return false

7 }

8

9 if failureY {

10 file.Close()

11 return false

12 }

13

14 file.Close()

15 return true

16 }

We saw some code being repeated several times. defer solves this problem very well. It doesn’t only
help you to write clean code but also makes your code more readable.

1 func ReadWrite() bool {

2 file.Open("file")

3 defer file.Close()

4 if failureX {

5 return false

6 }

7 if failureY {

8 return false

9 }

10 return true

11 }

If there are more than one defers, they will execute by reverse order. The following example will
print 4 3 2 1 0.

1 for i := 0; i < 5; i++ {

2 defer fmt.Printf("%d ", i)

3 }

Functions as values and types

Functions are also variables in Go, we can use type to define them. Functions that have the same
signature can be seen as the same type.

Control statements and Functions 37

type typeName func(input1 inputType1 , input2 inputType2 [, …]) (result1 resultType1 [, …])

This makes Go a functional language as functions are a first class citizen.

1 package main

2 import "fmt"

3

4 type testInt func(int) bool // define a function type of variable

5

6 func isOdd(integer int) bool {

7 if integer%2 == 0 {

8 return false

9 }

10 return true

11 }

12

13 func isEven(integer int) bool {

14 if integer%2 == 0 {

15 return true

16 }

17 return false

18 }

19

20 // pass the function `f` as an argument to another function

21

22 func filter(slice []int, f testInt) []int {

23 var result []int

24 for _, value := range slice {

25 if f(value) {

26 result = append(result, value)

27 }

28 }

29 return result

30 }

31

32 func main(){

33 slice := []int {1, 2, 3, 4, 5, 7}

34 fmt.Println("slice = ", slice)

35 odd := filter(slice, isOdd) // use function as values

36 fmt.Println("Odd elements of slice are: ", odd)

37 even := filter(slice, isEven)

38 fmt.Println("Even elements of slice are: ", even)

39 }

Control statements and Functions 38

It’s very useful when we use interfaces. As you can see testInt is a variable that has a function as
type and the returned values and arguments of filter are the same as those of testInt. Therefore,
we can have complex logic in our programs, while maintaining flexibility in our code.

Panic and Recover

Go doesn’t have try-catch structure like Java does. Instead of throwing exceptions, Go uses panic
and recover to deal with errors. However, you shouldn’t use panic very much, although it’s
powerful.

Panic is a built-in function to break the normal flow of programs and get into panic status. When
a function F calls panic, F will not continue executing but its defer functions will continue to
execute. Then F goes back to the break point which caused the panic status. The program will not
terminate until all of these functions return with panic to the first level of that goroutine. panic
can be produced by calling panic in the program, and some errors also cause panic like array access
out of bounds errors.

Recover is a built-in function to recover goroutines from panic status. Calling recover in defer

functions is useful because normal functions will not be executed when the program is in the panic
status. It catches panic values if the program is in the panic status, and it gets nil if the program is
not in panic status.

The following example shows how to use panic.

1 var user = os.Getenv("USER")

2

3 func init() {

4 if user == "" {

5 panic("no value for $USER")

6 }

7 }

The following example shows how to check panic.

1 func throwsPanic(f func()) (b bool) {

2 defer func() {

3 if x := recover(); x != nil {

4 b = true

5 }

6 }()

7 f() // if f causes panic, it will recover

8 return

9 }

Control statements and Functions 39

main and init functions

Go has two retentions which are called main and init, where init can be used in all packages and
main can only be used in the main package. These two functions are not able to have arguments or
return values. Even though we can write many init functions in one package, I strongly recommend
writing only one init function for each package.

Go programs will call init() and main() automatically, so you don’t need to call them by yourself.
For every package, the init function is optional, but package main has one and only one main

function.

Programs initialize and begin execution from the main package. If the main package imports other
packages, they will be imported in the compile time. If one package is imported many times, it will be
only compiled once. After importing packages, programs will initialize the constants and variables
within the imported packages, then execute the init function if it exists, and so on. After all the
other packages are initialized, programs will initialize constants and variables in the main package,
then execute the init function inside the package if it exists. The following figure shows the process.

Flow of programs initialization

import

import is very often used in Go programs.

1 import(

2 "fmt"

3)

Methods of fmt are called as follows.

1 fmt.Println("hello world")

fmt is from Go standard library, it is located within $GOROOT/pkg. Go supports third-party
packages in two ways.

Control statements and Functions 40

1. Relative path import “./model” // load package in the same directory, I don’t recommend this
way.

2. Absolute path import “shorturl/model” // load package in path “$GOPATH/pkg/shorturl/-
model”

There are some special operators when we import packages, and beginners are always confused by
these operators.

Dot operator

Sometimes we see people use following way to import packages.

1 import(

2 . "fmt"

3)

The dot operator means you can omit the package name when you call functions inside of that
package. Now fmt.Printf("Hello world") becomes to Printf("Hello world").

Alias operation

It changes the name of the package that we imported when we call functions that belong to that
package.

1 import(

2 f "fmt"

3)

Now fmt.Printf("Hello world") becomes to f.Printf("Hello world").

_ operator

This is the operator that is difficult to understand without someone explaining it to you.

1 import (

2 "database/sql"

3 _ "github.com/ziutek/mymysql/godrv"

4)

The _ operator actually means we just want to import that package and execute its init function,
and we are not sure if want to use the functions belonging to that package.

Links

-Previous section¹² -Next section¹³

¹²02.2VariablesDataStruct.md
¹³02.4Struct.md

02.2VariablesDataStruct.md
02.4Struct.md
02.2VariablesDataStruct.md
02.4Struct.md

Struct
Basics of Struct

Struct can be used to define custom data types in Go. Often times, we can not handle the real world
information using the standard data types which come with languages. While it is not impossible,
it is highly inefficient. For example, in an eCommerce application, we have the ShoppingCart in
which we put products for checkout.

1 type Product struct {

2 name string

3 itemID int

4 cost float32

5 isAvailable bool

6 inventoryLeft int

7 }

There are a lot of attributes of Product, its name, the ID used internally, the cost, number of the
products in stock, etc.

• name is a string used to store a product’s name.
• itemID is an int used to store for reference.
• cost is a float32 of the item.
• isAvailable is a bool which is true if the item is in stock, false otherwise.
• inventoryLeft is an int of the number of products left in stock.

Initializing

Struct 42

1 // define goBook as a Product type

2 var goBook Product

3 // assign "Webapps in Go" to the field 'name' of goBook

4 goBook.name = "Webapps in Go"

5 // assign 10025 to field 'itemID' of goBook

6 goBook.itemID = 10025

7 // access field 'name' of goBook

8 fmt.Printf("The product's name is %s\n", goBook.name)

There are three more ways to define a struct.

• Assign initial values by order

goBook := Product{"Webapps in Go", 10025}

• Use the format field:value to initialize the struct without order

goBook := Product{name:"Webapps in Go", itemID:10025, cost:100}

• Define an anonymous struct, then initialize it

p := struct{name string; age int}{"Amy",18}

Let’s see a complete example.

file: code/Struct/Book/struct.go

1 package main

2

3 import "fmt"

4

5 // Product will denote a physical object

6 // which we will sell online to be rich

7 type Product struct {

8 name string

9 itemID int

10 cost float32

11 isAvailable bool

12 inventoryLeft int

13 }

14

15 func main() {

Struct 43

16 var goBook Product

17

18 // initialization

19 goBook.name, goBook.itemID, goBook.isAvailable, goBook.inventoryLeft = "Webapps\

20 in Go", 10025, true, 25

21

22 // initialize four values by format "field:value"

23 pythonBook := Product{itemID: 10026, name: "Learn Python", inventoryLeft: 0, is\

24 Available: false}

25

26 // initialize all five values in order

27 rubyBook := Product{"Learn Ruby", 10043, 100, true, 12}

28

29 if goBook.isAvailable {

30 fmt.Printf("%d copies of %s are available\n",

31 goBook.inventoryLeft, goBook.name)

32 }

33

34 if pythonBook.isAvailable {

35 fmt.Printf("%d copies of %s are available\n",

36 pythonBook.inventoryLeft, pythonBook.name)

37 }

38

39 if rubyBook.isAvailable {

40 fmt.Printf("%d copies of %s are available\n",

41 rubyBook.inventoryLeft, rubyBook.name)

42 }

43

44 }

embedded fields in struct

In the earlier chapter, we saw how toÂ define a struct with field names and type. Embedded fields
can be thought of as subclass and superclass in Object oriented programming.

When the embedded field is a struct, all the fields in that struct will implicitly be the fields in the
struct in which it has been embdedded.

Let’s see one example.

file: code/Struct/Human/human.go

Struct 44

1 package main

2 import "fmt"

3

4 type Human struct {

5 name string

6 age int

7 weight int

8 }

9

10 type Student struct {

11 Human // embedded field, it means Student struct

12 // includes all fields that Human has.

13 specialty string

14 }

15

16 func main() {

17 // initialize a student

18 mark := Student{Human{"Mark", 25, 120}, "Computer Science"}

19

20 // access fields

21 fmt.Println("His name is ", mark.name)

22 fmt.Println("His age is ", mark.age)

23 fmt.Println("His weight is ", mark.weight)

24 fmt.Println("His specialty is ", mark.specialty)

25 // modify notes

26 mark.specialty = "AI"

27 fmt.Println("Mark changed his specialty")

28 fmt.Println("His specialty is ", mark.specialty)

29 // modify age

30 fmt.Println("Mark become old")

31 mark.age = 46

32 fmt.Println("His age is", mark.age)

33 // modify weight

34 fmt.Println("Mark is not an athlete anymore")

35 mark.weight += 60

36 fmt.Println("His weight is", mark.weight)

37 }

Struct 45

Embedding in Student and Human

We see that we can access the age and name fields in Student just like we can in Human. This is how
embedded fields work. We can even use Student to access Human in this embedded field!

1 mark.Human = Human{"Marcus", 55, 220}

2 mark.Human.age -= 1

All the types in Go can be used as embedded fields.

file: code/Struct/Skills/skills.go

1 package main

2

3 import "fmt"

4

5 type Skills []string

6

7 type Human struct {

8 name string

9 age int

10 weight int

11 }

12

13 type Student struct {

14 Human // struct as embedded field

15 Skills // string slice as embedded field

16 int // built-in type as embedded field

Struct 46

17 specialty string

18 }

19

20 func main() {

21 // initialize Student Jane

22 jane := Student{Human: Human{"Jane", 35, 100}, specialty: "Biology"}

23 // access fields

24 fmt.Println("Her name is ", jane.name)

25 fmt.Println("Her age is ", jane.age)

26 fmt.Println("Her weight is ", jane.weight)

27 fmt.Println("Her specialty is ", jane.specialty)

28 // modify value of skill field

29 jane.Skills = []string{"anatomy"}

30 fmt.Println("Her skills are ", jane.Skills)

31 fmt.Println("She acquired two new ones ")

32 jane.Skills = append(jane.Skills, "physics", "golang")

33 fmt.Println("Her skills now are ", jane.Skills)

34 // modify embedded field

35 jane.int = 3

36 fmt.Println("Her preferred number is ", jane.int)

37 }

In the above example, we can see that all types can be embedded fields and we can use functions to
operate on them.

When we embed Human inside Employee, if Human and Employee have the phone field, then it
isn’t a problem. Because we access Employee’s phone as Employee.Phone, but since Human is an
embedded field inside Employee, we access Human’s phone as Employee.Human.Phone

file: code/Struct/Employee/employee.go

1 package main

2

3 import "fmt"

4

5 type Human struct {

6 name string

7 age int

8 phone string // Human has phone field

9 }

10

11 type Employee struct {

12 Human // embedded field Human

Struct 47

13 specialty string

14 phone string // phone in employee

15 }

16

17 func main() {

18 Bob := Employee{Human{"Bob", 34, "777-444-XXXX"},

19 "Designer", "333-222"}

20 fmt.Println("Bob's work phone is:", Bob.phone)

21 // access phone field in Human

22 fmt.Println("Bob's personal phone is:", Bob.Human.phone)

23 }

Links

-Previous section¹⁴ -Next section¹⁵

¹⁴02.3CntrlStmtFunctions.md
¹⁵02.5ObjectOriented.md

02.3CntrlStmtFunctions.md
02.5ObjectOriented.md
02.3CntrlStmtFunctions.md
02.5ObjectOriented.md

Object-oriented
Object oriented languages allow programmers to declare a function inside the class definition. Go
doesn’t allow us to do that, we have to declare a method on a struct via a special syntax.

methods

We defined a “rectangle” struct and we want to calculate its area. Normally, we would create a
function, pass the struct’s instance and calculate the area.

1 package main

2 import "fmt"

3

4 type Rectangle struct {

5 width, height float64

6 }

7

8 func area(r Rectangle) float64 {

9 return r.width*r.height

10 }

11

12 func main() {

13 r1 := Rectangle{12, 2}

14 r2 := Rectangle{9, 4}

15 fmt.Println("Area of r1 is: ", area(r1))

16 fmt.Println("Area of r2 is: ", area(r2))

17 }

The above example calculates a rectangle’s area. The function and struct are two independent things
as you may notice.

The problem arises when we want to generalize things, suppose we want to calculate area of a
square, we need to define yet another function called area, but we can’t have two functions of the
same name in a file. Also area isn’t a property of the struct Rectangle.

Object-oriented 49

Relationship between function and struct

A method is affiliated with the type. It has the same syntax as functions do except for an additional
parameter after the func keyword called the receiver, which is the main body of that method.

Using the same example, Rectangle.area() belongs directly to rectangle, instead of as a peripheral
function. More specifically, length, width and area() all belong to rectangle.

As Rob Pike said.

“A method is a function with an implicit first argument, called a receiver.”

Syntax of method.

1 func (r ReceiverType) funcName(parameters) (results)

Let’s change our example using method instead.

file: code/ObjectOriented/area/area.go

1 package main

2 import (

3 "fmt"

4 "math"

5)

6

7 type Rectangle struct {

8 width, height float64

9 }

10

11 type Circle struct {

12 radius float64

13 }

Object-oriented 50

14

15 func (r Rectangle) area() float64 {

16 return r.width*r.height

17 }

18

19 func (c Circle) area() float64 {

20 return c.radius * c.radius * math.Pi

21 }

22

23 func main() {

24 r1 := Rectangle{12, 2}

25 r2 := Rectangle{9, 4}

26 c1 := Circle{10}

27 c2 := Circle{25}

28

29 fmt.Println("Area of r1 is: ", r1.area())

30 fmt.Println("Area of r2 is: ", r2.area())

31 fmt.Println("Area of c1 is: ", c1.area())

32 fmt.Println("Area of c2 is: ", c2.area())

33 }

Notes for using methods.

• If the name of methods are the same but they don’t share the same receivers, they are not the
same.

• Methods are able to access fields within receivers.
• Use . to call a method in the struct, the same way fields are called.

Object-oriented 51

Methods are different in different structs

In the example above, the area() methods belong to both Rectangle and Circle respectively, so the
receivers are Rectangle and Circle.

One thing that’s worth noting is that the method with a dotted line means the receiver is passed
by value, not by reference. The difference between them is that a method can change its receiver’s
values when the receiver is passed by reference, and it gets a copy of the receiver when the receiver
is passed by value.

Any type can be the receiver of a method.

Custom data types

Use the following format to define a custom type.

1 type typeName typeLiteral

Examples of customized types:

Object-oriented 52

1 type ages int

2

3 type money float32

4

5 type months map[string]int

6

7 m := months {

8 "January":31,

9 "February":28,

10 ...

11 "December":31,

12 }

Similar to typedef in C, we use ages to substitute int in the above example.

You can use as many methods in custom types as you want.

file: code/ObjectOriented/box/box.go

1 package main

2 import "fmt"

3

4 const(

5 WHITE = iota

6 BLACK

7 BLUE

8 RED

9 YELLOW

10)

11

12 type Color byte

13

14 type Box struct {

15 width, height, depth float64

16 color Color

17 }

18

19 type BoxList []Box //a slice of boxes

20

21 func (b Box) Volume() float64 {

22 return b.width * b.height * b.depth

23 }

24

Object-oriented 53

25 func (b *Box) SetColor(c Color) {

26 b.color = c

27 }

28

29 func (bl BoxList) BiggestsColor() Color {

30 v := 0.00

31 k := Color(WHITE)

32 for _, b := range bl {

33 if b.Volume() > v {

34 v = b.Volume()

35 k = b.color

36 }

37 }

38 return k

39 }

40

41 func (bl BoxList) PaintItBlack() {

42 for i, _ := range bl {

43 bl[i].SetColor(BLACK)

44 }

45 }

46

47 func (c Color) String() string {

48 strings := []string {"WHITE", "BLACK", "BLUE", "RED", "YELLOW"}

49 return strings[c]

50 }

51

52 func main() {

53 boxes := BoxList {

54 Box{4, 4, 4, RED},

55 Box{10, 10, 1, YELLOW},

56 Box{1, 1, 20, BLACK},

57 Box{10, 10, 1, BLUE},

58 Box{10, 30, 1, WHITE},

59 Box{20, 20, 20, YELLOW},

60 }

61

62 fmt.Printf("We have %d boxes in our set\n", len(boxes))

63 fmt.Println("The volume of the first one is", boxes[0].Volume(), "cm�")

64 fmt.Println("The color of the last one is",boxes[len(boxes)-1].color.String())

65 fmt.Println("The biggest one is", boxes.BiggestsColor().String())

66

Object-oriented 54

67 fmt.Println("Let's paint them all black")

68 boxes.PaintItBlack()

69 fmt.Println("The color of the second one is", boxes[1].color.String())

70

71 fmt.Println("Obviously, now, the biggest one is", boxes.BiggestsColor().String(\

72))

73 }

We define some constants and customized types.

• Use Color as alias of byte.
• Define a struct Box which has fields height, width, length and color.
• Define a struct BoxList which has Box as its field.

Then we defined some methods for our customized types.

• Volume() uses Box as its receiver and returns the volume of Box.
• SetColor(c Color) changes Box’s color.
• BiggestsColor() returns the color which has the biggest volume.
• PaintItBlack() sets color for all Box in BoxList to black.
• String() use Color as its receiver, returns the string format of color name.

Is it much clearer whenwe use words to describe our requirements?We oftenwrite our requirements
before we start coding.

Use pointer as receiver

Let’s take a look at SetColor method. Its receiver is a pointer of Box. Yes, you can use *Box as a
receiver. Why do we use a pointer here? Because we want to change Box’s color in this method.
Thus, if we don’t use a pointer, it will only change the value inside a copy of Box.

If we see that a receiver is the first argument of a method, it’s not hard to understand how it works.

You might be asking why we aren’t using (*b).Color=c instead of b.Color=c in the SetColor()
method. Either one is OK here because Go knows how to interpret the assignment. Do you think
Go is more fascinating now?

You may also be asking whether we should use (&bl[i]).SetColor(BLACK) in PaintItBlack

because we pass a pointer to SetColor. Again, either one is OK because Go knows how to interpret
it!

Inheritance of method

We learned about inheritance of fields in the last section. Similarly, we also have method inheritance
in Go. If an anonymous field has methods, then the struct that contains the field will have all the
methods from it as well.

file: code/ObjectOriented/employee/employee.go

Object-oriented 55

1 package main

2 import "fmt"

3

4 type Human struct {

5 name string

6 age int

7 phone string

8 }

9

10 type Student struct {

11 Human // anonymous field

12 school string

13 }

14

15 type Employee struct {

16 Human

17 company string

18 }

19

20 // define a method in Human

21 func (h *Human) SayHi() {

22 fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)

23 }

24

25 func main() {

26 mark := Student{Human{"Mark", 25, "222-222-YYYY"}, "MIT"}

27 sam := Employee{Human{"Sam", 45, "111-888-XXXX"}, "Golang Inc"}

28

29 mark.SayHi()

30 sam.SayHi()

31 }

Method overload

If we want Employee to have its own method SayHi, we can define a method that has the same
name in Employee, and it will hide SayHi in Human when we call it.

file: code/ObjectOriented/human/human.go

Object-oriented 56

1 package main

2 import "fmt"

3

4 type Human struct {

5 name string

6 age int

7 phone string

8 }

9

10 type Student struct {

11 Human

12 school string

13 }

14

15 type Employee struct {

16 Human

17 company string

18 }

19

20 func (h *Human) SayHi() {

21 fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)

22 }

23

24 func (e *Employee) SayHi() {

25 fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,

26 e.company, e.phone) //Yes you can split into 2 lines here.

27 }

28

29 func main() {

30 mark := Student{Human{"Mark", 25, "222-222-YYYY"}, "MIT"}

31 sam := Employee{Human{"Sam", 45, "111-888-XXXX"}, "Golang Inc"}

32

33 mark.SayHi()

34 sam.SayHi()

35 }

Methods use rule of capital letter to decide whether public or private as well.

Links

-Previous section¹⁶ -Next section¹⁷

¹⁶02.4Struct.md
¹⁷02.6Interface.md

02.4Struct.md
02.6Interface.md
02.4Struct.md
02.6Interface.md

Interface
Interface

One of the subtlest design features in Go are interfaces. After reading this section, you will likely be
impressed by their implementation.

What is an interface?

In short, an interface is a set of methods that we use to define a set of actions.

Like the examples in previous sections, both Student and Employee can SayHi(), but they don’t do
the same thing.

Let’s do somemorework.We’ll add onemoremethod Sing() to them, alongwith the BorrowMoney()
method to Student and the SpendSalary() method to Employee.

Now, Student has three methods called SayHi(), Sing() and BorrowMoney(), and Employee has
SayHi(), Sing() and SpendSalary().

This combination of methods is called an interface and is implemented by both Student and
Employee. So, Student and Employee implement the interface: SayHi() and Sing(). At the same
time, Employee doesn’t implement the interface: SayHi(), Sing(), BorrowMoney(), and Student
doesn’t implement the interface: SayHi(), Sing(), SpendSalary(). This is because Employee doesn’t
have the method BorrowMoney() and Student doesn’t have the method SpendSalary().

Types of Interface

An interface defines a set of methods, so if a type implements all the methods we say that it
implements the interface.

1 type Human struct {

2 name string

3 age int

4 phone string

5 }

6

7 type Student struct {

8 Human

9 school string

Interface 58

10 loan float32

11 }

12

13 type Employee struct {

14 Human

15 company string

16 money float32

17 }

18

19 func (h *Human) SayHi() {

20 fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)

21 }

22

23 func (h *Human) Sing(lyrics string) {

24 fmt.Println("La la, la la la, la la la la la...", lyrics)

25 }

26

27 func (h *Human) Guzzle(beerStein string) {

28 fmt.Println("Guzzle Guzzle Guzzle...", beerStein)

29 }

30

31 // Employee overloads Sayhi

32 func (e *Employee) SayHi() {

33 fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,

34 e.company, e.phone) //Yes you can split into 2 lines here.

35 }

36

37 func (s *Student) BorrowMoney(amount float32) {

38 s.loan += amount // (again and again and...)

39 }

40

41 func (e *Employee) SpendSalary(amount float32) {

42 e.money -= amount // More vodka please!!! Get me through the day!

43 }

44

45 // define interface

46 type Men interface {

47 SayHi()

48 Sing(lyrics string)

49 Guzzle(beerStein string)

50 }

51

Interface 59

52 type YoungChap interface {

53 SayHi()

54 Sing(song string)

55 BorrowMoney(amount float32)

56 }

57

58 type ElderlyGent interface {

59 SayHi()

60 Sing(song string)

61 SpendSalary(amount float32)

62 }

We know that an interface can be implemented by any type, and one type can implement many
interfaces simultaneously.

Note that any type implements the empty interface interface{} because it doesn’t have any
methods and all types have zero methods by default.

Value of interface

So what kind of values can be put in the interface? If we define a variable as a type interface, any
type that implements the interface can be assigned to this variable.

Like the above example, if we define a variable “m” as interface Men, then any one of Student,
Human or Employee can be assigned to “m”. So we could have a slice of Men, and any type that
implements interfaceMen can assign to this slice. Be aware however that the slice of interface doesn’t
have the same behavior as a slice of other types.

file: code/Interface/InterfaceValue/value.go

1 package main

2

3 import "fmt"

4

5 type Human struct {

6 name string

7 age int

8 phone string

9 }

10

11 type Student struct {

12 Human

13 school string

14 loan float32

Interface 60

15 }

16

17 type Employee struct {

18 Human

19 company string

20 money float32

21 }

22

23 func (h Human) SayHi() {

24 fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)

25 }

26

27 func (h Human) Sing(lyrics string) {

28 fmt.Println("La la la la...", lyrics)

29 }

30

31 func (e Employee) SayHi() {

32 fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,

33 e.company, e.phone) //Yes you can split into 2 lines here.

34 }

35

36 // Interface Men implemented by Human, Student and Employee

37 type Men interface {

38 SayHi()

39 Sing(lyrics string)

40 }

41

42 func main() {

43 mike := Student{Human{"Mike", 25, "222-222-XXX"}, "MIT", 0.00}

44 paul := Student{Human{"Paul", 26, "111-222-XXX"}, "Harvard", 100}

45 sam := Employee{Human{"Sam", 36, "444-222-XXX"}, "Golang Inc.", 1000}

46 tom := Employee{Human{"Sam", 36, "444-222-XXX"}, "Things Ltd.", 5000}

47

48 // define interface i

49 var i Men

50

51 //i can store Student

52 i = mike

53 fmt.Println("This is Mike, a Student:")

54 i.SayHi()

55 i.Sing("November rain")

56

Interface 61

57 //i can store Employee

58 i = tom

59 fmt.Println("This is Tom, an Employee:")

60 i.SayHi()

61 i.Sing("Born to be wild")

62

63 // slice of Men

64 fmt.Println("Let's use a slice of Men and see what happens")

65 x := make([]Men, 3)

66 // these three elements are different types but they all implemented interface \

67 Men

68 x[0], x[1], x[2] = paul, sam, mike

69

70 for _, value := range x {

71 value.SayHi()

72 }

73 }

An interface is a set of abstract methods, and can be implemented by non-interface types. It cannot
therefore implement itself.

Empty interface

An empty interface is an interface that doesn’t contain anymethods, so all types implement an empty
interface. This fact is very useful when we want to store all types at some point, and is similar to
void* in C.

1 // define a as empty interface

2 var a interface{}

3 var i int = 5

4 s := "Hello world"

5 // a can store value of any type

6 a = i

7 a = s

If a function uses an empty interface as its argument type, it can accept any type; if a function uses
empty interface as its return value type, it can return any type.

Method arguments of an interface

Any variable can be used in an interface. So how can we use this feature to pass any type of variable
to a function?

For example we use fmt.Println a lot, but have you ever noticed that it can accept any type of
argument? Looking at the open source code of fmt, we see the following definition.

Interface 62

1 type Stringer interface {

2 String() string

3 }

This means any type that implements interface Stringer can be passed to fmt.Println as an argument.
Let’s prove it.

file: code/Interface/Stringer/stringer.go

1 package main

2

3 import (

4 "fmt"

5 "strconv"

6)

7

8 type Human struct {

9 name string

10 age int

11 phone string

12 }

13

14 // Human implemented fmt.Stringer

15 func (h Human) String() string {

16 return "Name:" + h.name + ", Age:" + strconv.Itoa(h.age) + " years, Contact:" +\

17 h.phone

18 }

19

20 func main() {

21 Bob := Human{"Bob", 39, "000-7777-XXX"}

22 fmt.Println("This Human is : ", Bob)

23 }

Looking back to the example of Box, you will find that Color implements interface Stringer as well,
so we are able to customize the print format. If we don’t implement this interface, fmt.Println prints
the type with its default format.

1 fmt.Println("The biggest one is", boxes.BiggestsColor().String())

2 fmt.Println("The biggest one is", boxes.BiggestsColor())

Attention: If the type implemented the interface error, fmt will call error(), so you don’t have to
implement Stringer at this point.

Interface 63

Type of variable in an interface

If a variable is the type that implements an interface, we know that any other type that implements
the same interface can be assigned to this variable. The question is how can we know the specific
type stored in the interface. There are two ways which I will show you.

• Assertion of Comma-ok pattern

Go has the syntax value, ok := element.(T). This checks to see if the variable is the type that we
expect, where “value” is the value of the variable, “ok” is a variable of boolean type, “element” is the
interface variable and the T is the type of assertion.

If the element is the type that we expect, ok will be true, false otherwise.

Let’s use an example to see more clearly.

file: code/Interface/Person/person.go

1 package main

2

3 import (

4 "fmt"

5 "strconv"

6)

7

8 type Element interface{}

9 type List []Element

10

11 type Person struct {

12 name string

13 age int

14 }

15

16 func (p Person) String() string {

17 return "(name: " + p.name + " - age: " + strconv.Itoa(p.age) + " years)"

18 }

19

20 func main() {

21 list := make(List, 3)

22 list[0] = 1 // an int

23 list[1] = "Hello" // a string

24 list[2] = Person{"Dennis", 70}

25

26 for index, element := range list {

Interface 64

27 if value, ok := element.(int); ok {

28 fmt.Printf("list[%d] is an int and its value is %d\n", index, value)

29 } else if value, ok := element.(string); ok {

30 fmt.Printf("list[%d] is a string and its value is %s\n", index, value)

31 } else if value, ok := element.(Person); ok {

32 fmt.Printf("list[%d] is a Person and its value is %s\n", index, value)

33 } else {

34 fmt.Printf("list[%d] is of a different type\n", index)

35 }

36 }

37 }

It’s quite easy to use this pattern, but if we have many types to test, we’d better use switch.

• switch test

Let’s use switch to rewrite the above example.

file: code/Interface/switch/switch.go

1 package main

2

3 import (

4 "fmt"

5 "strconv"

6)

7

8 type Element interface{}

9 type List []Element

10

11 type Person struct {

12 name string

13 age int

14 }

15

16 func (p Person) String() string {

17 return "(name: " + p.name + " - age: " + strconv.Itoa(p.age) + " years)"

18 }

19

20 func main() {

21 list := make(List, 3)

22 list[0] = 1 //an int

Interface 65

23 list[1] = "Hello" //a string

24 list[2] = Person{"Dennis", 70}

25

26 for index, element := range list {

27 switch value := element.(type) {

28 case int:

29 fmt.Printf("list[%d] is an int and its value is %d\n", index, value)

30 case string:

31 fmt.Printf("list[%d] is a string and its value is %s\n", index, value)

32 case Person:

33 fmt.Printf("list[%d] is a Person and its value is %s\n", index, value)

34 default:

35 fmt.Println("list[%d] is of a different type", index)

36 }

37 }

38 }

One thing you should remember is that element.(type) cannot be used outside of the switch body,
which means in that case you have to use the comma-ok pattern .

Embedded interfaces

The most beautiful thing is that Go has a lot of built-in logic syntax, such as anonymous fields in
struct. Not suprisingly, we can use interfaces as anonymous fields as well, but we call them Embedded

interfaces. Here, we follow the same rules as anonymous fields. More specifically, if an interface
has another interface embeddedwithin it, it will behave as if it has all themethods that the embedded
interface has.

We can see that the source file in container/heap has the following definition:

1 type Interface interface {

2 sort.Interface // embedded sort.Interface

3 Push(x interface{}) //a Push method to push elements into the heap

4 Pop() interface{} //a Pop method that pops elements from the heap

5 }

We see that sort.Interface is an embedded interface, so the above Interface has the three methods
contained within the sort.Interface implicitly.

Interface 66

1 type Interface interface {

2 // Len is the number of elements in the collection.

3 Len() int

4 // Less returns whether the element with index i should sort

5 // before the element with index j.

6 Less(i, j int) bool

7 // Swap swaps the elements with indexes i and j.

8 Swap(i, j int)

9 }

Another example is the io.ReadWriter in package io.

1 // io.ReadWriter

2 type ReadWriter interface {

3 Reader

4 Writer

5 }

Reflection

Reflection in Go is used for determining information at runtime. We use the reflect package, and
this official article¹⁸ explains how reflect works in Go.

There are three steps involved when using reflect. First, we need to convert an interface to reflect
types (reflect.Type or reflect.Value, this depends on the situation).

1 t := reflect.TypeOf(i) // get meta-data in type i, and use t to get all eleme\

2 nts

3 v := reflect.ValueOf(i) // get actual value in type i, and use v to change its\

4 value

After that, we can convert the reflected types to get the values that we need.

1 var x float64 = 3.4

2 v := reflect.ValueOf(x)

3 fmt.Println("type:", v.Type())

4 fmt.Println("kind is float64:", v.Kind() == reflect.Float64)

5 fmt.Println("value:", v.Float())

Finally, if we want to change the values of the reflected types, we need to make it modifiable. As
discussed earlier, there is a difference between pass by value and pass by reference. The following
code will not compile.

¹⁸http://golang.org/doc/articles/laws_of_reflection.html

http://golang.org/doc/articles/laws_of_reflection.html
http://golang.org/doc/articles/laws_of_reflection.html

Interface 67

1 var x float64 = 3.4

2 v := reflect.ValueOf(x)

3 v.SetFloat(7.1)

Instead, we must use the following code to change the values from reflect types.

1 var x float64 = 3.4

2 p := reflect.ValueOf(&x)

3 v := p.Elem()

4 v.SetFloat(7.1)

Links

-Previous section¹⁹ -Next section²⁰

¹⁹02.5ObjectOriented.md
²⁰02.7Concurrency.md

02.5ObjectOriented.md
02.7Concurrency.md
02.5ObjectOriented.md
02.7Concurrency.md

Concurrency
goroutine

goroutines and concurrency are built into the core design of Go. They’re similar to threads but work
differently. More than a dozen goroutines maybe only have 5 or 6 underlying threads. Go also gives
you full support to sharing memory in your goroutines. One goroutine usually uses 4∼5 KB of stack
memory. Therefore, it’s not hard to run thousands of goroutines on a single computer. A goroutine
is more lightweight, more efficient and more convenient than system threads.

goroutines run on the thread manager at runtime in Go. We use the go keyword to create a new
goroutine, which is a function at the underlying level (main() is a goroutine).

1 go hello(a, b, c)

Let’s see an example.

1 package main

2

3 import (

4 "fmt"

5 "runtime"

6)

7

8 func say(s string) {

9 for i := 0; i < 5; i++ {

10 runtime.Gosched()

11 fmt.Println(s)

12 }

13 }

14

15 func main() {

16 go say("world") // create a new goroutine

17 say("hello") // current goroutine

18 }

Output�

Concurrency 69

1 hello

2 world

3 hello

4 world

5 hello

6 world

7 hello

8 world

9 hello

We see that it’s very easy to use concurrency in Go by using the keyword go. In the above example,
these two goroutines share somememory, but we would better off following the design recipe: Don’t
use shared data to communicate, use communication to share data.

runtime.Gosched() means let the CPU execute other goroutines, and come back at some point.

The scheduler only uses one thread to run all goroutines, which means it only implements
concurrency. If you want to use more CPU cores in order to take advantage of parallel processing,
you have to call runtime.GOMAXPROCS(n) to set the number of cores you want to use. If n<1,
it changes nothing. This function may be removed in the future, see more details about parallel
processing and concurrency in this article²¹.

channels

goroutines run in the same memory address space, so you have to maintain synchronization when
you want to access shared memory. How do you communicate between different goroutines? Go
uses a very good communication mechanism called channel. channel is like a two-way pipeline in
Unix shells: use channel to send or receive data. The only data type that can be used in channels
is the type channel and the keyword chan. Be aware that you have to use make to create a new
channel.

1 ci := make(chan int)

2 cs := make(chan string)

3 cf := make(chan interface{})

channel uses the operator <- to send or receive data.

1 ch <- v // send v to channel ch.

2 v := <-ch // receive data from ch, and assign to v

Let’s see more examples.

²¹http://concur.rspace.googlecode.com/hg/talk/concur.html#landing-slide

http://concur.rspace.googlecode.com/hg/talk/concur.html#landing-slide
http://concur.rspace.googlecode.com/hg/talk/concur.html#landing-slide

Concurrency 70

1 package main

2

3 import "fmt"

4

5 func sum(a []int, c chan int) {

6 total := 0

7 for _, v := range a {

8 total += v

9 }

10 c <- total // send total to c

11 }

12

13 func main() {

14 a := []int{7, 2, 8, -9, 4, 0}

15

16 c := make(chan int)

17 go sum(a[:len(a)/2], c)

18 go sum(a[len(a)/2:], c)

19 x, y := <-c, <-c // receive from c

20

21 fmt.Println(x, y, x + y)

22 }

Sending and receiving data in channels blocks by default, so it’s much easier to use synchronous
goroutines. What I mean by block is that a goroutine will not continue when receiving data from an
empty channel, i.e (value := <-ch), until other goroutines send data to this channel. On the other
hand, the goroutine will not continue until the data it sends to a channel, i.e (ch<-5), is received.

Buffered channels

I introduced non-buffered channels above. Go also has buffered channels that can store more than
a single element. For example, ch := make(chan bool, 4), here we create a channel that can store
4 boolean elements. So in this channel, we are able to send 4 elements into it without blocking, but
the goroutine will be blocked when you try to send a fifth element and no goroutine receives it.

1 ch := make(chan type, n)

2

3 n == 0 ! non-buffer�block�

4 n > 0 ! buffer�non-block until n elements in the channel�

You can try the following code on your computer and change some values.

Concurrency 71

1 package main

2

3 import "fmt"

4

5 func main() {

6 c := make(chan int, 2) // change 2 to 1 will have runtime error, but 3 is fine

7 c <- 1

8 c <- 2

9 fmt.Println(<-c)

10 fmt.Println(<-c)

11 }

Range and Close

We can use range to operate on buffer channels as in slice and map.

1 package main

2

3 import (

4 "fmt"

5)

6

7 func fibonacci(n int, c chan int) {

8 x, y := 1, 1

9 for i := 0; i < n; i++ {

10 c <- x

11 x, y = y, x + y

12 }

13 close(c)

14 }

15

16 func main() {

17 c := make(chan int, 10)

18 go fibonacci(cap(c), c)

19 for i := range c {

20 fmt.Println(i)

21 }

22 }

for i := range c will not stop reading data from channel until the channel is closed. We use the
keyword close to close the channel in above example. It’s impossible to send or receive data on a
closed channel; you can use v, ok := <-ch to test if a channel is closed. If ok returns false, it means
the there is no data in that channel and it was closed.

Concurrency 72

Remember to always close channels in producers and not in consumers, or it’s very easy to get into
panic status.

Another thing you need to remember is that channels are not like files. You don’t have to close them
frequently unless you are sure the channel is completely useless, or you want to exit range loops.

Select

In the above examples, we only use one channel, but how can we deal with more than one channel?
Go has a keyword called select to listen to many channels.

select is blocking by default and it continues to execute only when one of channels has data to send
or receive. If several channels are ready to use at the same time, select chooses which to execute
randomly.

1 package main

2

3 import "fmt"

4

5 func fibonacci(c, quit chan int) {

6 x, y := 1, 1

7 for {

8 select {

9 case c <- x:

10 x, y = y, x + y

11 case <-quit:

12 fmt.Println("quit")

13 return

14 }

15 }

16 }

17

18 func main() {

19 c := make(chan int)

20 quit := make(chan int)

21 go func() {

22 for i := 0; i < 10; i++ {

23 fmt.Println(<-c)

24 }

25 quit <- 0

26 }()

27 fibonacci(c, quit)

28 }

Concurrency 73

select has a default case as well, just like switch. When all the channels are not ready for use,
it executes the default case (it doesn’t wait for the channel anymore). golang select { case i :=

<-c: // use i default: // executes here when c is blocked } #### Timeout

Sometimes a goroutine becomes blocked. How can we avoid this to prevent the whole program from
blocking? It’s simple, we can set a timeout in the select. golang func main() { c := make(chan

int) o := make(chan bool) go func() { for { select { case v := <- c: println(v) case <-

time.After(5 * time.Second): println("timeout") o <- true break } } }() <- o } ####Run-
time goroutine

The package runtime has some functions for dealing with goroutines.

• runtime.Goexit()

Exits the current goroutine, but defered functions will be executed as usual.
• runtime.Gosched()

Lets the scheduler execute other goroutines and comes back at some point.
• runtime.NumCPU() int

Returns the number of CPU cores
• runtime.NumGoroutine() int

Returns the number of goroutines
• runtime.GOMAXPROCS(n int) int

Sets how many CPU cores you want to use

Links

-Previous section²² -Next section²³

²²02.6Interface.md
²³1.0generalTalk.md

02.6Interface.md
1.0generalTalk.md
02.6Interface.md
1.0generalTalk.md

Managing the Workspace
$GOPATH and $GOROOT

$GOROOT: This is an environment variable which stores the path where your Go installation is present
if you have customized it. $GOPATH: The Go universe for your machine. The idea is that all your Go
code should reside in a directory tree so the code isn’t lying around in random places.

My $GOPATH is /usr/home/suraj/Go, it has the following structure - pkg: The libraries which’ll be
imported in our code, there is a .a file created at the respective path. - bin: The binary file of our
project will be installed here on calling go install in the project folder - src: Will hold the actual
code, if you have a github account, then you can create a folder tree inside like

go - src - github.com - thewhitetulip - wshare - picsort - golang.net - sourcegraph.com - bin (binaries)
- wshare - picsort - pkg

Go takes this unique approach so that all the Go code is well organized and not thrown in a
haphazard manner. This makes it easy to locate code for humans and software alike.

Packages

Packages are one or more file(s) which contains Go source code. They can be named anything. Each
package except the main needs to be a in a distinct folder on the GOPATH. Each Go program starts
with the package declaration. As a convention, package names are short and self documenting. The
Format package is called fmt since it is short and concise that way.

There can be any number of files in a package directory, but only one file with the main function.
While building the code, the compiler starts with the main function in the main package.

Package naming

import "views"

When the Go compiler executes this statement, it’ll try to find the library called “views” in
$GOROOT/views or $GOPATH/src/views. It’ll complain if it doesn’t find the library in either of
the two paths.

The actual package name is just “views”, but for evaluating it, it’s the absolute path of the package
from the $GOPATH/src directory.

For the Tasks app, it resides in $GOPATH/src/github/thewhitetulip/Tasks, thus, my packages will
lie within the Tasks folder. This makes it easy for distributing the libraries.

Managing the Workspace 75

Note: Bad Workaround.

There is a workaround for this by treating $GOPATH/src itself as your entire project and
having libraries directly inside it. This is not the Go way of doing things. Please do not
do it.

Internal deployment

We’ll follow the standard practice and put our code in $GOPATH/src/github.com/thewhitetulip/Tasks
folder. While testing our app, we need a deployment version. I used Tasks while building Tasks, I
have made a folder ∼/Tasks and here I keep the deployment version of Tasks, which contains the
binary version and the static files. Every new build in the src gets pushed in this folder.

Running a server

Webapps are deployed on IP addresses & ports. It is possible to run multiple websites on a single
machine on different ports. There are an awfully large number of ports on each computer. Typically
we choose a large port number like 8000 so it doesn’t affect some other applications. Certain ports
are restricted and need sudo access, like 80.

The IP address we bind the server to can be a public or private. Public means using “:8080” or
“0.0.0.0:8080”. Private means “127.0.0.1:8080”

• Public IP means that any computer in the same network can access the web app.
• Private means only your computer will be able to access it.

//Public

log.Fatal(http.ListenAndServe(":8080", nil))

//Private

log.Fatal(http.ListenAndServe("127.0.0.1:8080", nil))

Note: 127.0.0.1

127.0.0.1, called localhost, is a special IP address which is given to every machine to
refer to itself. It is called as loopback address. It doesn’t matter if you are connected to
the network or not, your machine will always have this IP address, so if you are want
privacy use 127.0.0.1.

If you do want your web application to be accessible via the network, use 0.0.0.0:8080 or just
:8080, when you give just the port number, the Go language assumes the IP address the machine is
‘0.0.0.0’ and not 127.0.0.1.

Managing the Workspace 76

MVC Pattern

When I started learning building web apps in Django, I first read about the MVC pattern, the models,
the views and what not. But that knowledge was to be assumed by me and I had no idea why that
decision was made, along with that Django works like magic, one has to adapt to it’s quirks. Hence
while programming in Go, it’ll be immensely benefitial to grow up to the MVC pattern by starting
out small. The first app should entirely reside in the main.go file, then slowly, as the app grows,
it needs to be structured well, so the all the handlers go into a views package, templates go in a
templates folder, database related entities go in another package.

Learning by doing and experimenting is the best way. Challenge the status quo.

Links

-Previous section²⁴ -Next section²⁵

²⁴02.7Concurrency.md
²⁵1.1WebProgramBasics.md

02.7Concurrency.md
1.1WebProgramBasics.md
02.7Concurrency.md
1.1WebProgramBasics.md

Web Programming Basics
Web servers are programs which accept a HTTP Request and they respond back with a HTTP
Response.The Go language has http support in it’s standard library as net/http.

HTTP was built for transferring plain text, later it allowed multimedia content too. The successor
of HTTP protocol is HTTP2, which is binary.

When we type www.github.com on our browser’s address bar, the following things happen:

1. Browser adds either https:// or http:// and a trailing forward slash.
2. Our request becomes GET / github.com. (This is the HTTP Request)
3. Browser sends out the HTTP GET request to the IP address of the github.com. Resolving the

IP address of a domain name is called DNS resolution.
4. Github’s servers will process the request and send back a response to our IP address.
5. Our browser will render the HTTP Response.

The HTTP Reso=ponse contains the status code of the request. Following are the status codes defined
in HTTP/1.1:

• 1xx Informational
• 2xx Success
• 3xx Redirection
• 4xx Client Error
• 5xx Server Error

Writing a server might sound like very difficult, but it is not. To the core, a server is just like any
other program you write. It takes an input, transforms it and gives an output. The input is a HTTP
Request, the transformation happens when it reads data from the database and does processing over
the HTTP Request, the output is the HTTP Response.

The browser just abstracts the users from sending and receiving the HTTP request/responses.
Everything that a browser does can be done programmatically,

Web Programming Basics 78

HTTP Methods

Two important parts of a HTTP Request are Methods and URL. The URL states what the user wants
to do (/logout or /login or /posts), and the Method states the semantics of the request, for instance
the user might be sending a Form using the POST method or the user is wanting a list of posts using
the GET method.

A short list of HTTP methods: GET, POST, DELETE, PUT.

1. GET : Used to retrieve the URL, GET / will get the home page.
2. POST: Used to create data stored on the URL.
3. PUT: Used to update data on the URL. PUT differs from POST in a crucial way, PUT is

idempotent, if you send a PUT request twice, then it won’t be duplicated. If you send a POST
request twice, then it’ll create two resources on the server, thus, POST creates duplicates on
two exactly same requests, PUT does not.

4. DELETE: Used to delete data in the URL.

This is going to be our server design, the Methods and URLs that we are going to support.

1 // Create a new category.

2 // POST /categories

3

4 // Update an existing category.

5 // PUT /categories/12

6

7 // View the details of a category.

8 // GET /categories/12

9

10 // Delete an existing category.

11 // DELETE /categories/12

Think of categories as a document,

1. POST to create it
2. GET to fetch it,
3. PUT to update it,
4. DELETE to delete it.

Of course, instead of using the DELETE method, we can use the GET method to perform the same
task sending a GET /delete/1234, but, we should send a DELETE ‘/tasks/1234. This comes under API
design. PUT and DELETE are used when we are working with AJAX.

Web Programming Basics 79

GET vs POST

Apart from their functional differences, GET and POST differ in security perspectives. Basically,
both are insecure. There is no free lunch in security.

GET transfers data via the URL. POST sends data in the request’s body or payload, but that isn’t
hidden or encrypted by default, but it isn’t visible on the URL, it is easily accessible to anyone who
knows how to read a HTTP request.

Security is something you build your application around. There isn’t much difference between GET
and POST when we consider security, both transfer data in plain text GET is just relatively a little
less secure since URLs are logged by a proxy server/firewall/browser history and that GET requests
can be done by the browser on behalf of the user without confirmation. For protecting data of the
webapp, one has to stick to using HTTPS and sanitize any data that comes from the user.

Example

A blog consists of a collection of posts, a post has tags, is written by some author, at some time and
has some primary key to uniquely identify it in our database and it has a slug which means the URL.

This is the era of semantic web, thus the new beautiful URLs like, someblog.com/posts/welcome-
the-new-year, the slug is the welcome-the-new-year.

When the server gets a HTTP GET request of /posts/welcome-the-new-year, it’ll search for URL
handlers starting with the list of URL handlers we have given, then it’ll find the closest match, in
our case it’ll be /post/, then it’ll call the handler of this URL. A handler is nothing but a function
we have written to process a particular URL pattern.

Our / root URL should be at the very bottom of our list. Because while executing, checks are done
from top to bottom.

1 // sample handler definition

2 http.HandleFunc("/post/", ShowPostBySlug)

3 http.HandleFunc("/", ShowAllPosts)

Handlers talk to the database, fetch the data and render templates which show up as HTML pages
in our browser.

What is a template?

Templates are a way to present data to the user. The server populates the templates and sends the
HTML page back to the browser. For a blog, it doesn’t make sense to use a separate html page for
each post. This is why there is a post template and the server will get all the details like content,
title, date published and populate the post template and return it back to the browser.

Web Programming Basics 80

A web application is basically a way of representing data stored in the database to the end user using
HTTP.

Writing a web application:

1. Understand how data flows and decide the URLs.
2. Fix the database structure.
3. Write templates to corresponding to each URL set.
4. Write functions in Go to handle each URL pattern, called handlers.
5. Handlers fetch data from the database and populate data in the templates.

Not abusing templates

The logic behind creating templates was to avoid duplication of HTML code. Templates are to be
used only for the presentation logic not the business logic. Adding business logic in templates makes
it very difficult to maintain the app.

Example:

We are going to build a todo list manager in this book with supports multiple users.

Wrong way: Fetch all tasks in the template and only show those of the current user. i.e. filter the
tasks in the template

Correct way: Fetch only the tasks belonging to the current user. i.e. filter the tasks in the handler.

Functionality of our EditTask URL which is /edit/<id>.

file views/addViews.go

1 //EditTaskFunc is our handler which will handle the /edit/<id> URL

2 func EditTaskFunc(w http.ResponseWriter, r *http.Request) {

3 //Code

4 task := db.GetTaskByID(id)

5 editTemplate.Execute(w, task)

6 //Code

7 }

file db/tasks.go

Web Programming Basics 81

1 func GetTaskByID(id int) types.Context {

2 //Code to fetch tasks of the current user

3 context := types.Context{Tasks: tasks}

4 return context

5 }

The EditTaskFunc talks to the database with the GetTaskByID function and fetches the tasks for the
current user and populates the editTemplate.

Thus we can split an application into views, database, templates and controller(main package).

Static Files

Static files are the CSS/JS/Images which we load into our html templates.

The URL which responds to static files will be /static/.

Execution:

1. We get a request like /static/<filepath>
2. We go to the public directory of our application and look for <filepath>
3. If we get a file of that path then we serve the file, othewise send a 404 error.

The public folder contains all your static files. We will have a templates folder on the same folder
where the public is present.

The reason templates is a separate folder is that it is a separate entity and shouldn’t be publicly
available using the /static/ URL.

1 public

2 | |-- static

3 | | |-- css

4 | | | `-- styles.css

5 ..and more

6 | | `-- js

7 | | |-- bootstrap.min.js

8 | | and more

9 templates

10 | |-- completed.html

11 | | ...and more

Note

The above output is of the tree program.

Web Programming Basics 82

Links

-Previous section²⁶ -Next section²⁷

²⁶1.0generalTalk.md
²⁷2.0implementationBasics.md

1.0generalTalk.md
2.0implementationBasics.md
1.0generalTalk.md
2.0implementationBasics.md

Basic web application
Make a folder in your $GOPATH/src/github.com/<yourname>/Tasks substitute your username in
lieu of <yourname>.

Create a file main.go

file main.go

1 package main

2

3 import (

4 "log"

5 "net/http"

6)

7

8 func main() {

9 PORT := "127.0.0.1:8080"

10 log.Fatal(http.ListenAndServe(PORT, nil))

11 }

We import the http package in our application with import net/http.

Now go to your terminal and type

1 [Tasks] $ go run main.go

You will notice that the program doesn’t print anything because we told it only to listen on the port.
If we want to user to know that we are running a server on that port, we should print a message
saying so, as shown in the below example.

code example file: 3.1basicServer.go

Basic web application 84

1 package main

2

3 import (

4 "log"

5 "net/http"

6)

7

8 func main() {

9 PORT := ":8080"

10 log.Print("Running server on "+ PORT)

11 log.Fatal(http.ListenAndServe(PORT, nil))

12 }

Whenever we run this, we’ll get the below output

1 2016/01/01 22:00:36 Running server on :8080

Open localhost:8080 in a browser and you’ll get the message “404 page not found”

We have just started a server to listen on the port 8080. We haven’t handled the URL, i.e. we do not
have a mechanism to respond to the GET / request which the browser is going to send when we hit
the localhost:8080 URL.

Handling URLs

1 http.HandleFunc("/complete/", ShowCompleteTasksFunc)

2

3 //ShowCompleteTasksFunc is used to populate the "/completed/" URL

4 func ShowCompleteTasksFunc(w http.ResponseWriter, r *http.Request) {

5 }

We use HandleFunc in the net/http package to handle URLs. The first argument is the URL to be
handled and the second parameter is the function. We can define functions in the second parameter,
but you are advised against it.

The handler function requires two arguments, a ResponseWriter object and a Request object. We
are going to write to the ResponseWriter depending on what we get in the Request object. The
ResponseWriter object is going to be the output, Request object is the input. The handler which we
are writing is going to write data to the ResponseWriter object, which will be sent back to the user’s
browser.

Handler Example

We want to write the URL that the user is visiting on our webapp. The URL can be found in the
request object, r.URL.Path.

Basic web application 85

1 package main

2

3 import (

4 "log"

5 "net/http"

6)

7

8 func main() {

9 PORT := ":8080"

10 log.Print("Running server on "+ PORT)

11 http.HandleFunc("/",CompleteTaskFunc)

12 log.Fatal(http.ListenAndServe(PORT, nil))

13 }

14

15 func CompleteTaskFunc(w http.ResponseWriter, r *http.Request) {

16 w.Write([]byte(r.URL.Path))

17 }

Parameterized routing

When we get the URL /tasks/124, we want to get the task number 124, we do the following

1 //GetTaskFunc is used to delete a task,

2 func GetTaskFunc(w http.ResponseWriter, r *http.Request) {

3 if r.Method == "GET" {

4 id := r.URL.Path[len("/tasks/"):]

5 w.Write([]byte("Get the task "+id))

6 }

We take a sub string of the URL and remove the /tasks/ part to get the ID of the task.

This example makes use of the slicing concept. It is simple, if Path is our string variable then Path[1:]
is the substring which includes everything from the first character, index being zero.

Note: Parameterized routing

Ideally we should not be checking the URL path inside our view, we are supposed to use a router.
For real projects, you should use a router. But before we start using third party libraries, it is better
to learn the concepts, hence, we won’t be using a router now.

Serving static files

Basic web application 86

1 http.Handle("/static/", http.FileServer(http.Dir("public")))

For serving static files, we use the FileServer method of the http package. It takes a folder as an
argument. Make sure you give only the public folder path in the argument.

Homework

• Read the documentation of net/http & log and get to know of the methods/functions in the
packages.

• Find out how many alternatives are there to ListenAndServe.
• Write a handler to serve static files, if file is available on that path then it should serve the file,
otherwise it must return an HTTP404 error.

• Write a command line application to share files/folder over HTTP, the syntax should be like
this ./wshare -f file.pdf file on link = 192.168.2.1:8080. An advanced version of this can be
a dropbox clone, where we have a UI to share files. If you build this, do email me!

Footnotes

Learn how to read documentation, it saves a lot of time.

Links

-Previous section²⁸ -Next section²⁹

²⁸1.1WebProgramBasics.md
²⁹2.1WebAppDesign.md

1.1WebProgramBasics.md
2.1WebAppDesign.md
1.1WebProgramBasics.md
2.1WebAppDesign.md

Designing our web app
The design phase is the most important in any software project as one small mistake in designing
becomes very costly to fix that later. In most projects, there are a few solutions applied to mistakes
in design, they are just glued together until it becomes impossible to go forward. The term is called
technical debt.

Our webapp is going to be a todo list manager for multiple users. It’ll have the following features:

1 Ability to add/delete/modify task.

2 Ability to mark tasks as complete/incomplete.

3 Display the tasks as a one column list.

4 Ability to switch modes between pending/completed/deleted tasks.

5 Display notifications like note added/deleted/archived.

6 Search for text and highlight the text in the search results page.

7 Login/Sign up.

The Design

Translating our design to API, we get the following.

URL Method Description

/add/ POST add new task
/ GET show pending tasks
/complete/ GET show completed tasks
/deleted/ GET show deleted tasks
/edit/<id> POST edit post
/edit/<id> GET show the edit page
/trash/<id> POST trash post to recycle bin
/delete/<id> POST permanently delete post
/complete/<id> POST mark post as complete
/login/ POST do the login
/login/ GET show login page
/logout/ POST log the user out
/restore/<id> POST restore that task
/update/<id> POST update task
/change/ GET will allow changing password
/register/ GET show the register page
/register/ POST will add entries into database

Designing our web app 88

file ∼/main/main.go

1 package main

2 import (

3 "log"

4 "net/http"

5)

6

7 func main() {

8 http.HandleFunc("/complete/", CompleteTaskFunc)

9 http.HandleFunc("/delete/", DeleteTaskFunc)

10 http.HandleFunc("/deleted/", ShowTrashTaskFunc)

11 http.HandleFunc("/trash/", TrashTaskFunc)

12 http.HandleFunc("/edit/", EditTaskFunc)

13 http.HandleFunc("/completed/", ShowCompleteTasksFunc)

14 http.HandleFunc("/restore/", RestoreTaskFunc)

15 http.HandleFunc("/add/", AddTaskFunc)

16 http.HandleFunc("/update/", UpdateTaskFunc)

17 http.HandleFunc("/search/", SearchTaskFunc)

18 http.HandleFunc("/login", GetLogin)

19 http.HandleFunc("/register", PostRegister)

20 http.HandleFunc("/admin", HandleAdmin)

21 http.HandleFunc("/add_user", PostAddUser)

22 http.HandleFunc("/change", PostChange)

23 http.HandleFunc("/logout", HandleLogout)

24 http.HandleFunc("/", ShowAllTasksFunc)

25

26 http.Handle("/static/", http.FileServer(http.Dir("public")))

27 log.Print("running on port 8080")

28 log.Fatal(http.ListenAndServe(":8080", nil))

29 }

Create all functions we mentioned above and make the necessary changes as per one definition that
we show below in this file.

Designing our web app 89

1 func ShowAllTasksFunc(w http.ResponseWriter, r *http.Request) {

2 var message string

3 if r.Method == "GET" {

4 message = "all pending tasks GET"

5 } else {

6 message = "all pending tasks POST"

7 }

8 w.Write([]byte(message))

9 }

After you create these functions run the server as below,

1 [Tasks] $ go build

2 [Tasks] $./Tasks

In your browser type localhost:8080 and type all these URLs and see what message you get.

Homework

Check the documentation for http.ResponseWriter and http.Request objects and get to know all
the variables/functions/constants for http package and these two which we mentioned.

Links

-Previous section³⁰ -Next section³¹

³⁰2.0implementationBasics.md
³¹2.2database.md

2.0implementationBasics.md
2.2database.md
2.0implementationBasics.md
2.2database.md

Using databases in Go
Go doesn’t provide out of the box support for any database, but it provides an interface, which can
be used by database library creators to keep all the database libraries compatible with each other.

We will use sqlite for this book.

Creating and configuring database

Before we can build the front end, we need the backend ready. Below is the DDL and the DML
which will fill our database with dummy data.

Use the following insert statements to enter data in our table, so we’ll begin reading data in our
ShowAllTasks function which we wrote in the previous chapter

1 --user

2

3 PRAGMA foreign_keys=OFF;

4 BEGIN TRANSACTION;

5 CREATE TABLE user (

6 id integer primary key autoincrement,

7 username varchar(100),

8 password varchar(1000),

9 email varchar(100)

10);

11 INSERT INTO "user" VALUES(1,'suraj','suraj','sapatil@live.com');

12

13

14 --category

15 CREATE TABLE category(

16 id integer primary key autoincrement,

17 name varchar(1000) not null,

18 user_id references user(id)

19);

20

21 INSERT INTO "category" VALUES(1,'TaskApp',1);

22

23 --status

24 PRAGMA foreign_keys=OFF;

Using databases in Go 91

25 BEGIN TRANSACTION;

26 CREATE TABLE status (

27 id integer primary key autoincrement,

28 status varchar(50) not null

29);

30 INSERT INTO "status" VALUES(1,'COMPLETE');

31 INSERT INTO "status" VALUES(2,'PENDING');

32 INSERT INTO "status" VALUES(3,'DELETED');

33 COMMIT;

34

35 --task

36

37 PRAGMA foreign_keys=OFF;

38 BEGIN TRANSACTION;

39 CREATE TABLE task (

40 id integer primary key autoincrement,

41 title varchar(100),

42 content text,

43 created_date timestamp,

44 last_modified_at timestamp,

45 finish_date timestamp,

46 priority integer,

47 cat_id references category(id),

48 task_status_id references status(id),

49 due_date timestamp,

50 user_id references user(id),

51 hide int

52);

53

54 INSERT INTO "task" VALUES(1,'Publish on github','Publish the source of tasks\

55 and picsort on github','2015-11-12 15:30:59','2015-11-21 14:19:22','2015-11-17 \

56 17:02:18',3,1,1,NULL,1,0);

57 INSERT INTO "task" VALUES(4,'gofmtall','The idea is to run gofmt -w file.go \

58 on every go file in the listing, *Edit turns out this is is difficult to do in g\

59 olang **Edit barely 3 line bash script. ','2015-11-12 16:58:31','2015-11-14 10:4\

60 2:14','2015-11-13 13:16:48',3,1,1,NULL,1,0);

61

62 CREATE TABLE comments(id integer primary key autoincrement, content ntext, t\

63 askID references task(id), created datetime, user_id references user(id));

64

65 CREATE TABLE files(name varchar(1000) not null, autoName varchar(255) not nu\

66 ll, user_id references user(id), created_date timestamp);

Using databases in Go 92

Installing sqlite driver

We’ll use the go-sqlite3 driver created by mattn³². The reason being it implements the database/sql
interface. The advantage of using a database library which uses the database/sql interface is that,
the libraries are swappable by other libraries which implement the interface.

Type this in your terminal:

1 go get -u "github.com/mattn/go-sqlite3"

³²http://github.com/mattn

http://github.com/mattn
http://github.com/mattn

Accessing the database
To access databases in Go, you use a sql.DB. You use this type to create statements and transactions,
execute queries, and fetch results.

The first thing you should know is that a sql.DB isn’t a database connection. It also doesn’t map
to any particular database software’s notion of a “database” or “schema.” It’s an abstraction of the
interface and existence of a database, which might be as varied as a local file, accessed through a
network connection, or in-memory and in-process.

The sql.DB performs some important tasks for you behind the scenes:

1. It opens and closes connections to the actual underlying database, via the driver.
2. It manages a pool of connections as needed, which may be a variety of things as mentioned.

The sql.DB abstraction is designed to keep you from worrying about how to manage concurrent
access to the underlying datastore. A connection is marked in-use when you use it to perform a
task, and then returned to the available pool when it’s not in use anymore. One consequence of
this is that if you fail to release connections back to the pool, you can cause db.SQL to open a lot
of connections, potentially running out of resources (too many connections, too many open file
handles, lack of available network ports, etc). We’ll discuss more about this later.

After creating a sql.DB, you can use it to query the database that it represents, as well as creating
statements and transactions.

Importing driver

To use database/sql you’ll need the package itself, as well as a driver for the specific database you
want to use.

You generally shouldn’t use driver packages directly, although some drivers encourage you to do
so. (In our opinion, it’s usually a bad idea.) Instead, your code should only refer to types defined in
database/sql, if possible. This helps avoid making your code dependent on the driver, so that you can
change the underlying driver (and thus the database you’re accessing) with minimal code changes.
It also forces you to use the Go idioms instead of ad-hoc idioms that a particular driver author may
have provided.

In this documentation, we’ll use the excellent MySQL drivers from @julienschmidt and @arnehor-
mann for examples.

Add the following to the top of your Go source file:

Accessing the database 94

1 import (

2 "database/sql"

3 _ "github.com/go-sql-driver/mysql"

4)

Notice that we’re loading the driver anonymously, aliasing its package qualifier to _ so none of its
exported names are visible to our code. Under the hood, the driver registers itself as being available
to the database/sql package, but in general nothing else happens.

Now you’re ready to access a database.

Every database has a connection mechanism, file for sqlite and IP address for MySQL/Postgres.

Retrieving Result Sets
There are several idiomatic operations to retrieve results from the datastore.

1. Execute a query that returns rows.
2. Prepare a statement for repeated use, execute it multiple times, and destroy it.
3. Execute a statement in a once-off fashion, without preparing it for repeated use.
4. Execute a query that returns a single row. There is a shortcut for this special case.

Go’s database/sql function names are significant. If a function name includes Query, it is designed
to ask a question of the database, and will return a set of rows, even if it’s empty. Statements that
don’t return rows should not use Query functions; they should use Exec().

Fetching Data from the Database

Let’s take a look at an example of how to query the database, working with results. We’ll query the
users table for a user whose id is 1, and print out the user’s id and name. We will assign results to
variables, a row at a time, with rows.Scan().

1 getTaskSQL = "select id, title, content, created_date from task

2 where finish_date is null and is_deleted='N' order by created_date asc"

3

4 rows, err := database.Query(getTaskSQL)

5

6 if err != nil {

7 log.Println(err)

8 }

9

10 defer rows.Close()

11 for rows.Next() {

12 err := rows.Scan(&TaskID, &TaskTitle, &TaskContent, &TaskCreated)

13 TaskContent = strings.Replace(TaskContent, "\n", "
", -1)

14 if err != nil {

15 log.Println(err)

16 }

17 fmt.Println(TaskID, TaskTitle, TaskContent, TaskCreated)

18 }

Retrieving Result Sets 96

19

20 taskSQL := "delete from task"

21 tx := database.begin()

22 _, err = tx.Stmt(SQL).Exec(args...)

23 if err != nil {

24 tx.Rollback()

25 } else {

26 tx.Commit()

27 }

Defer keyword

We use defer inside a function call. “‘golang package main import (“fmt” “io/ioutil” “os”)

func main() { file, err := os.Open(‘file.dat’) if err != nil { fmt.Println(“File doesn’t exist or you don’t
have read permission”) }

1 defer file.Close()

2 inputReader := bufio.NewReader(file)

3 //do something about inputReader

} “‘

The defer statement puts the function call at the bottom of the call stack, so whenever the function
returns, defer is triggered. One has to be careful with using defer, it can cause difficult to find bugs.

file ∼/main/main.go

1 Find and fix the bug:

2

3 package main

4 import (

5 _ "github.com/mattn/go-sqlite3"

6 "fmt"

7)

8

9 var database *sql.DB

10

11 func init() {

12 defer database.Close()

13 database, err = sql.Open("sqlite3", "./tasks.db")

14 if err != nil {

15 fmt.Println(err)

16 }

Retrieving Result Sets 97

17 }

18 //intentional bug exists, fix it

19 func main() {

20 getTaskSQL = "select id, title, content, created_date from task

21 where finish_date is null and is_deleted='N' order by created_date asc"

22

23 rows, err := database.Query(getTaskSQL)

24 if err != nil {

25 fmt.Println(err)

26 }

27 defer rows.Close()

28 for rows.Next() {

29 err := rows.Scan(&TaskID, &TaskTitle, &TaskContent, &TaskCreated)

30 TaskContent = strings.Replace(TaskContent, "\n", "
", -1)

31 if err != nil {

32 fmt.Println(err)

33 }

34 fmt.Println(TaskID, TaskTitle, TaskContent, TaskCreated)

35 }

36 err = rows.Err()

37 if err != nil {

38 log.Fatal(err)

39 }

40 }

Always defer rows.Close(), to free the database connection in the pool. So long as rows contains
the result set, the database connection is in use and not available in the connection pool.

When the rows.Next() function returns EOF (End of File), which means that it has reached the end
of records, it’ll call rows.Close() for you, Close() can be called multiple times without side effects.

Here’s what’s happening in the above code:

1. We’re using db.Query() to send the query to the database. We check the error, as usual.
2. We defer rows.Close(). This is very important.
3. We iterate over the rows with rows.Next().
4. We read the columns in each row into variables with rows.Scan().
5. We check for errors after we’re done iterating over the rows.

This is pretty much the only way to do it in Go. You can’t get a row as a map, for example. That’s
because everything is strongly typed. You need to create variables of the correct type and pass
pointers to them, as shown.

A couple parts of this are easy to get wrong, and can have bad consequences.

Retrieving Result Sets 98

• You should always check for an error at the end of the for rows.Next() loop. If there’s an error
during the loop, you need to know about it. Don’t just assume that the loop iterates until
you’ve processed all the rows.

• Second, as long as there’s an open result set (represented by rows), the underlying connection
is busy and can’t be used for any other query. That means it’s not available in the connection
pool. If you iterate over all of the rows with rows.Next(), eventually you’ll read the last row,
and rows.Next() will encounter an internal EOF error and call rows.Close() for you. But if for
some reason you exit that loop – an early return, or so on – then the rows doesn’t get closed,
and the connection remains open. (It is auto-closed if rows.Next() returns false due to an error,
though). This is an easy way to run out of resources.

• rows.Close() is a harmless no-op if it’s already closed, so you can call it multiple times. Notice,
however, that we check the error first, and only call rows.Close() if there isn’t an error, in order
to avoid a runtime panic.

• You should always defer rows.Close(), even if you also call rows.Close() explicitly at the end
of the loop, which isn’t a bad idea.

• Don’t defer within a loop. A deferred statement doesn’t get executed until the function exits,
so a long-running function shouldn’t use it. If you do, you will slowly accumulate memory.
If you are repeatedly querying and consuming result sets within a loop, you should explicitly
call rows.Close() when you’re done with each result, and not use defer.

How Scan() Works

When you iterate over rows and scan them into destination variables, Go performs data type
conversions work for you, behind the scenes. It is based on the type of the destination variable.
Being aware of this can clean up your code and help avoid repetitive work.

For example, suppose you select some rows from a table that is defined with string columns,
such as VARCHAR(45) or similar. You happen to know, however, that the table always contains
numbers. If you pass a pointer to a string, Go will copy the bytes into the string. Now you can use
strconv.ParseInt() or similar to convert the value to a number. You’ll have to check for errors in the
SQL operations, as well as errors parsing the integer. This is messy and tedious.

Or, you can just pass Scan() a pointer to an integer. Go will detect that and call strconv.ParseInt()
for you. If there’s an error in conversion, the call to Scan() will return it. Your code is neater and
smaller now. This is the recommended way to use database/sql.

Preparing Queries

You should, in general, always prepare queries to be used multiple times. The result of preparing the
query is a prepared statement, which can have placeholders (a.k.a. bind values) for parameters that
you’ll provide when you execute the statement. This is much better than concatenating strings, for
all the usual reasons (avoiding SQL injection attacks, for example).

Retrieving Result Sets 99

In MySQL, the parameter placeholder is ?, and in PostgreSQL it is $N, where N is a number. SQLite
accepts either of these. In Oracle placeholders begin with a colon and are named, like :param1. We’ll
use ? because we’re using MySQL as our example.

1 stmt, err := db.Prepare("select id, title, content, created_date from task

2 where finish_date is null and is_deleted='N' and task.user=?")

3 if err != nil {

4 log.Fatal(err)

5 }

6 defer stmt.Close()

7 rows, err := stmt.Query(1)

8 if err != nil {

9 log.Fatal(err)

10 }

11 defer rows.Close()

12 for rows.Next() {

13 // ...

14 }

15 if err = rows.Err(); err != nil {

16 log.Fatal(err)

17 }

Under the hood, db.Query() actually prepares, executes, and closes a prepared statement. That’s three
round-trips to the database. If you’re not careful, you can triple the number of database interactions
your application makes! Some drivers can avoid this in specific cases, but not all drivers do. See
prepared statements for more.

Single-Row Queries

If a query returns at most one row, you can use a shortcut around some of the lengthy boilerplate
code:

1 var name string

2 query:="select taskDescription from task where id = ?"

3 err = db.QueryRow(query, 1).Scan(&taskDescription)

4 if err != nil {

5 log.Fatal(err)

6 }

7 fmt.Println(name)

Errors from the query are deferred until Scan() is called, and then are returned from that. You can
also call QueryRow() on a prepared statement:

Retrieving Result Sets 100

1 query :="select taskDescription from task where id = ?"

2 stmt, err := db.Prepare(query, 1).Scan(&taskDescription)

3

4 if err != nil {

5 log.Fatal(err)

6 }

7

8 var taskDescription string

9 err = stmt.QueryRow(1).Scan(&taskDescription)

10

11 if err != nil {

12 log.Fatal(err)

13 }

14

15 fmt.Println(taskDescription)

Modifying Data and Using
Transactions
Nowwe’re ready to see how to modify data and work with transactions. The distinction might seem
artificial if you’re used to programming languages that use a “statement” object for fetching rows
as well as updating data, but in Go, there’s an important reason for the difference.

Statements that Modify Data

Use Exec(), preferably with a prepared statement, to accomplish an INSERT, UPDATE, DELETE, or
other statement that doesn’t return rows. The following example shows how to insert a row and
inspect metadata about the operation:

1 stmt, err := db.Prepare("INSERT INTO users(username, password, email) VALUES(?,?\

2 ,?)")

3 if err != nil {

4 log.Fatal(err)

5 }

6 res, err := stmt.Exec("Sherlock", "notaSmartPassword", "sherlock@startr.com")

7 if err != nil {

8 log.Fatal(err)

9 }

10 lastId, err := res.LastInsertId()

11 if err != nil {

12 log.Fatal(err)

13 }

14 rowCnt, err := res.RowsAffected()

15 if err != nil {

16 log.Fatal(err)

17 }

18 log.Printf("ID = %d, affected = %d\n", lastId, rowCnt)

Executing the statement produces a sql.Result that gives access to statement metadata: the last
inserted ID and the number of rows affected.

What if you don’t care about the result? What if you just want to execute a statement and check
if there were any errors, but ignore the result? Wouldn’t the following two statements do the same
thing?

Modifying Data and Using Transactions 102

1 _, err := db.Exec("DELETE FROM users") // OK

2 _, err := db.Query("DELETE FROM users") // BAD

The answer is no. They do not do the same thing, and you should never use Query() like this. The
Query() will return a sql.Rows, which reserves a database connection until the sql.Rows is closed.
Since there might be unread data (e.g. more data rows), the connection can not be used. In the
example above, the connection will never be released again. The garbage collector will eventually
close the underlying net.Conn for you, but this might take a long time. Moreover the database/sql
package keeps tracking the connection in its pool, hoping that you release it at some point, so that
the connection can be used again. This anti-pattern is therefore a good way to run out of resources
(too many connections, for example).

Working with Transactions

In Go, a transaction is essentially an object that reserves a connection to the datastore. It lets you
do all of the operations we’ve seen thus far, but guarantees that they’ll be executed on the same
connection.

You begin a transaction with a call to db.Begin(), and close it with a Commit() or Rollback() method
on the resulting Tx variable. Under the covers, the Tx gets a connection from the pool, and reserves
it for use only with that transaction. The methods on the Tx map one-for-one to methods you can
call on the database itself, such as Query() and so forth.

Prepared statements that are created in a transaction are bound exclusively to that transaction. See
prepared statements for more.

You should not mingle the use of transaction-related functions such as Begin() and Commit() with
SQL statements such as BEGIN and COMMIT in your SQL code. Bad things might result:

1. The Tx objects could remain open, reserving a connection from the pool and not returning it.
2. The state of the database could get out of sync with the state of the Go variables representing

it.
3. You could believe you’re executing queries on a single connection, inside of a transaction,

when in reality Go has created several connections for you invisibly and some statements
aren’t part of the transaction.

While you are working inside a transaction you should be careful not to make calls to the Db
variable. Make all of your calls to the Tx variable that you created with db.Begin(). The Db is not
in a transaction, only the Tx is. If you make further calls to db.Exec() or similar, those will happen
outside the scope of your transaction, on other connections.

If you need to work with multiple statements that modify connection state, you need a Tx even if
you don’t want a transaction per se. For example:

Modifying Data and Using Transactions 103

1. Creating temporary tables, which are only visible to one connection.
2. Setting variables, such as MySQL’s SET @var := somevalue syntax.
3. Changing connection options, such as character sets or timeouts.

If you need to do any of these things, you need to bind your activity to a single connection, and the
only way to do that in Go is to use a Tx.

Below lies an example of using transaction

file db/db.go

1 //RestoreTask is used to restore tasks from the Trash

2 func RestoreTask(id int) error {

3 query := "update task set is_deleted='N',last_modified_at=datetime() where i\

4 d=?"

5 restoreSQL, err := database.Prepare(query)

6 if err != nil {

7 fmt.Println(err)

8 }

9 tx, err := database.Begin()

10 if err != nil {

11 fmt.Println(err)

12 }

13 _, err = tx.Stmt(restoreSQL).Exec(id)

14 if err != nil {

15 fmt.Println("doing rollback")

16 tx.Rollback()

17 } else {

18 tx.Commit()

19 }

20 return err

21 }

Using Prepared Statements
Prepared statements have all the usual benefits in Go: security, efficiency, convenience. But the way
they’re implemented is a little different from what you might be used to, especially with regards to
how they interact with some of the internals of database/sql.

Prepared Statements And Connections

At the database level, a prepared statement is bound to a single database connection. The typical
flow is that the client sends a SQL statement with placeholders to the server for preparation, the
server responds with a statement ID, and then the client executes the statement by sending its ID
and parameters.

In Go, however, connections are not exposed directly to the user of the database/sql package. You
don’t prepare a statement on a connection. You prepare it on a DB or a Tx. And database/sql has
some convenience behaviors such as automatic retries. For these reasons, the underlying association
between prepared statements and connections, which exists at the driver level, is hidden from your
code.

Here’s how it works:

1. When you prepare a statement, it’s prepared on a connection in the pool.
2. The Stmt object remembers which connection was used.
3. When you execute the Stmt, it tries to use the connection. If it’s not available because it’s

closed or busy doing something else, it gets another connection from the pool and re-prepares
the statement with the database on another connection.

Because statements will be re-prepared as neededwhen their original connection is busy, it’s possible
for high-concurrency usage of the database, which may keep a lot of connections busy, to create a
large number of prepared statements. This can result in apparent leaks of statements, statements
being prepared and re-prepared more often than you think, and even running into server-side limits
on the number of statements.

Avoiding Prepared Statements

Go creates prepared statements for you under the covers. A simple db.Query(sql, param1,

param2), for example, works by preparing the sql, then executing it with the parameters and finally
closing the statement.

Using Prepared Statements 105

Sometimes a prepared statement is not what you want, however. There might be several reasons for
this:

1. The database doesn’t support prepared statements. When using the MySQL driver, for
example, you can connect to MemSQL and Sphinx, because they support the MySQL wire
protocol. But they don’t support the “binary” protocol that includes prepared statements, so
they can fail in confusing ways.

2. The statements aren’t reused enough to make them worthwhile, and security issues are
handled in other ways, so performance overhead is undesired. An example of this can be
seen at the VividCortex blog³³.

If you don’t want to use a prepared statement, you need to use fmt.Sprint() or similar to assemble
the SQL, and pass this as the only argument to db.Query() or db.QueryRow(). And your driver
needs to support plaintext query execution, which is added in Go 1.1 via the Execer and Queryer

interfaces, documented here³⁴.

Prepared Statements in Transactions

Prepared statements that are created in a Tx are bound exclusively to it, so the earlier cautions about
repreparing do not apply. When you operate on a Tx object, your actions map directly to the one
and only one connection underlying it.

This also means that prepared statements created inside a Tx can’t be used separately from it.
Likewise, prepared statements created on a DB can’t be used within a transaction, because they
will be bound to a different connection.

To use a prepared statement prepared outside the transaction in a Tx, you can use Tx.Stmt(), which
will create a new transaction-specific statement from the one prepared outside the transaction. It
does this by taking an existing prepared statement, setting the connection to that of the transaction
and repreparing all statements every time they are executed. This behavior and its implementation
are undesirable and there’s even a TODO in the database/sql source code to improve it; we advise
against using this.

Caution must be exercised when working with prepared statements in transactions. Consider the
following example:

³³https://vividcortex.com/blog/2014/11/19/analyzing-prepared-statement-performance-with-vividcortex/
³⁴http://golang.org/pkg/database/sql/driver/#Execer

https://vividcortex.com/blog/2014/11/19/analyzing-prepared-statement-performance-with-vividcortex/
http://golang.org/pkg/database/sql/driver/#Execer
https://vividcortex.com/blog/2014/11/19/analyzing-prepared-statement-performance-with-vividcortex/
http://golang.org/pkg/database/sql/driver/#Execer

Using Prepared Statements 106

1 tx, err := db.Begin()

2 if err != nil {

3 log.Fatal(err)

4 }

5 defer tx.Rollback()

6 stmt, err := tx.Prepare("INSERT INTO foo VALUES (?)")

7 if err != nil {

8 log.Fatal(err)

9 }

10 defer stmt.Close() // danger!

11 for i := 0; i < 10; i++ {

12 _, err = stmt.Exec(i)

13 if err != nil {

14 log.Fatal(err)

15 }

16 }

17 err = tx.Commit()

18 if err != nil {

19 log.Fatal(err)

20 }

21 // stmt.Close() runs here!

Before Go 1.4 closing a *sql.Tx released the connection associated with it back into the pool, but the
deferred call to Close on the prepared statement was executed after that has happened, which could
lead to concurrent access to the underlying connection, rendering the connection state inconsistent.
If you use Go 1.4 or older, you should make sure the statement is always closed before the transaction
is committed or rolled back. This issue³⁵ was fixed in Go 1.4 by CR 131650043³⁶.

Parameter Placeholder Syntax

The syntax for placeholder parameters in prepared statements is database-specific. For example,
comparing MySQL, PostgreSQL, and Oracle:

1 MySQL PostgreSQL Oracle

2 ===== ========== ======

3 WHERE col = ? WHERE col = $1 WHERE col = :col

4 VALUES(?, ?, ?) VALUES($1, $2, $3) VALUES(:val1, :val2, :val3)

³⁵https://github.com/golang/go/issues/4459
³⁶https://codereview.appspot.com/131650043

https://github.com/golang/go/issues/4459
https://codereview.appspot.com/131650043
https://github.com/golang/go/issues/4459
https://codereview.appspot.com/131650043

Handling Errors
Almost all operations with database/sql types return an error as the last value. You should always
check these errors, never ignore them.

There are a few places where error behavior is special-case, or there’s something additional you
might need to know.

Errors From Iterating Resultsets

Consider the following code:

1 for rows.Next() {

2 // ...

3 }

4 if err = rows.Err(); err != nil {

5 // handle the error here

6 }

The error from rows.Err() could be the result of a variety of errors in the rows.Next() loop. The
loop might exit for some reason other than finishing the loop normally, so you always need to
check whether the loop terminated normally or not. An abnormal termination automatically calls
rows.Close(), although it’s harmless to call it multiple times.

Errors From Closing Resultsets

You should always explicitly close a sql.Rows if you exit the loop prematurely, as previously
mentioned. It’s auto-closed if the loop exits normally or through an error, but you might mistakenly
do this:

Handling Errors 108

1 for rows.Next() {

2 // ...

3 break; // whoops, rows is not closed! memory leak...

4 }

5 // do the usual "if err = rows.Err()" [omitted here]...

6 // it's always safe to [re?]close here:

7 if err = rows.Close(); err != nil {

8 // but what should we do if there's an error?

9 log.Println(err)

10 }

The error returned by rows.Close() is the only exception to the general rule that it’s best to capture
and check for errors in all database operations. If rows.Close() returns an error, it’s unclear what
you should do. Logging the error message or panicing might be the only sensible thing, and if that’s
not sensible, then perhaps you should just ignore the error.

Errors From QueryRow()

Consider the following code to fetch a single row:

1 var name string

2 err = db.QueryRow("select name from users where id = ?", 1).Scan(&name)

3 if err != nil {

4 log.Fatal(err)

5 }

6 fmt.Println(name)

What if there was no user with id = 1? Then there would be no row in the result, and .Scan()

would not scan a value into name. What happens then?

Go defines a special error constant, called sql.ErrNoRows, which is returned from QueryRow()when
the result is empty. This needs to be handled as a special case in most circumstances. An empty result
is often not considered an error by application code, and if you don’t check whether an error is this
special constant, you’ll cause application-code errors you didn’t expect.

Errors from the query are deferred until Scan() is called, and then are returned from that. The above
code is better written like this instead:

Handling Errors 109

1 var name string

2 err = db.QueryRow("select name from users where id = ?", 1).Scan(&name)

3 if err != nil {

4 if err == sql.ErrNoRows {

5 // there were no rows, but otherwise no error occurred

6 } else {

7 log.Fatal(err)

8 }

9 }

10 fmt.Println(name)

One might ask why an empty result set is considered an error. There’s nothing erroneous about an
empty set. The reason is that the QueryRow()method needs to use this special-case in order to let the
caller distinguish whether QueryRow() in fact found a row; without it, Scan()wouldn’t do anything
and you might not realize that your variable didn’t get any value from the database after all.

You should only run into this error when you’re using QueryRow(). If you encounter this error
elsewhere, you’re doing something wrong.

Identifying Specific Database Errors

It can be tempting to write code like the following:

1 rows, err := db.Query("SELECT someval FROM sometable")

2 // err contains:

3 // ERROR 1045 (28000): Access denied for user 'foo'@'::1' (using password: NO)

4 if strings.Contains(err.Error(), "Access denied") {

5 // Handle the permission-denied error

6 }

This is not the best way to do it, though. For example, the string value might vary depending on
what language the server uses to send error messages. It’s much better to compare error numbers to
identify what a specific error is.

The mechanism to do this varies between drivers, however, because this isn’t part of database/sql
itself. In the MySQL driver that this tutorial focuses on, you could write the following code:

Handling Errors 110

1 if driverErr, ok := err.(*mysql.MySQLError); ok { // Now the error number is acc\

2 essible directly

3 if driverErr.Number == 1045 {

4 // Handle the permission-denied error

5 }

6 }

Again, the MySQLError type here is provided by this specific driver, and the .Number field may differ
between drivers. The value of the number, however, is taken from MySQL’s error message, and is
therefore database specific, not driver specific.

This code is still ugly. Comparing to 1045, a magic number, is a code smell. Some drivers (though not
the MySQL one, for reasons that are off-topic here) provide a list of error identifiers. The Postgres
pq driver does, for example, in error.go³⁷. And there’s an external package of MySQL error numbers
maintained by VividCortex³⁸. Using such a list, the above code is better written thus:

1 if driverErr, ok := err.(*mysql.MySQLError); ok {

2 if driverErr.Number == mysqlerr.ER_ACCESS_DENIED_ERROR {

3 // Handle the permission-denied error

4 }

5 }

Handling Connection Errors

What if your connection to the database is dropped, killed, or has an error?

You don’t need to implement any logic to retry failed statements when this happens. As part of the
connection pooling³⁹ in database/sql, handling failed connections is built-in. If you execute a query
or other statement and the underlying connection has a failure, Go will reopen a new connection
(or just get another from the connection pool) and retry, up to 10 times.

There can be some unintended consequences, however. Some types of errors may be retried when
other error conditions happen. This might also be driver-specific. One example that has occurred
with the MySQL driver is that using KILL to cancel an undesired statement (such as a long-running
query) results in the statement being retried up to 10 times.

³⁷https://github.com/lib/pq/blob/master/error.go
³⁸https://github.com/VividCortex/mysqlerr
³⁹connection-pool.html

https://github.com/lib/pq/blob/master/error.go
https://github.com/VividCortex/mysqlerr
https://github.com/VividCortex/mysqlerr
connection-pool.html
https://github.com/lib/pq/blob/master/error.go
https://github.com/VividCortex/mysqlerr
connection-pool.html

Working with NULLs
Nullable columns are annoying and lead to a lot of ugly code. If you can, avoid them. If not, then
you’ll need to use special types from the database/sql package to handle them, or define your own.

There are types for nullable booleans, strings, integers, and floats. Here’s how you use them:

1 for rows.Next() {

2 var s sql.NullString

3 err := rows.Scan(&s)

4 // check err

5 if s.Valid {

6 // use s.String

7 } else {

8 // NULL value

9 }

10 }

Limitations of the nullable types, and reasons to avoid nullable columns in case you need more
convincing:

1. There’s no sql.NullUint64 or sql.NullYourFavoriteType. You’d need to define your own
for this.

2. Nullability can be tricky, and not future-proof. If you think something won’t be null, but
you’re wrong, your program will crash, perhaps rarely enough that you won’t catch errors
before you ship them.

3. One of the nice things about Go is having a useful default zero-value for every variable. This
isn’t the way nullable things work.

If you need to define your own types to handle NULLs, you can copy the design of sql.NullString
to achieve that.

If you can’t avoid having NULL values in your database, there is another work around that most
database systems support, namely COALESCE(). Something like the following might be something
that you can use, without introducing a myriad of sql.Null* types.

Working with NULLs 112

1 rows, err := db.Query(`

2 SELECT

3 name,

4 COALESCE(other_field, '') as other_field

5 WHERE id = ?

6 `, 42)

7

8 for rows.Next() {

9 err := rows.Scan(&name, &otherField)

10 // ..

11 // If `other_field` was NULL, `otherField` is now an empty string.

12 // This works with other data types as well.

13 }

Working with Unknown Columns
The Scan() function requires you to pass exactly the right number of destination variables. What if
you don’t know what the query will return?

If you don’t know how many columns the query will return, you can use Columns() to find a list of
column names. You can examine the length of this list to see how many columns there are, and you
can pass a slice into Scan() with the correct number of values. For example, some forks of MySQL
return different columns for the SHOW PROCESSLIST command, so you have to be prepared for that
or you’ll cause an error. Here’s one way to do it; there are others:

1 cols, err := rows.Columns()

2 if err != nil {

3 // handle the error

4 } else {

5 dest := []interface{}{ // Standard MySQL columns

6 new(uint64), // id

7 new(string), // host

8 new(string), // user

9 new(string), // db

10 new(string), // command

11 new(uint32), // time

12 new(string), // state

13 new(string), // info

14 }

15 if len(cols) == 11 {

16 // Percona Server

17 } else if len(cols) > 8 {

18 // Handle this case

19 }

20 err = rows.Scan(dest...)

21 // Work with the values in dest

22 }

If you don’t know the columns or their types, you should use sql.RawBytes.

Working with Unknown Columns 114

1 cols, err := rows.Columns() // Remember to check err afterwards

2 vals := make([]interface{}, len(cols))

3 for i, _ := range cols {

4 vals[i] = new(sql.RawBytes)

5 }

6 for rows.Next() {

7 err = rows.Scan(vals...)

8 // Now you can check each element of vals for nil-ness,

9 // and you can use type introspection and type assertions

10 // to fetch the column into a typed variable.

11 }

The connection pool
There is a basic connection pool in the database/sql package. There isn’t a lot of ability to control or
inspect it, but here are some things you might find useful to know:

1. Connection pooling means that executing two consecutive statements on a single database
might open two connections and execute them separately. It is fairly common for programmers
to be confused as to why their code misbehaves. For example, LOCK TABLES followed by an
INSERT can block because the INSERT is on a connection that does not hold the table lock.

2. Connections are created when needed and there isn’t a free connection in the pool.
3. By default, there’s no limit on the number of connections. If you try to do a lot of things at

once, you can create an arbitrary number of connections. This can cause the database to return
an error such as “too many connections.”

4. In Go 1.1 or newer, you can use db.SetMaxIdleConns(N) to limit the number of idle
connections in the pool. This doesn’t limit the pool size, though.

5. In Go 1.2.1 or newer, you can use db.SetMaxOpenConns(N) to limit the number of total open
connections to the database. Unfortunately, a deadlock bug (fix) prevents db.SetMaxOpenConns(N)
from safely being used in 1.2.

6. Connections are recycled rather fast. Setting a high number of idle connectionswith db.SetMaxIdleConns(N)
can reduce this churn, and help keep connections around for reuse.

7. Keeping a connection idle for a long time can cause problems (like in this issue with MySQL
on Microsoft Azure). Try db.SetMaxIdleConns(0) if you get connection timeouts because a
connection is idle for too long.

Surprises, Antipatterns and
Limitations
Although database/sql is simple once you’re accustomed to it, you might be surprised by the
subtlety of use cases it supports. This is common to Go’s core libraries.

Resource Exhaustion

As mentioned throughout this site, if you don’t use database/sql as intended, you can certainly
cause trouble for yourself, usually by consuming some resources or preventing them from being
reused effectively:

• Opening and closing databases can cause exhaustion of resources.
• Failing to read all rows or use rows.Close() reserves connections from the pool.
• Using Query() for a statement that doesn’t return rows will reserve a connection from the
pool.

• Failing to be aware of how prepared statements⁴⁰ work can lead to a lot of extra database
activity.

Large uint64 Values

Here’s a surprising error. You can’t pass big unsigned integers as parameters to statements if their
high bit is set:

1 _, err := db.Exec("INSERT INTO users(id) VALUES", math.MaxUint64) // Error

This will throw an error. Be careful if you use uint64 values, as they may start out small and work
without error, but increment over time and start throwing errors.

⁴⁰prepared.html

prepared.html
prepared.html

Surprises, Antipatterns and Limitations 117

Connection State Mismatch

Some things can change connection state, and that can cause problems for two reasons:

1. Some connection state, such as whether you’re in a transaction, should be handled through
the Go types instead.

2. You might be assuming that your queries run on a single connection when they don’t.

For example, setting the current database with a USE statement is a typical thing for many people to
do. But in Go, it will affect only the connection that you run it in. Unless you are in a transaction,
other statements that you think are executed on that connection may actually run on different
connections gotten from the pool, so they won’t see the effects of such changes.

Additionally, after you’ve changed the connection, it’ll return to the pool and potentially pollute the
state for some other code. This is one of the reasons why you should never issue BEGIN or COMMIT
statements as SQL commands directly, too.

Database-Specific Syntax

The database/sql API provides an abstraction of a row-oriented database, but specific databases
and drivers can differ in behavior and/or syntax, such as prepared statement placeholders⁴¹.

Multiple Result Sets

The Go driver doesn’t support multiple result sets from a single query in any way, and there doesn’t
seem to be any plan to do that, although there is a feature request⁴² for supporting bulk operations
such as bulk copy.

This means, among other things, that a stored procedure that returns multiple result sets will not
work correctly.

Invoking Stored Procedures

Invoking stored procedures is driver-specific, but in the MySQL driver it can’t be done at present. It
might seem that you’d be able to call a simple procedure that returns a single result set, by executing
something like this:

⁴¹prepared.html
⁴²https://github.com/golang/go/issues/5171

prepared.html
https://github.com/golang/go/issues/5171
prepared.html
https://github.com/golang/go/issues/5171

Surprises, Antipatterns and Limitations 118

1 err := db.QueryRow("CALL mydb.myprocedure").Scan(&result) // Error

In fact, this won’t work. You’ll get the following error: Error 1312: PROCEDURE mydb.myprocedure
can’t return a result set in the given context. This is because MySQL expects the connection to be set
into multi-statement mode, even for a single result, and the driver doesn’t currently do that (though
see this issue⁴³).

Multiple Statement Support

The database/sql doesn’t explicitly have multiple statement support, which means that the
behavior of this is backend dependent:

1 _, err := db.Exec("DELETE FROM tbl1; DELETE FROM tbl2")

2 // Error/unpredictable result

The server is allowed to interpret this however it wants, which can include returning an error,
executing only the first statement, or executing both.

Similarly, there is no way to batch statements in a transaction. Each statement in a transaction must
be executed serially, and the resources in the results, such as a Row or Rows, must be scanned or
closed so the underlying connection is free for the next statement to use. This differs from the usual
behavior when you’re not working with a transaction. In that scenario, it is perfectly possible to
execute a query, loop over the rows, and within the loop make a query to the database (which will
happen on a new connection):

1 rows, err := db.Query("select * from tbl1") // Uses connection 1

2 for rows.Next() {

3 err = rows.Scan(&myvariable)

4 // The following line will NOT use connection 1, which is already in-use

5 db.Query("select * from tbl2 where id = ?", myvariable)

6 }

But transactions are bound to just one connection, so this isn’t possible with a transaction:

⁴³https://github.com/go-sql-driver/mysql/issues/66

https://github.com/go-sql-driver/mysql/issues/66
https://github.com/go-sql-driver/mysql/issues/66

Surprises, Antipatterns and Limitations 119

1 tx, err := db.Begin()

2 rows, err := tx.Query("select * from tbl1") // Uses tx's connection

3 for rows.Next() {

4 err = rows.Scan(&myvariable)

5 // ERROR! tx's connection is already busy!

6 tx.Query("select * from tbl2 where id = ?", myvariable)

7 }

Go doesn’t stop you from trying, though. For that reason, you may wind up with a corrupted
connection if you attempt to perform another statement before the first has released its resources
and cleaned up after itself. This also means that each statement in a transaction results in a separate
set of network round-trips to the database.

Database Encapsulation
We encapsulate our db object inside a struct. We also encapsulate the database actions as shown
below

1 var database Database

2

3 //Database encapsulates database

4 type Database struct {

5 db *sql.DB

6 }

7

8 func (db Database) begin() (tx *sql.Tx) {

9 tx, err := db.db.Begin()

10 if err != nil {

11 log.Println(err)

12 return nil

13 }

14 return tx

15 }

16

17 func (db Database) prepare(q string) (stmt *sql.Stmt) {

18 stmt, err := db.db.Prepare(q)

19 if err != nil {

20 log.Println(err)

21 return nil

22 }

23 return stmt

24 }

25

26 func (db Database) query(q string,

27 args ...interface{}) (rows *sql.Rows) {

28 rows, err := db.db.Query(q, args...)

29 if err != nil {

30 log.Println(err)

31 return nil

32 }

33 return rows

34 }

Database Encapsulation 121

35

36 func init() {

37 database.db, err =

38 sql.Open("sqlite3", "./newtask.db")

39 if err != nil {

40 log.Fatal(err)

41 }

42 }

43

44 //Close database connection

45 func Close() {

46 database.db.Close()

47 }

48

49 //taskQuery encapsulates Exec()

50 func taskQuery(sql string, args ...interface{}) error {

51 SQL := database.prepare(sql)

52 tx := database.begin()

53 _, err = tx.Stmt(SQL).Exec(args...)

54 if err != nil {

55 log.Println("taskQuery: ", err)

56 tx.Rollback()

57 } else {

58 tx.Commit()

59 }

60 return err

61 }

Note: init()

The init function is the first function to run when the package is imported or executed.
This is why we do the initialization in it.

The fault in our code:

Fixing the intentional bug in the above code:

Database Encapsulation 122

1 func init() {

2 defer database.Close()

3 database, err = sql.Open("sqlite3", "./tasks.db")

4 if err != nil {

5 fmt.Println(err)

6 }

7 }

Homework

See the /code/chapter-4/4.5database in our code repository and modify the file to insert data
from the 4.3formsupload folder. We have two working code set, one of printing form values on the
console and one of fetching db values and rendering a template. What you have to do is based on
this chapter, write methods to insert values from the form to the database.

Links

-Previous section⁴⁴ -Next section⁴⁵

⁴⁴2.1WebAppDesign.md
⁴⁵2.3example.md

2.1WebAppDesign.md
2.3example.md
2.1WebAppDesign.md
2.3example.md

An Example
Expected output:

open your task.db file in sqlite3 like this sql [Tasks] $ sqlite3 task.db sqlite> select title

from task limit 1; Publish on github Now this output should match with the one we see at
localhost:8080

After running the file, go to localhost:8080 and localhost:8080/add

file ∼/main/main.go

1 package main

2

3 import (

4 "database/sql"

5 "fmt"

6 "log"

7 "net/http"

8 "time"

9

10 _ "github.com/mattn/go-sqlite3"

11)

12

13 var database *sql.DB

14 var err error

15

16 //Task is the struct used to identify tasks

17 type Task struct {

18 Id int

19 Title string

20 Content string

21 Created string

22 }

23

24 //Context is the struct passed to templates

25 type Context struct {

26 Tasks []Task

27 Navigation string

28 Search string

29 Message string

An Example 124

30 }

31

32 func init() {

33 database, err = sql.Open("sqlite3", "./tasks.db")

34 if err != nil {

35 fmt.Println(err)

36 }

37 }

38

39 func main() {

40 http.HandleFunc("/", ShowAllTasksFunc)

41 http.HandleFunc("/add/", AddTaskFunc)

42 fmt.Println("running on 8080")

43 log.Fatal(http.ListenAndServe(":8080", nil))

44 }

45

46 //ShowAllTasksFunc is used to handle the "/" URL which is the default one

47 func ShowAllTasksFunc(w http.ResponseWriter, r *http.Request) {

48 if r.Method == "GET" {

49 context := GetTasks() //true when you want non deleted notes

50 w.Write([]byte(context.Tasks[0].Title))

51 } else {

52 http.Redirect(w, r, "/", http.StatusFound)

53 }

54 }

55

56 func GetTasks() Context {

57 var task []Task

58 var context Context

59 var TaskID int

60 var TaskTitle string

61 var TaskContent string

62 var TaskCreated time.Time

63 var getTasksql string

64

65 getTasksql = "select id, title, content, created_date from task;"

66

67 rows, err := database.Query(getTasksql)

68 if err != nil {

69 fmt.Println(err)

70 }

71 defer rows.Close()

An Example 125

72 for rows.Next() {

73 err := rows.Scan(&TaskID, &TaskTitle, &TaskContent, &TaskCreated)

74 if err != nil {

75 fmt.Println(err)

76 }

77 TaskCreated = TaskCreated.Local()

78 a := Task{Id: TaskID, Title: TaskTitle, Content: TaskContent,

79 Created: TaskCreated.Format(time.UnixDate)[0:20]}

80 task = append(task, a)

81 }

82 context = Context{Tasks: task}

83 return context

84 }

85

86 //AddTaskFunc is used to handle the addition of new task, "/add" URL

87 func AddTaskFunc(w http.ResponseWriter, r *http.Request) {

88 title := "random title"

89 content := "random content"

90 truth := AddTask(title, content)

91 if truth != nil {

92 log.Fatal("Error adding task")

93 }

94 w.Write([]byte("Added task"))

95 }

96

97 //AddTask is used to add the task in the database

98 func AddTask(title, content string) error {

99 query:="insert into task(title, content, created_date, last_modified_at)\

100 values(?,?,datetime(), datetime())"

101 restoreSQL, err := database.Prepare(query)

102 if err != nil {

103 fmt.Println(err)

104 }

105 tx, err := database.Begin()

106 _, err = tx.Stmt(restoreSQL).Exec(title, content)

107 if err != nil {

108 fmt.Println(err)

109 tx.Rollback()

110 } else {

111 log.Print("insert successful")

112 tx.Commit()

113 }

An Example 126

114 return err

115 }

Homework

The homework is to split the code into packages and get it to work, the type definition goes into the
types/types.go file, the handler definition goes into the views/views.go, the database read and
write methods go into the db/db.go. Make sure that after you refactor the code, that the code runs.

Links

-Previous section⁴⁶ -Next section⁴⁷

⁴⁶2.2database.md
⁴⁷2.4WorkingWithForms.md

2.2database.md
2.4WorkingWithForms.md
2.2database.md
2.4WorkingWithForms.md

Working with Forms
HTML forms are used to get data from the user. Forms can use both the GET and POST methods
for transferring data to the server, but it is recommended to use HTTP POST method just because it
doesn’t highlight data in the URL and because of the many things we discussed in the chapter Web
Programming Basics.

Forms are rendered inside templates, which we’ll see in a later chapter. As of now we want to
understand how to get data from the end user by using forms.

There are two parts of working with forms, the HTML part and the Go part. The HTML page gets
the data and sends it to the server as a POST/GET and the Go part will parse the form to do some
task like letting the user to login or inserting data in the database.

Each form element has a name which is referenced in the server side part of the form, below we
have the file upload and a drop down list. Both of which have a unique name.

1 <form action="/add/" method="POST">

2 <div class="form-group">

3 <input type="text" name="title" class="form-control" id="add-note-title"\

4 placeholder="Title"

5 style="border:none;border-bottom:1px solid gray; box-shadow:none;">

6 </div>

7 <div class="form-group">

8 <textarea class="form-control" name="content" id="add-note-content" plac\

9 eholder="Content"

10 rows="10" style="border:none;border-bottom:1px solid gray; box-shadow:no\

11 ne;"></textarea>

12 File: <input type="file" name="uploadfile" />

13 Priority: <select name="priority">

14 <option>---</option>

15 <option value="3">High</option>

16 <option value="2">Medium</option>

17 <option value="1">Low</option>

18 </select>

19 </div>

20 </div>

21 <div class="modal-footer">

22 <button type="button" class="btn btn-default" data-dismiss="modal">Close\

23 </button>

24 <input type="submit" text="submit" class="btn btn-default" />

Working with Forms 128

25 </div>

26 </form>

When we are populating this HTML page, we can also populate it dynamically, without getting
bogged down by syntax, ignore templating for the while We have a variable called Navigation and
one called Categories, we loop through Categories and if the Navigation is equal to that category
then the checked value is true.

1 Category:

2 <select name="category" class="dropdown">

3 <option>---</option>

4 {{$navigation := .Navigation}} {{$categories := .Categories}}

5 {{range $cat := $categories}}

6 <option value="{{$cat.Name}}" {{if eq $cat.Name $navigation }} checked="\

7 checked" {{end}}> {{$cat.Name}} </option>

8 {{end}}

9 </select>

Herewe have used a drop down box, you can use radio buttons like below html <input type="radio"

name="gender" value="1">Female <input type="radio" name="gender" value="2">Male <input

type="radio" name="gender" value="3">Other

Or checkboxes html <input type="checkbox" name="gender" value="female">Female <input type="checkbox"

name="gender" value="male">Male <input type="checkbox" name="gender" value="other">Other

We get the value of a drop down box/radio button/checkbox on the server side by using the name
field like below: golang value := r.Form.Get("gender") value := r.FormValue("gender")

As we saw earlier, our webservers basically take a HTTP Request object and return an HTTP
Response Object, below is an example of a sample HTTP Request object.

The host is the IP address sending the req, User Agent: fingerprint of the machine, the Accept- fields
define various parts like the language, encoding Referer is which IP made the call, Cookie is the
value of the cookie stored on the system and Connection is the type of connection.

In this request snapshot, we also have a file which we upload, for file upload, the content type is
multipart/form-data

Request Header

Working with Forms 129

1 Host: 127.0.0.1:8081

2 User-Agent: ...

3 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

4 Accept-Language: en-US,en;q=0.5

5 Accept-Encoding: gzip, deflate

6 DNT: 1

7 Referer: http://127.0.0.1:8081/

8 Cookie: csrftoken=abcd

9 Connection: keep-alive

Request Body

1 Content-Type: multipart/form-data;

2 boundary=---------------------------6299264802312704731507948053

3 Content-Length: 15031

4

5 -----------------------------6299264802312704731507948053

6 Content-Disposition: form-data; name="title"

7

8 working with forms

9 -----------------------------6299264802312704731507948053

10 Content-Disposition: form-data; name="CSRFToken"

11

12 abcd

13 -----------------------------6299264802312704731507948053

14 Content-Disposition: form-data; name="content"

15

16 finish the chapter working with forms

17 -----------------------------6299264802312704731507948053

18 Content-Disposition: form-data; name="uploadfile"; filename="2.4workingwithform.\

19 md"

20 Content-Type: text/x-markdown

21

22 --file content--

23 -----------------------------6299264802312704731507948053

24 Content-Disposition: form-data; name="priority"

25

26 3

27 -----------------------------6299264802312704731507948053--

If you had wondered how Google’s home page shows a pop up when you visit google.com on IE
of Firefox, it checks your User-Agent. The thing with HTTP request is that they can be modified to

Working with Forms 130

any extent, the Chrome developer tools gives you quite sophisticated tools to modify your requests,
even User Agent spoofing is a default feature avaiable, this feature is available so we can test our
webapps in one window simulating many internet browsers at one go.

The basic part of working with forms is to identify which user that particular form belongs to, there
are ways to attain that, we can either have a stateful or a stateless web server.

A stateless server doesn’t store sessions, it requires an authentication key for each request while a
stateful server stores sessions. For storing sessions a cookie is used, which is a file which is stored in
the privatememory of the web browser whichwe use. Only thewebsite which created the cookie can
access the cookie, no third party websites can access the cookies, but the OS user can read/edit/delete
cookies using the web browser.

CSRF

CSRF stands for Cross Request Site Forgery. Any website can send a POST request to your web
server, who sent the request can be found in the Referer field of your HTTP response. It is a form
of confused deputy attack in which the deputy is your web browser. A malicious user doesn’t have
direct access to your website, so it makes use of your browser to send a malicious request. Typically
cookies enable your browser to authenticate itself to a webserver, so what these malicious websites
do is, they send in a HTTP request on behalf of your browser.

We can thwart this attack by restricting the referer to your own domain, but it is quite easy to
manipulate the misspelt referer field of a HTTP request.

Another way is to use tokens. While rendering our form, we send in a hidden field with crypto
generated string of 256 characters, so when we process the POST request, we first check if the token
is valid or not and then decide if the data came from a genuine source or from a malicious source.
It doesn’t have to be malicious actually, even if a legitimate user tried to trick your webserver into
accepting data, we shouldn’t entertain it.

To check the csrf token, we serve the token to the form and store it in a cookie, when we get the
POST request, we check if both are equal or not. This is because a malicious person might trick a
user to click on a form but they can’t set cookies for your webapplication.

A point to note here is that never trust user data. Always clean/sanitize data which you get from
the end user.

Javascript

If you are serious about web development, you ought to learn Javascript in detail. While building
a web app, there will be times when you would want to improve the UI of your application, which
would mean a change in the html page. Using JS is inevitable while building beautiful webapps,
while adding some new html feature, open the “web inspector” present in the developer tools and
dynamically add the html code. The web inspector allows us to manipulate the CSS and HTML part.

Working with Forms 131

Now open the javascript console, that enables you to test the JS feature which you are willing to
add. For instance, in the tasks application, there was no provision to expand/contract the size of the
task, so I added a button in the web inspector,

1 <button class="toggle"></button>

In the JS console, to toggle the visibility of my .noteContent field, I did this:

1 $('.toggle').next().toggle()

This proved that it works, so now go to your template and actually add the code. Make sure the html
is correct because while running, the html files are parsed once, so for any html change, you have
to run the web app for each HTML change. So once the html is set up, if you change the JS/CSS
then you just have to refresh the page, because the html page gets the JS/CSS each time the page is
loaded.

As we saw in the above paragraph, for preventing CSRF, we need to generate a token and send as a
hidden field in the form and store it in a cookie, when we get the POST request from the

Forms in Go

In the below function we set the cookie, we first generate a CSRF token, which’ll be unique for each
HTTP request which we get and store it in a cookie.

1 //ShowAllTasksFunc is used to handle the "/" URL which is the default ons

2 func ShowAllTasksFunc(w http.ResponseWriter, r *http.Request) {

3 if r.Method == "GET" {

4 context := db.GetTasks("pending") //true when you want non deleted notes

5 if message != "" {

6 context.Message = message

7 }

8 context.CSRFToken = "abcd"

9 message = ""

10 expiration := time.Now().Add(365 * 24 * time.Hour)

11 cookie := http.Cookie{Name: "csrftoken",Value:"abcd",Expires:expiration}

12 http.SetCookie(w, &cookie)

13 homeTemplate.Execute(w, context)

14 } else {

15 message = "Method not allowed"

16 http.Redirect(w, r, "/", http.StatusFound)

17 }

18 }

Working with Forms 132

The below handler handles the POST request sent by our form, it fetches the value of the csrftoken
cookie and gets the value of the hidden CSRFToken field of the add task form. If the value of the
cookie is equal to the value fetched by the form, then we allow it to go to the database.

The call to ParseForm will parse the contents of the form into Gettable fields which we can fetch
using the Get function. This call is compulsory.

1 //AddTaskFunc is used to handle the addition of new task, "/add" URL

2 func AddTaskFunc(w http.ResponseWriter, r *http.Request) {

3 if r.Method == "POST" {

4 r.ParseForm()

5 file, handler, err := r.FormFile("uploadfile")

6 if err != nil {

7 log.Println(err)

8 }

9

10 taskPriority, priorityErr := strconv.Atoi(r.FormValue("priority"))

11 if priorityErr != nil {

12 log.Print("unable to convert priority to integer")

13 }

14 priorityList := []int{1, 2, 3}

15 for _, priority := range priorityList {

16 if taskPriority != priority {

17 log.Println("incorrect priority sent")

18 //might want to log as security incident

19 taskPriority=1 //this defaults the priority to low

20 }

21 }

22 title := template.HTMLEscapeString(r.Form.Get("title"))

23 content := template.HTMLEscapeString(r.Form.Get("content"))

24 formToken := template.HTMLEscapeString(r.Form.Get("CSRFToken"))

25

26 cookie, _ := r.Cookie("csrftoken")

27 if formToken == cookie.Value {

28 if handler != nil {

29 r.ParseMultipartForm(32 << 20) //defined maximum size of file

30 defer file.Close()

31 f, err := os.OpenFile("./files/"+handler.Filename, os.O_WRON\

32 LY|os.O_CREATE, 0666)

33 if err != nil {

34 log.Println(err)

35 return

36 }

Working with Forms 133

37 defer f.Close()

38 io.Copy(f, file)

39 filelink :=

40 "
 " + handler.Fi\

41 lename + ""

42 content = content + filelink

43 }

44

45 truth := db.AddTask(title, content, taskPriority)

46 if truth != nil {

47 message = "Error adding task"

48 log.Println("error adding task to db")

49 } else {

50 message = "Task added"

51 log.Println("added task to db")

52 }

53 http.Redirect(w, r, "/", http.StatusFound)

54 } else {

55 log.Fatal("CSRF mismatch")

56 }

57

58 } else {

59 message = "Method not allowed"

60 http.Redirect(w, r, "/", http.StatusFound)

61 }

62 }

Note Cookies

Cookie is a way to store data on the browser, HTTP is a stateless protocol, it wasn’t built
for sessions, basically the Internet itself wasn’t built considering security in mind since
initially it was just a way to share documents online, hence HTTP is stateless, when the
web server receives requests, it can’t distinguish between two consequitive requests,
hence the concept of cookies were added, thus while starting a session, we generate a
session ID and store it on the database in memory or on the database and we store the
same ID on a cookie on the web browser and we validate both of them to authenticate
them. We have to note that, if we set an expiry date for a cookie, then it is stored on the
filesystem otherwise it is stored in memory in the browser. In the incognito mode, this
is the case, all the cookies are stored in memory and not in the filesystem.

HTTP Request

Working with Forms 134

1 Host: localhost:8080

2 User-Agent:

3 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

4 Accept-Language: en-US,en;q=0.5

5 Accept-Encoding: gzip, deflate

6 DNT: 1

7 Referer: http://localhost:8080/

8 Cookie: csrftoken=abcd

9 Connection: keep-alive

10 Cache-Control: max-age=0

The browser, while sending a response appends all the cookie data stored in its memory or file along
with the other aspects of the HTTP request so we can access the cookie as r.Cookie, it’ll contain
every cookie for that particular domain, we’d then loop through it to fetch the data which we want.

This is important for security reasons, suppose I set a cookie on my imaginedomain.com and if it
contains a csrf token and if that cookie is accessible to some other webapp then it is horrible since
they can masquerade as any legitmate user. But this ain’t possible, since a website can only access
the cookie stored for its own domain, plus we have the feature to set HTTP only value of a cookie
as true, which says that even javascript can’t access the cookies.

HTTP Response

1 Content-Type: text/html; charset=utf-8

2 Date: Tue, 12 Jan 2016 16:43:53 GMT

3 Set-Cookie: csrftoken=abcd; Expires=Wed, 11 Jan 2017 16:43:53 GMT

4 Transfer-Encoding: chunked

When we set cookies, we write then to the HTTP response which we send to the client and the
browser reads the Cookie information and stores them in the memory or the filesystem depending
on the Expires field of the response.

From the go documentation:

1 type Cookie struct {

2 Name string

3 Value string

4

5 Path string // optional

6 Domain string // optional

7 Expires time.Time // optional

8 RawExpires string // for reading cookies only

9

Working with Forms 135

10 // MaxAge=0 means no 'Max-Age' attribute specified.

11 // MaxAge<0 means delete cookie now, equivalently 'Max-Age: 0'

12 // MaxAge>0 means Max-Age attribute present and given in seconds

13 MaxAge int

14 Secure bool

15 HttpOnly bool

16 Raw string

17 Unparsed []string // Raw text of unparsed attribute-value pairs

18 }

Input Validation

The basic aspect of web applications is that no data can be trusted, even if the user isn’t malicious
herself, there are many ways to trick the browser into sending HTTP requests and fooling the web
server to respond to what seems like a legitimate request. Hence we have to verify everything that
comes from the user.

One might argue here that we do all sorts of validation using javascript, but there are ways to evade
JS validations, the simplest way is to disable JS and more sophisticated ways are to manipulate the
HTTP request before the browser sends it, it is literally trivial when we use just the web developer
tools that these days browsers provide.

1 if formToken == cookie.Value and title != nil and content!=nil

The title and content of the task is mandatory, hence we added the not nil part.

We do input validation when we don’t want junk data to go into our database, suppose the
user hit the submit button twice, or some other scenario. But we also have to consider the case
where the user wants to run some script on our website, which is dangerous, so we use the
template.HTMLEscapeString method to escape what might run in memory of the current browser
session. Even the data which comes from your drop down list should be validated.

Everything in a web form is sent via a Request as we saw in the above example, we use a drop down
list when we have are expecting a particular set of inputs but for someone who knows what firefox
dev tools are, can easily modify anything in the request, for example we have the priority as drop
down list we might think that since we have only three entries in the drop down list, should we
keep a check in our view handler to not accept anything but the three values which are present in
our template. We ought to keep a check like below:

Working with Forms 136

1 priorityList := []int{1, 2, 3}

2 for _, priority := range priorityList {

3 if taskPriority != priority {

4 log.Println("incorrect priority sent")

5 //might want to log as security incident

6 }

7 }

This is the priority field of our request

1 Content-Disposition: form-data; name="priority"

2 3

All a malicious user has to do is change this value and resend the request, they can literally insert
any value here, just think what if they send rm -fr *.* and accidentally enough this command is
executed on our server. This also brings in another aspect of security, never run your machine in
root mode, always keep the root mode for admin tasks and use a non root mode. Even if that isn’t
the case, a less dangerous example will be sending a huge number with the request, assuming that
we have used integer as our variable, the program might crash if it has to handle a number beyond
its storage capacity. This might be termed as a denial of service attack.

Links

-Previous section⁴⁸ -Next section⁴⁹

⁴⁸2.3example.md
⁴⁹2.5UploadingFiles.md

2.3example.md
2.5UploadingFiles.md
2.3example.md
2.5UploadingFiles.md

Uploading files
Uploading files is the next step in form processing, in case of files, we send the entire file data in the
HTTP header, so we have to set the form encoding to enctype="multipart/form-data". This will
inform our server that we are going to get a file from the form along with the rest of the fields, if
any.

This means we can get either either file(s) and data or just file(s) or just data and no file(s).

At the first line of our HTTP handler, we have to write this line, if this line is not present in the first
line then it gives unexpected results

1 file, handler, err := r.FormFile("uploadfile")

2

3 if handler != nil {

4 r.ParseMultipartForm(32 << 20) //defined maximum size of file

5 defer file.Close()

6 f, err := os.OpenFile("./files/"+handler.Filename, os.O_WRONLY|os.O_CREATE, 06\

7 66)

8 if err != nil {

9 log.Println(err)

10 return

11 }

12 defer f.Close()

13 io.Copy(f, file)

14 filelink := "
 "+ handler.Filename+"</\

15 a>"

16 content = content + filelink

17 }

We first provide the maximum size of the file which is 32 ˆ 20, which is gigantic for our webapp, not
everyone has the Internet infrastructure to upload that big a file, but we want to be flexible.

We basically get a file from the form request, in the form handler we open another file with the
same/different name and then read the file form the request and write it on the server. We need to
handle the scene where we name the file differently so we’d need to store the old file name -> new
file name relation somewhere, it can be a database table.

The file name should be scrubbed, since the user can give any malicious name to damage our
application.

We now want to randomize the file name of the files which the users upload. In your AddTaskFunc
add the following lines

Uploading files 138

1 if handler != nil {

2 r.ParseMultipartForm(32 << 20) //defined maximum size of file

3 defer file.Close()

4 randomFileName := md5.New()

5 io.WriteString(randomFileName, strconv.FormatInt(time.Now().Unix(), 10))

6 io.WriteString(randomFileName, handler.Filename)

7 token := fmt.Sprintf("%x", randomFileName.Sum(nil))

8 f, err := os.OpenFile("./files/"+token, os.O_WRONLY|os.O_CREATE, 0666)

9 if err != nil {

10 log.Println(err)

11 return

12 }

13 defer f.Close()

14 io.Copy(f, file)

15

16 filelink := "
 " + handler.Filename + ""

17 content = content + filelink

18

19 fileTruth := db.AddFile(handler.Filename, token)

20 if fileTruth != nil {

21 message = "Error adding filename in db"

22 log.Println("error adding task to db")

23 }

24 }

file ∼/Tasks/db/db.go

1 // AddFile is used to add the md5 of a file name which is uploaded to our applic\

2 ation

3 // this will enable us to randomize the URL without worrying about the file names

4 func AddFile(fileName, token string) error {

5 SQL, err := database.Prepare("insert into files values(?,?)")

6 if err != nil {

7 log.Println(err)

8 }

9 tx, err := database.Begin()

10

11 if err != nil {

12 log.Println(err)

13 }

14 _, err = tx.Stmt(SQL).Exec(fileName, token)

15 if err != nil {

Uploading files 139

16 log.Println(err)

17 tx.Rollback()

18 } else {

19 log.Println(tx.Commit())

20 }

21 return err

22 }

table structure

1 CREATE TABLE files(name varchar(1000) not null, autoName varchar(255) not null);

These block of code do the following things:

1. Create a version of name for each uploaded file
2. Insert it in database
3. Reference the file as /files/<randomName>
4. File is now referenced by our name rather than the user supplied name

The next part to do is registering the /files/ handler.

file: ∼/Tasks/views/views.go

1 // UploadedFileHandler is used to handle the uploaded file related requests

2 func UploadedFileHandler(w http.ResponseWriter, r *http.Request) {

3 if r.Method == "GET" {

4 log.Println("into the handler")

5 token := r.URL.Path[len("/files/"):]

6

7 //file, err := db.GetFileName(token)

8 //if err != nil {

9 log.Println("serving file ./files/" + token)

10 http.ServeFile(w, r, "./files/"+token)

11 //}

12 }

13 }

#####Links -Previous section⁵⁰ -Next section⁵¹

⁵⁰2.4WorkingWithForms.md
⁵¹3.0templating.md

2.4WorkingWithForms.md
3.0templating.md
2.4WorkingWithForms.md
3.0templating.md

Templates
package:

1. text/template : when dealing with command line applications.
2. html/template : when dealing with webapps.

In the first chapter we had a cursory glance over the concept of templates. This chapter is dedicated
entirely to templates. As we said previously, a web application responds to certain URLs and gives
an html page to the browser which the browser then interprets and shows to the end user. This html
page which is sent to the browser is what is called templates in the backend for we have a template
which stores some variables, and in real time data is provided into the template which makes it a
complete html page.

Let’s take a practical example. Suppose we are building a micro blogging site. We would start with
creating the front end in html. Our microblogging site will show Hi User on the right corner.

In our static html we write this <p>Hi User</p>

But if we serve this page on our webserver it’ll not change anything, it’ll show Hi User, the name
of the user won’t come magically, we have to put it into the page somehow, here we use a variable
so in Go we’d approach this by using a variable named {{.Name}} so our html now will be <p>Hi
{{.Name}}</p>. The . is mandatory.

Now, this is the logic we apply to all our html pages, keeping such {{}} variable expansion
parameters and serving the value of the parameter while executing the template. If you are
wondering how we’d do that, this is the syntax

1 homeTemplate.Execute(w, context)

2

3 //Context is the struct passed to templates

4 type Context struct {

5 Tasks []Task

6 Name string

7 Search string

8 Message string

9 }

These are the three parts of using templates, first you need to create types like we have created the
Context type, then we need to read the template, then we need to use the components of that type in
our template file. So what remains now is passing an object of that type during template execution.

Templates 141

Every template requires the context object because that is what defines the data to be populated in
the template.

Reading template:

1 templates, err = template.Must(template.ParseFiles(allFiles...))

template.Must

Must is a helper that panics if the error is non-nil where allFiles is populated as below:

1 var allFiles []string

2 templatesDir := "./public/templates/"

3 files, err := ioutil.ReadDir(templatesDir)

4 if err != nil {

5 fmt.Println("Error reading template dir")

6 }

7 for _, file := range files {

8 filename := file.Name()

9 if strings.HasSuffix(filename, ".html") {

10 allFiles = append(allFiles, templatesDir+filename)

11 }

12 }

For the sake of demonstration of how to parse multiple files we have used the ParseFiles method
to parse all the .html files, you can use the ParseGlob method which is available in the standard
library.

1 template.Must(template.ParseGlob(templatesDir + "*.html"))

The definition of ParseGlob is:

1 func ParseGlob(pattern string) (*Template, error)

We have to specify the Pattern for the ParseGlob function, but we have passed the path and the
pattern because just passing the pattern is useless, we need the path where the pattern will be applied
to find the list of all files meeting the criteria.

Note

1. ... operator : allFiles is a string slice and allFiles… passes the function a parameter as a string.
2. ParseFiles performance:

There is one point to note here about performance in parsing files, typically a template file
won’t change until there is some major change to the codebase so we should only parse the
files once, rather than keep this code in each view handler and doing a

Templates 142

1 template.ParseFiles("home.html")

2 template.Execute(w, context)

This block of code will unnecessarily read the html page each time while serving the response
of a request, which means if ten people are using our blogging site then for each page they
visit the code will read the html page, but there is no need to do things this way, we can read
the html files once at the start and then use the Lookup method of the template class,

1 homeTemplate = templates.Lookup("home.html")

2 homeTemplate.Execute(w, context)

Sub templating

We learnt how to pass data to templates and display it in the html page, it so happens that a lot of
code is used in all templates suppose the navigation bar or the header, then we need not write the
same chunk everywhere, we can create a template to store that, and use sub templating {{template
"_head.html" .}}

Here, we have identified a chunk of code which we want to replicate and put it in _head.html.
Then we put the above statement in each template file where we wish to have our header. This way
templates become a lot smaller and don’t contain replicated code everywhere. Do note that the .

before the first } is intentional and it means that all the variables which were passed to the current
template are passed to the sub template.

The sub templates which we create depends on our requirement, but the basic point behind it is that
if we are going to repeat a block of HTML code then we should form it as a template.

The main point to note over here is that when we are going to use our templates or sub templates,
all those html files need to be parsed. In templating we have a variable which stores all templates
even if we aren’t going to refer to that directly in our code using the Lookupmethod on the template
variable. The lookup method takes the name of the template. When the {{template _head.html

.}} is evaluated, it goes to our template variable and tries to find out the template parsed with the
exact name, if it is not present then it doesn’t complain by default, we should use Must method if
we want it to complain.

Example

file views/views.go

Templates 143

1 package views

2

3 import (

4 "io/ioutil"

5 "net/http"

6 "os"

7 "strconv"

8 "strings"

9 "html/template"

10)

11

12 var (

13 homeTemplate *template.Template

14 deletedTemplate *template.Template

15 completedTemplate *template.Template

16 loginTemplate *template.Template

17 editTemplate *template.Template

18 searchTemplate *template.Template

19 templates *template.Template

20 message string

21 //message will store the message to be shown as notification

22 err error

23)

24

25 //PopulateTemplates is used to parse all templates present in

26 //the templates folder

27 func PopulateTemplates() {

28 var allFiles []string

29 templatesDir := "./public/templates/"

30 files, err := ioutil.ReadDir(templatesDir)

31 if err != nil {

32 fmt.Println("Error reading template dir")

33 }

34 for _, file := range files {

35 filename := file.Name()

36 if strings.HasSuffix(filename, ".html") {

37 allFiles = append(allFiles, templatesDir+filename)

38 }

39 }

40

41 if err != nil {

42 fmt.Println(err)

Templates 144

43 os.Exit(1)

44 }

45 templates, err = template.Must(template.ParseFiles(allFiles...))

46 // templates, err := template.Must(template.ParseGlob(templatesDir+".html"))

47 if err != nil {

48 fmt.Println(err)

49 os.Exit(1)

50 }

51 homeTemplate = templates.Lookup("home.html")

52 deletedTemplate = templates.Lookup("deleted.html")

53

54 editTemplate = templates.Lookup("edit.html")

55 searchTemplate = templates.Lookup("search.html")

56 completedTemplate = templates.Lookup("completed.html")

57 loginTemplate = templates.Lookup("login.html")

58

59 }

60

61 //ShowAllTasksFunc is used to handle the "/" URL

62 //TODO add http404 error

63 func ShowAllTasksFunc(w http.ResponseWriter, r *http.Request) {

64 if r.Method == "GET" {

65 context := db.GetTasks("pending")

66 //true when you want non deleted notes

67 if message != "" {

68 context.Message = message

69 }

70 homeTemplate.Execute(w, context)

71 message = ""

72 } else {

73 message = "Method not allowed"

74 http.Redirect(w, r, "/", http.StatusFound)

75 }

76 }

Looping through arrays

Templates 145

1 <div class="timeline">

2 {{ if .Tasks}}

3 {{range .Tasks}}

4 <div class="note">

5 <p class="noteHeading">{{.Title}}</p>

6 <hr>

7 <p class="noteContent">{{.Content}}</p>

8 </div>

9 {{end}}

10 {{else}}

11 <div class="note">

12 <p class="noteHeading">No Tasks here</p>

13 <p class="notefooter">Create new task<button> here </button> </p>

14 </div>

15 {{end}}

16 </div>

The {{ if .Tasks}} block checks if the array is empty or not, if it is not then it’ll go to the {{

.range .Tasks }} which will loop through the array, then the {{.Title}} will access the title and
{{.Content}} will access the Content of that particular Task instance and we’ll see all the tasks as
a list.

Template variables

We have this scenario, we have a range of categories in the navigation drawer and if we visit the
/category/study, then our category name should be highlighted in the navigation drawer. We do
this by storing the value of the .Navigation field - which tells if it is a Edit page/Trash page/Category
page

1 {{$nav := .Navigation}}

2 {{ range $index, $cat := .Categories }}

3 <li class="sidebar-item">

4 <a href="/category/{{$cat.Name}}"

5 {{ if eq $cat.Name $nav }}

6 class="active"

7 {{end}} >

8

9 {{$cat.Name}}

10

11

12 {{$cat.Count}}

13

Templates 146

14

15

16 {{end}}

Creating variables

Creating variables in templates is similar to creating variables in Go, the variable name needs to be
prefixed by ‘$’.

For understanding why template variables are required, we need to go into the above block of code,
whenwe are using the range operator, we are parsing the array and the range block gets the elements
of the block by default.

My Context type is

1 type Context struct {

2 Tasks []Task

3 Navigation string

4 Search string

5 Message string

6 CSRFToken string

7 Categories []CategoryCount

8 Referer string

9 }

Hence whenwe do a {{range .Categories}}wewill be accessing each element as {{.}} per loop. If
we use any other valid variable here, like the .Navigation, then the block tries to find the .Navigation
inside .Categories, which obviously isn’t present.

Now we need to make the page aware of which category it is showing, should the user go to the
/categories/ page.

The logic behind making that page category aware is that we create a CSS class to mark that
particular category as active, but for that, we’d need to access the Category name and Navigation
within the range .Categories block, thus we create two variables, one to store the category name
from the .Navigation variable and use the if statement like

1 {{if eq $cat $nav}} class="active" {{end}}

This will mark only that particular category as active and not all of them.

In templating logic the operator is first and then the two operands.

eq: equal, le: less than equal, ge: greater than equal

You can also use if else clause like below:

Templates 147

1 {{$url := ""}}

2 <div class="navbar-header">

3 {{if .Search}}

4

5 Results for: {{.Search}}

6 {{else}}

7

8 {{ if eq .Navigation "pending"}}

9 {{ $url:="" }}

10 {{ else if eq .Navigation "completed"}}

11 {{ $url := "" }}

12 {{else if eq .Navigation "deleted"}}

13 {{$url := ""}}

14 {{else if eq .Navigation "edit"}}

15 {{$url := ""}}

16 {{else}}

17 {{$url := "/category"}}

18 {{end}}

19

20 <p class="navbar-brand" href="{{$url}}/{{.Navigation}}">

21 {{if eq .Navigation "pending"}}

22 Pending

23 {{ else if eq .Navigation "completed"}}

24 Completed

25 {{ else if eq .Navigation "deleted"}}

26 Deleted

27 {{ else if eq .Navigation "edit"}}

28 Edit

29 {{else }}

30 {{.Navigation}}

31 {{end}}

32 </p>

33 {{end}}

34 </div>

Here we had some complicated stuff, if our page is a search one, we had to show Results for

: <query>, pending, deleted,edit, completed for respective and /category/<category_name> if we
are in the category. So we defined an empty URL and assigned the URL values according to the
complicated if else structure.

Templates 148

Homework

1. Take the html pages from http://github.com/thewhitetulip/omninotesweb and modify them
to suit our purposes We would need to create one template each for the ones we mentioned in
the above variable declaration, use templating as far as possible and later check your results
with http://github.com/thewhitetulip/Tasks, please do the exercise on your own first and then
only check the Tasks repository.

2. Implement a search interface. Take a query as input, search tasks for that query and return an
html page with the query highlighted in the resulting page.

Links

-Previous section⁵² -Next section⁵³

⁵²2.5UploadingFiles.md
⁵³4.0authentication.md

2.5UploadingFiles.md
4.0authentication.md
2.5UploadingFiles.md
4.0authentication.md

Authentication
Authentication is used to verify if the users have access to that particular part of your web
application. For understanding how to implement authentication we need to understand what
happens behind the scenes of a browser. Suppose we run a bank, we want only our legitimate users
to access our application. We set up a login page and provide our users with their username and
password which they can use to validate their claim to our webapp.

When the users submit the login form, the browser takes the username, password and sends a POST
request to the webserver. The server checks this with the database and if the username and password
is valid then it logs the user in.

The HTTP protocol is stateless, which means every request is unique. There is no way for
identifying automatically if a request is related to another request. This brings about the problem of
authentication, how then can we validate if the users have access to our webapp?

We can send the username along with each HTTP request, either in the URL via a GET request
or in the POST request. But this is inefficient since for each request, the webserver would need
to hit the database to validate the username, also this would mean weak security since if I know
your username, I can impersonate you pretty easily and the webserver is helpless to identify this
impersonation.

To solve this problems Sessions were invented, sessions need to use cookies on the browser to
function. The basic idea is that the server generates a sessionID and store it in a cookie on the
browser. With subsequent requests, the browser will send the sessionID along with the request, the
webserver will then come to know from that sessionID if the request is a fake one or not. Also we
get to know who the user is from that.

Cookies

Cookies, as we saw in a previous chapter can be used to store a key, value pair on the user’s browser.
We used a cookie to store the CSRF token, the cookie had the name as CSRF and value as the token.

Please don’t confuse sessions with cookies. Sessions are a way of working with cookies on the server
side. There is a gap of the entire Internet between sessions and cookies.

Cookies are stored in our browsers, for security reasons we need to enable the “HTTPOnly” field
of our cookies, so only our webapplication can read the cookie. Otherwise the user can access the
cookies using Javascript.

From the go documentation

Authentication 150

1 type Cookie struct {

2 Name string

3 Value string

4

5 Path string // optional

6 Domain string // optional

7 Expires time.Time // optional

8 RawExpires string // for reading cookies only

9

10 // MaxAge=0 means no 'Max-Age' attribute specified.

11 // MaxAge<0 means delete cookie now, equivalently 'Max-Age: 0'

12 // MaxAge>0 means Max-Age attribute present and given in seconds

13 MaxAge int

14 Secure bool

15 HttpOnly bool

16 Raw string

17 Unparsed []string // Raw text of unparsed attribute-value pairs

18 }

The domain of our cookie enables a restricted access to our cookie. A visitor goes to our fictional bank
website, sbank.com and enters a username and password, a cookie is stored in the browser which
only the sbank.com domain can access since we are security aware and we have set the HttpOnly
field to true while setting the cookie. This means some malicious website which is set up by an
attacker to intentionally target our bank isn’t able to access the cookie using javascript.

One has to remember that cookie is nothing but a file stored in a user’s browser, if can be accessed
over HTTP by our webserver, a client browser does allow access to it through browser settings or
custom javascript. The browser, after all is a platform, and we have APIs to that platform.

Sessions

A session is a series of actions performed between you and the webapp you are acting, enabled by
the browser and the Internet you are using.

While generating a new session, we need to check if a sessions is already active, if so we return the
same session ID rather than create a new one, if not, we generate a new session ID. Session IDs need
to be sufficiently random. Of course we can’t generate something totally random, but we have to
ensure to generate something that nobody else can replicate, unless they have access to our private
key which we use to generate our random number.

Session handling using gorilla/sessions

Till now we never used any third party library or a framework in this book, this is for the first
time that we are doing so, we better use libraries for handling sessions, since security is the primary

Authentication 151

aspect of any web application it is wiser to use existing (and good) packages to manage security.

Path: ∼/Tasks/sessions/sessions.go

1 package sessions

2

3 import (

4 "net/http"

5 "github.com/gorilla/sessions"

6)

7

8 //Store the cookie store which is going to store session data in the cookie

9 var Store = sessions.NewCookieStore([]byte("secret-password"))

10

11 //IsLoggedIn will check if the user has an active session and return True

12 func IsLoggedIn(r *http.Request) bool {

13 session, _ := Store.Get(r, "session")

14 if session.Values["loggedin"] == "true" {

15 return true

16 }

17 return false

18 }

This is the sessions package which we will use in our application.

We create a CookieStore which stores the sessions information under the “sessions” in the browser.
We get the session ID stored under the session cookie and store it the session variable. When it
comes to using this function, we have the AddCommentFunc view below which is going to handle the
commenting feature of our application, it’ll first check if the user has an active session and if so, it’ll
handle the POST request to add a comment, if not, it’ll redirect the user to the login page.

Path: ∼/Tasks/Views/addViews.go

1 //AddCommentFunc will be used

2 func AddCommentFunc(w http.ResponseWriter, r *http.Request) {

3 if sessions.IsLoggedIn(r) {

4 if r.Method == "POST" {

5 r.ParseForm()

6 text := r.Form.Get("commentText")

7 id := r.Form.Get("taskID")

8

9 idInt, err := strconv.Atoi(id)

10

11 if (err != nil) || (text == "") {

Authentication 152

12 log.Println("unable to convert into integer")

13 message = "Error adding comment"

14 } else {

15 err = db.AddComments(idInt, text)

16

17 if err != nil {

18 log.Println("unable to insert into db")

19 message = "Comment not added"

20 } else {

21 message = "Comment added"

22 }

23 }

24

25 http.Redirect(w, r, "/", http.StatusFound)

26

27 }

28 } else {

29 http.Redirect(w, r, "/login", 302)

30 }

31 }

The below file contains the code to login and logout of our application, we basically are going to set
the “loggedin” property of our cookiestore.

Path: ∼/Tasks/Views/sessionViews.go

1 package views

2

3 import (

4 "net/http"

5

6 "github.com/thewhitetulip/Tasks/sessions"

7)

8

9 //LogoutFunc Implements the logout functionality.

10 //WIll delete the session information from the cookie store

11 func LogoutFunc(w http.ResponseWriter, r *http.Request) {

12 session, err := sessions.Store.Get(r, "session")

13 if err == nil { //If there is no error, then remove session

14 if session.Values["loggedin"] != "false" {

15 session.Values["loggedin"] = "false"

16 session.Save(r, w)

17 }

Authentication 153

18 }

19 http.Redirect(w, r, "/login", 302)

20 //redirect to login irrespective of error or not

21 }

22

23 //LoginFunc implements the login functionality, will

24 //add a cookie to the cookie store for managing authentication

25 func LoginFunc(w http.ResponseWriter, r *http.Request) {

26 session, err := sessions.Store.Get(r, "session")

27

28 if err != nil {

29 loginTemplate.Execute(w, nil)

30 // in case of error during

31 // fetching session info, execute login template

32 } else {

33 isLoggedIn := session.Values["loggedin"]

34 if isLoggedIn != "true" {

35 if r.Method == "POST" {

36 if r.FormValue("password") == "secret"

37 && r.FormValue("username") == "user" {

38 session.Values["loggedin"] = "true"

39 session.Save(r, w)

40 http.Redirect(w, r, "/", 302)

41 return

42 }

43 } else if r.Method == "GET" {

44 loginTemplate.Execute(w, nil)

45 }

46 } else {

47 http.Redirect(w, r, "/", 302)

48 }

49 }

50 }

There is a better way of handling sessions using middleware, we’ll introduce that concept in the
next chapter.

Authentication 154

Users

Signing users up

The above example just hardcodes the username and password, of course we’d want people to sign
up to our service. We create a user table.

1 CREATE TABLE user (

2 id integer primary key autoincrement,

3 username varchar(100),

4 password varchar(1000),

5 email varchar(100)

6);

For the sake of simplicity, it’ll only contain ID, username, password and email.

There are two parts here, first one where we allow users to sign up, and another part where we
replace the hard coded username and password in our login logic.

file: ∼/Tasks/main.go

1 http.HandleFunc("/signup/", views.SignUpFunc)

file: ∼/Tasks/views/sessionViews.go

1 //SignUpFunc will enable new users to sign up to our service

2 func SignUpFunc(w http.ResponseWriter, r *http.Request) {

3 if r.Method == "POST" {

4 r.ParseForm()

5

6 username := r.Form.Get("username")

7 password := r.Form.Get("password")

8 email := r.Form.Get("email")

9

10 log.Println(username, password, email)

11

12 err := db.CreateUser(username, password, email)

13 if err != nil {

14 http.Error(w, "Unable to sign user up", http.StatusInternalServerError)

15 } else {

16 http.Redirect(w, r, "/login/", 302)

17 }

18 }

19 }

Authentication 155

file: ∼/Tasks/db/user.go

1 //CreateUser will create a new user, take as input the parameters and

2 //insert it into database

3 func CreateUser(username, password, email string) error {

4 err := taskQuery("insert into user(username, password, email) values(?,?,?)"\

5 , username, password, email)

6 return err

7 }

We saw TaskQuery in our chapter on DB, it is a simple wrapper around db.Exec().

Note: In a real web app, you’d want to encrypt the password and not store it in plain
text, this is a dummy app which’ll never see the light of the day so I am keeping it
plaintext.

Login

file ∼/Tasks/views/sessionViews.go

1 //LoginFunc implements the login functionality, will add a cookie to the cookie \

2 store for managing authentication

3 func LoginFunc(w http.ResponseWriter, r *http.Request) {

4 session, err := sessions.Store.Get(r, "session")

5

6 if err != nil {

7 log.Println("error identifying session")

8 loginTemplate.Execute(w, nil)

9 return

10 }

11

12 switch r.Method {

13 case "GET":

14 loginTemplate.Execute(w, nil)

15 case "POST":

16 log.Print("Inside POST")

17 r.ParseForm()

18 username := r.Form.Get("username")

19 password := r.Form.Get("password")

20

21 if (username != "" && password != "") && db.ValidUser(username, password\

22) {

Authentication 156

23 session.Values["loggedin"] = "true"

24 session.Values["username"] = username

25 session.Save(r, w)

26 log.Print("user ", username, " is authenticated")

27 http.Redirect(w, r, "/", 302)

28 return

29 }

30 log.Print("Invalid user " + username)

31 loginTemplate.Execute(w, nil)

32 }

33 }

file ∼/Tasks/db/user.go

1 //ValidUser will check if the user exists in db and if exists if the username pa\

2 ssword

3 //combination is valid

4 func ValidUser(username, password string) bool {

5 var passwordFromDB string

6 userSQL := "select password from user where username=?"

7 log.Print("validating user ", username)

8 rows := database.query(userSQL, username)

9

10 defer rows.Close()

11 if rows.Next() {

12 err := rows.Scan(&passwordFromDB)

13 if err != nil {

14 return false

15 }

16 }

17 //If the password matches, return true

18 if password == passwordFromDB {

19 return true

20 }

21 //by default return false

22 return false

23 }

Note: Since we are using gorilla/sessions, we just have to plugin the functionality that
the package provides and don’t have to bother about the actual implementation of
sessions handling, if you are interested then by all means go ahead and checkout the
source code of gorilla/sessions!

Authentication 157

We keep resetting the password as an exercise, formulate a mechanism to resetting the password,
requires us to create a user table and store some profile information, either email-ID from where
we’ll send a security code or by doing something else! Brainstorm!

Links

-Previous section⁵⁴ -Next section⁵⁵

⁵⁴3.0templating.md
⁵⁵5.0Files.md

3.0templating.md
5.0Files.md
3.0templating.md
5.0Files.md

Files
JSON and XML are two of the most common ways to transmit data between web applications. We’ll
use JSON for our configuration file.

For our webapplication we have a set of configuration values like the server port where our
application will run. Suppose you are developing your application in $GOPATH and also using
it somewhere else, then you can’t run them in parallel because both sources use the same port
number. Naturally wewant a way to parameterize that port number. The parameter or configuration
value list may contain more things like database connection information. As of now we will use a
config.json file and read the serverPort variable and bind our server on that port.

Our configuration file uses a fixed structure, hence it is simple enough to UnMarshal it to a struct
type, we can use some advance concepts to accomodate unstructured JSON files, because that is the
whole point of JSON, we can have data in an unstructured format.

NoSQL has been famous lately, they are basically JSON document stores. We have projects like
boltdb which store data in a key value pair, ultimately in flat files or in memory.

file: $GOPATH/src/github.com/thewhitetulip/Tasks/config/config.go

1 package config

2

3 import (

4 "encoding/json"

5 "io/ioutil"

6 "log"

7)

8

9 // Stores the main configuration for the application

10 // define a struct object containing

11 type Configuration struct {

12 ServerPort string

13 }

14

15 var err error

16 var config Configuration

17

18 // ReadConfig will read the config.json file to read the parameters

19 // which will be passed in the config object

20 func ReadConfig(fileName string) Configuration {

Files 159

21 configFile, err := ioutil.ReadFile(fileName)

22 if err != nil {

23 log.Fatal("Unable to read log file")

24 }

25 //log.Print(configFile)

26 err = json.Unmarshal(configFile, &config)

27 if err != nil {

28 log.Print(err)

29 }

30 return config

31 }

file: $GOPATH/src/github.com/thewhitetulip/Tasks/config.json

1 {

2 "ServerPort": ":8081"

3 }

file: $GOPATH/src/github.com/thewhitetulip/Tasks/main.go

1 values := config.ReadConfig("config.json")

2

3 // values is the object now, we can use the

4 // below statement to access the port name

5

6 values.ServerPort

We use the json.Unmarshal to read the JSON file into our structure object. This is a very simple and
basic example of parsing JSON files, you can have nested structures of many levels inside the main
config object, but that is the features of Go, so long as it can be represented as a JSON document
you can use the Unmarshal method to translate the file into an object which you can use in your
program.

Homework

• Alter the config.json file to take the name of the sqlite database as a configuration parameter.
• Read about the JSON library in godoc

Links

-Previous section⁵⁶ -Next section⁵⁷

⁵⁶4.0authentication.md
⁵⁷6.0routing.md

4.0authentication.md
6.0routing.md
4.0authentication.md
6.0routing.md

Routing
Till nowwe used routing directly inside of our handlers. For a large application though, it’d be better
to have a router in place. We can either use a third party one with countless features or the standard
mux.

As our application matures, routing plays a big role into it. We intentionally avoided routing till now
because as a web developer, wemust understand what happens in the background of our application.
Web frameworks allow us to build applications quickly, but the downside of them is that they provide
us with a framework as the name suggests, which means you are totally restricted by the API which
the framework will provide. Thus we need to know how to implement bare bone stuff, so in future
we might want to modify the framework we need, or rather create our own one.

First of all we’d need to install the httprouter, do a go get -u github.com/julienschmidt/httprouter

From the documentation

Package httprouter is a trie based high performance HTTP request router.

1 package main

2

3 import (

4 "fmt"

5 "github.com/julienschmidt/httprouter"

6 "net/http"

7 "log"

8)

9

10 func Index(w http.ResponseWriter, r *http.Request, _ httprouter.Params) {

11 fmt.Fprint(w, "Welcome!\n")

12 }

13

14 func Hello(w http.ResponseWriter, r *http.Request, ps httprouter.Params) {

15 fmt.Fprintf(w, "hello, %s!\n", ps.ByName("name"))

16 }

17

18 func main() {

19 router := httprouter.New() // creates a new router

20 router.GET("/", Index) // will direct the GET / request to the Index fu\

21 nction

Routing 161

22 router.GET("/hello/:name", Hello) // will redirect the GET /name to Hello, s\

23 tores the name of the parameter

24 // in the a variable of httprouter.Param\

25 s

26

27 log.Fatal(http.ListenAndServe(":8080", router))

28 }

httprouter uses a custom Http.HandleFunc method to accomodate parameterized routing.

Here, we can route our requests depending on the HTTP method through which it is used, and we
can handle parameterized routing for free.

To handle that scenario we were initially using the r.URL.Path variable and then extracting the
parameters, it is just the solution of finding the variable parameter of the URL, there is a wide area
where httprouter is awesome, there is no need to handle the / for each requests.

In web applications sometimes having a forward slash is very critical, the URL index is totally
different from /index and is marginally different from /index/ httprouter takes care of the trailing
slashes. The Go default MUX requires you to handle the routes in the descending order, meaning
the most generic URL the “/” should be at the bottom and the least generic should be at the top, as it
goes sequentially up and downmatching the URLs, httprouter provides a wide variety of advantages
when it comes to routing.

This is because our application should separate routing from the handler logic, we were mixing it
just to get a feel for how to program in Go, but eventually when the app grows, it is tiresome and
non maintainable for doing the if r.Method==POST check in each handler, rather than that we can
have 3 different handlers one for when request comes via AJAX, one for normal GET and one for
normal POST. This way we do not have one function handler checking the type of request and then
writing three separate logic inside one function.

But that doesn’t mean we have to use httprouter, if in an app there aren’t much sophisticated routing
required then we can use the default Mux since it is good enough, but if we have complicated routing
then httprouter is the best.

Homework

Read the httprouter documentation and source code to get a deeper understanding of routers, since
routers are an integral part of anyweb application. Then rewrite our application using the httprouter.

Links

-Previous section⁵⁸ -Next section⁵⁹

⁵⁸5.0Files.md
⁵⁹7.0middleware.md

5.0Files.md
7.0middleware.md
5.0Files.md
7.0middleware.md

Middlewares
Middleware is really anything that extends your webapp in a modular way. Most common examples
are probably parsing the request parameters/body and storing them in an easily-accessible format so
you don’t have to do it in every single handler, or session handling as we mentioned in the previous
chapter. Other examples could be throttling or IP filtering, which would also happen before you start
building your response, or compression, which would happen after you’ve built your response.

1 //RequiresLogin is a middleware which will be used for each

2 //httpHandler to check if there is any active session

3 func RequiresLogin(handler func(w http.ResponseWriter, r *http.Request))

4 func(w http.ResponseWriter, r *http.Request) {

5 return func(w http.ResponseWriter, r *http.Request) {

6 if !sessions.IsLoggedIn(r) {

7 http.Redirect(w, r, "/login/", 302)

8 return

9 }

10 handler(w, r)

11 }

12 }

The above function counts as middleware - it doesn’t know anything about your app except how
you handle sessions. If you’re not logged in, it redirects, otherwise it doesn’t do anything and passes
along to the next handler. That next handler might be where you actually build your response, or it
could be another middleware component that does something else first.

To know someone’s logged in, yes, you want to create a session identifier and store that somewhere
on the server side (in memory or a database) and also set it in the user’s cookies. Your session IDs
should be sufficiently random and long that they couldn’t be easily guessed. I think a common way
of satisfying that is creating a UUID and then base64 encode that. Or, you could just generate a
bunch of random bytes.

To know which user is logged in, the session ID should be the key that maps to a user ID. So, you’d
make a map of Session ID⇒ User ID, or something similar in your database.

Then, before every request, you’d

1. Check user’s cookies for Session ID. If none, user is not logged in.
2. Check your store for user’s Session ID. If it’s not found, then it’s invalid - user is not logged

in.

Middlewares 163

3. If you found it, use it to look up the user’s ID. User is now logged in.
4. Now you’ve got the user ID and can use it as a filter when querying your DB if you only want

to show that user’s tasks.

Example

Without middleware:

1 //IsLoggedIn will check if the user has an active session and return True

2 func IsLoggedIn(r *http.Request) bool {

3 session, _ := Store.Get(r, "session")

4 if session.Values["loggedin"] == "true" {

5 return true

6 }

7 return false

8 }

9

10

11 //SearchTaskFunc is used to handle the /search/ url, handles the search function

12 func SearchTaskFunc(w http.ResponseWriter, r *http.Request) {

13 if sessions.IsLoggedin(r) {

14 if r.Method == "POST" {

15 r.ParseForm()

16 query := r.Form.Get("query")

17 context := db.SearchTask(query)

18 categories := db.GetCategories()

19 context.Categories = categories

20 searchTemplate.Execute(w, context)

21 }

22 } else {

23 http.Redirect(w, r, "/login/", 302)

24 }

With Middleware:

Middlewares 164

1 http.HandleFunc("/", views.RequiresLogin(views.ShowAllTasksFunc))

2

3 //SearchTaskFunc is used to handle the /search/ url,

4 //handles the search function

5 func SearchTaskFunc(w http.ResponseWriter, r *http.Request) {

6 if r.Method == "POST" {

7 r.ParseForm()

8 query := r.Form.Get("query")

9 context := db.SearchTask(query)

10 categories := db.GetCategories()

11 context.Categories = categories

12 searchTemplate.Execute(w, context)

13 }

14 }

This way, we do not have to repeat the if sessions.IsLoggedin() block in each of our view which
requires authentication. In this example we have used it for session handling, but it can be used for
any purpose which requires some kind of pre handling of any view.

Links

-Previous section⁶⁰ -Next section⁶¹

⁶⁰6.0routing.md
⁶¹8.0buildingAPI.md

6.0routing.md
8.0buildingAPI.md
6.0routing.md
8.0buildingAPI.md

Building an API
API stands for Application Programming Interface, it is just an interface to the webapp. When we
use a browser to access a web application, we interact in HTTP and get back HTML pages, which
the browser will render for us. Let’s say we want to interact with our web app to get some data
out of it using a host programming language like Go or Python. We’d have to maintain cookies in
Python, or write a python module as an extension of a browser to handle this scenario.

There is a simple way out of this, we equip our web application itself to interact with any host
language which can talk in HTTP. This way developers can easily get access to our system, using
valid credentials, of course.

Browser:

1. We send the username,password and get a cookie stored on our machine.
2. We use the token in the cookie until it is valid to send HTTP requests.
3. The browser is responsible for rendering the HTML pages sent by the server.

API:

1. We send the username, password and get a token.
2. We send this token in each of our request to the server

Typically we send the token in a custom HTTP header called token.

When we use a browser, the server stores our information as a session, when we send it a request,
it is aware of our session. A web app typically uses cookies to store the session ID, which is used to
identify the user. Such a server is called a stateful server.

When we write APIs, they are stateless servers, they do not store sessions information anywhere
on the server. To it, each request is unique. Which is why, we need to pass along the authentication
token in each request.

Note: Don’t mess around with tokens

There are apps where “single sign in” feature is available, the user has to log in only once
and they are logged in forever, this is very dangerous. Because if a malicious person gets
their hands on the security token, they can send malicious requests for data which look
genuine and are impossible to clasify as malicious. Don’t do this, always have some
expiration time for security tokens, depends on your application really, two hours, six
hours, but never infinite hours.

Building an API 166

JWT

JSON Web Tokens is a standard for generating tokens. We will use the jwt-go library.

Lets start by defining our routes

1 http.HandleFunc("/api/get-task/", views.GetTasksFuncAPI)

2 http.HandleFunc("/api/get-deleted-task/", views.GetDeletedTaskFuncAPI)

3 http.HandleFunc("/api/add-task/", views.AddTaskFuncAPI)

4 http.HandleFunc("/api/update-task/", views.UpdateTaskFuncAPI)

5 http.HandleFunc("/api/delete-task/", views.DeleteTaskFuncAPI)

6

7 http.HandleFunc("/api/get-token/", views.GetTokenHandler)

8 http.HandleFunc("/api/get-category/", views.GetCategoryFuncAPI)

9 http.HandleFunc("/api/add-category/", views.AddCategoryFuncAPI)

10 http.HandleFunc("/api/update-category/", views.UpdateCategoryFuncAPI)

11 http.HandleFunc("/api/delete-category/", views.DeleteCategoryFuncAPI)

file: $GOPATH/src/github.com/thewhitetulip/Tasks/main.go

We will have the same URLs for the API, but it’ll start with /api/

Our logic is that we will send the username and password in a POST request to /api/get-token/

that will return the token for us.

We are using jwt-go version 3. We have to define a custom claims struct which we will use in token
generation and token verification. It’ll contain the StandardClaims class and whichever extra fields
we require.

1 type MyCustomClaims struct {

2 Username string `json:"username"`

3 jwt.StandardClaims

4 }

file: $GOPATH/src/github.com/thewhitetulip/Tasks/views/api.go

Building an API 167

1 import "github.com/dgrijalva/jwt-go"

2 var mySigningKey = []byte("secret")

3

4

5 //GetTokenHandler will get a token for the username and password

6 func GetTokenHandler(w http.ResponseWriter, r *http.Request) {

7 if r.Method != "POST" {

8 w.Write([]byte("Method not allowed"))

9 return

10 }

11

12 r.ParseForm()

13 username := r.Form.Get("username")

14 password := r.Form.Get("password")

15 log.Println(username, " ", password)

16 if username == "" || password == "" {

17 w.Write([]byte("Invalid Username or password"))

18 return

19 }

20 if db.ValidUser(username, password) {

21 /* Set token claims */

22

23 // Create the Claims

24 claims := MyCustomClaims{

25 username,

26 jwt.StandardClaims{

27 ExpiresAt: time.Now().Add(time.Hour * 5).Unix(),

28 },

29 }

30

31 token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims)

32

33 /* Sign the token with our secret */

34 tokenString, err := token.SignedString(mySigningKey)

35 if err != nil {

36 log.Println("Something went wrong with signing token")

37 w.Write([]byte("Authentication failed"))

38 return

39 }

40

41 /* Finally, write the token to the browser window */

42 w.Write([]byte(tokenString))

Building an API 168

43 } else {

44 w.Write([]byte("Authentication failed"))

45 }

46 }

We need to send a POST request to /api/get-token/ with the username and password in the Form
data.

If the HTTP method is anything other than POST, we throw an error, if the username and password
is wrong we throw an error, otherwise, we generate a token and send it to the client.

The client will now use this token for future requests, the ValidateToken function will validate the
token.

1 //ValidateToken will validate the token

2 func ValidateToken(myToken string) (bool, string) {

3 token, err := jwt.ParseWithClaims(myToken, &MyCustomClaims{}, func(token *jw\

4 t.Token) (interface{}, error) {

5 return []byte(mySigningKey), nil

6 })

7

8 if err != nil {

9 return false, ""

10 }

11

12 claims := token.Claims.(*MyCustomClaims)

13 return token.Valid, claims.Username

14 }

We’ll call the Parse method on the token which we receive as a parameter in the function call. The
token.Valid field is a boolen variable which is true if the token is valid and false otherwise.

Making an API call

Making an API call is analogous to our normal view.

Building an API 169

1 //GetCategoryFuncAPI will return the categories for the user

2 //depends on the ID that we get, if we get all, then return all

3 //categories of the user

4 func GetCategoryFuncAPI(w http.ResponseWriter, r *http.Request) {

5 if r.Method == "GET" {

6 var err error

7 var message string

8 var status types.Status

9 //get the custom HTTP header called Token

10 token := r.Header["Token"][0]

11

12 w.Header().Set("Content-Type", "application/json; charset=UTF-8")

13

14 IsTokenValid, username := ValidateToken(token)

15 //When the token is not valid show the

16 //default error JSON document

17 if !IsTokenValid {

18 status = types.Status

19 {

20 StatusCode: http.StatusInternalServerError,

21 Message: message

22 }

23 w.WriteHeader(http.StatusInternalServerError)

24 //the following statement will write the JSON document to

25 //the HTTP ResponseWriter object.

26 err = json.NewEncoder(w).Encode(status)

27

28 if err != nil {

29 panic(err)

30 }

31 return

32 }

33

34 log.Println("token is valid " + username + " is logged in")

35 categories := db.GetCategories(username)

36 w.Header().Set("Content-Type", "application/json; charset=UTF-8")

37

38 w.WriteHeader(http.StatusOK)

39

40 err = json.NewEncoder(w).Encode(categories)

41 if err != nil {

42 panic(err)

Building an API 170

43 }

44 }

45 }

During an API call, we send data in JSON format, for that, we need to set our content-type
as application/json, by doing this, even a web browser will detect that it is getting a JSON
document. When we need to write a JSON document to the response writer object, we use the
json.NewEncoder(w).Encode(categories) method, where categories is our JSON document.

Formatting a JSON document

This, below, is our Tasks struct, whichwill be populated as a JSON documentwhenwe run our server.
As you might know, we can’t use Capital letter as the first letter in a JSON title, by convention they
should all be small letters. Go has a special way of letting us do that. The example is below, when
we write json:"id", we are telling Go that the name of this field in a JSON rendering should be id
and not Id. There is another special syntax called omitempty, in some JSON documents you might
want some field to not be displayed. It so happens that there are fields which you would want to
disappear when their values aren’t present, they may not be important or it’d be too clunky to have
them as NULL in all JSON documents.

1 type Task struct {

2 Id int `json:"id"`

3 Title string `json:"title"`

4 Content string `json:"content"`

5 Created string `json:"created"`

6 Priority string `json:"priority"`

7 Category string `json:"category"`

8 Referer string `json:"referer,omitempty"`

9 Comments []Comment `json:"comments,omitempty"`

10 IsOverdue bool `json:"isoverdue, omitempty"`

11 }

Testing API

We’ll use Firefox and RestClient extension to test our API. RestClient allows us to send various
requests to our API server, if you are on Chrome, POSTman is the best alternative.

For RestClient to send Form data, set a custom header

Name: Content-Type

Value: application/x-www-form-urlencoded

Building an API 171

Otherwise you’ll be sending blank POST requests all the time. The server needs to understand the
content type of the data it is getting form the client.

To send the actual form data, example: we have three fields, username, password and name. Then
we write it in the body section like this:

username=thewhitetulip&password=password

Also set a customHTTP header by the Name: token Value: the tokenwhich you get in /api/get-token/
call

Writing an client
APIs are built so that we can write applications on top of our service. APIs allow us to write clients
that access our service apart from the browser.

1 package main

2

3 import "net/http"

4 import "fmt"

5 import "io/ioutil"

6

7 func main() {

8 resp, err := http.Get("http://127.0.0.1:8081/")

9 if err != nil {

10 fmt.Println(err)

11 }

12

13 defer resp.Body.Close()

14 body, err := ioutil.ReadAll(resp.Body)

15 if err != nil {

16 fmt.Println("Error reading body")

17 }

18 fmt.Println(string(body))

19 }

When we use the service via a browser, the browser is essentially making the GET and POST calls
on our behalf. When we have to write an app to access our service, we have to write those methods
in the app.

For executing the above code, we need to ensure that our Tasks application is running on port 8081.
When we execute, it must print the login html page on the terminal.

This might be a great example to get started with using HTTP methods from Go, but for our
application we require to send POST reqests with content type as form and send the form data
as request body.

Getting the token

We use the PostForm method which will send a Form via a POST method, effectively saving
the trouble of setting the content type field for us. If you run the below code, it will print the
authentication token on the terminal.

Writing an client 173

1 import "net/http"

2 import "net/url"

3 import "fmt"

4 import "io/ioutil"

5

6 func main() {

7 usernamePwd := url.Values{}

8 usernamePwd.Set("username", "suraj")

9 usernamePwd.Set("password", "suraj")

10

11 resp, err := http.PostForm("http://127.0.0.1:8081/api/get-token/", usernameP\

12 wd)

13 if err != nil {

14 fmt.Println(err)

15 }

16

17 defer resp.Body.Close()

18 body, err := ioutil.ReadAll(resp.Body)

19 if err != nil {

20 fmt.Println("Error reading body")

21 }

22 fmt.Println(string(body))

23 }

The next steps are to store this token and get the task list.

Error handling

We should throw a user friendly error message if the Tasks application isn’t running in the
background. And then exit the client.

Example

The below code will get a new token and print all the tasks for that particular user.

Writing an client 174

1 package main

2

3 import (

4 "fmt"

5 "io/ioutil"

6 "net/http"

7 "net/url"

8 "os"

9)

10

11 func main() {

12 baseURL := "http://127.0.0.1:8081/"

13

14 usernamePwd := url.Values{}

15 usernamePwd.Set("username", "suraj")

16 usernamePwd.Set("password", "suraj")

17

18 resp, err := http.PostForm(baseURL+"api/get-token/", usernamePwd)

19 if err != nil {

20 fmt.Println("Is the server running?")

21 os.Exit(1)

22 } else {

23 fmt.Println("response received")

24 }

25

26 defer resp.Body.Close()

27 body, err := ioutil.ReadAll(resp.Body)

28 if err != nil {

29 fmt.Println("Error reading body")

30 } else {

31 fmt.Println("Token received")

32 }

33 token := string(body)

34

35 client := &http.Client{}

36 req, err := http.NewRequest("GET", baseURL+"api/get-task/", nil)

37

38 if err != nil {

39 fmt.Println("Unable to form a GET /api/get-task/")

40 }

41

42 req.Header.Add("Token", token)

Writing an client 175

43 resp, err = client.Do(req)

44

45 if (err != nil) || (resp.StatusCode != 200) {

46 fmt.Println("Something went wrong in the getting a response")

47 }

48

49 defer resp.Body.Close()

50 body, err = ioutil.ReadAll(resp.Body)

51 fmt.Println(string(body))

52

53 }

Advanced Usage

We can write a complete command line client for tasks in Go as we saw in this chapter, it would
mean implementing a lot of command line flags to get what the user wants us to get and we would
want to store the key in a text file to cache it.

Homework

• Read the unit testing chapter and write a unit test to test the API client rather than using the
firefox addon.

• Build a REST api client to Tasks and add/delete notes via the command line. Note that you’ll
have to modify how things look & not generate HTML. Render just the markdown text.

Links

-Previous section⁶² -Next section⁶³

⁶²7.0middleware.md
⁶³9.0unitTesting.md

7.0middleware.md
9.0unitTesting.md
7.0middleware.md
9.0unitTesting.md

Unit Testing
Testing is done to ensure that our application behaves in a predictable manner. Writing Unit tests is
the core responsibility of a developer and it is a part of development. While manual testing can be
done, to ensure that our app works well, the need for unit testing will arise when we add features to
an already built application and deploy it, only to find out that it broke some earlier functionality.

In one line testing is about ensuring our app doesn’t break if a user gives a thoughtful but random
input. We think of all such edge cases while testing the app and ensure that our app works fine.

A practical example: you wrote your first commandline Vi calculator and you are about to call a VC
firm on your path to becoming filthy rich, but your team member finds out that if you divide 4 by
0, your app crashes.

“Of course nobody is going to divide by 0, don’t they know math?”, but they do

Go has a package called “testing” in the standard library.

While testing webapps, there are two aspects:

1. Testing the look and feel.
2. Testing if the pages displayed are with the valid statusCode.
3. Testing if the app doesn’t break when new functionality is added.
4. The data IO works correctly.

The look and feel is a part of UI/UX and that can be done manually. Doesn’t require us to write a
single line of Go.

Validation the Status Code for edge cases.

A real life scenario would be, what if a user who has a basic idea of HTTP decides to send you a
OPTIONS /add/ request where you only accept either a GET or a POST.

Example: Testing the AddComment function

Unit Testing 177

1 //AddCommentFunc will be used

2 func AddCommentFunc(w http.ResponseWriter, r *http.Request) {

3 if r.Method == "POST" {

4 r.ParseForm()

5 text := r.Form.Get("commentText")

6 id := r.Form.Get("taskID")

7

8 idInt, err := strconv.Atoi(id)

9

10 if (err != nil) || (text == "") {

11 log.Println("unable to convert into integer")

12 message = "Error adding comment"

13 } else {

14 username := sessions.GetCurrentUserName(r)

15 err = db.AddComments(username, idInt, text)

16

17 if err != nil {

18 log.Println("unable to insert into db")

19 message = "Comment not added"

20 } else {

21 message = "Comment added"

22 }

23 }

24

25 http.Redirect(w, r, "/", http.StatusFound)

26

27 }

28 }

This function will do the following: If the method is POST then take the comment content, extract
the post ID and add the comment to the database.

We will test what happens when the user will send a HTTP GET request for the add comment
function, which we do not support.

The test case function is:

Unit Testing 178

1 func TestAddCommentWithWrongMethod(t *testing.T) {

2 ts := httptest.NewServer(http.HandlerFunc(AddCommentFunc))

3 defer ts.Close()

4 req, err := http.NewRequest("GET", ts.URL, nil)

5 if err != nil {

6 t.Errorf("Error occured while constructing request: %s", err)

7 }

8

9 w := httptest.NewRecorder()

10 AddCommentFunc(w, req)

11 if w.Code != http.StatusBadRequest {

12 t.Errorf("Actual status: (%d); Expected status:(%d)", w.Code, http.StatusBadRe\

13 quest)

14 }

15 }

func NewServer(handler http.Handler) *Server

NewServer starts and returns a new Server. The caller should call Close when finished, to shut it
down. For testing, we do not need to run a server, we’ll start a temporary server using NewServer

every time that we need it.

Afer that, we have to send a HTTP request, which will be evaluated and a HTTP response will be
sent by our handler.

In a regular HTTP application, we send a HTTP request with a URL to the server and the server
takes the HTTP Request and generates a HTTP Response. While testing it, we have to mock the
request and response. NewRequest()will create a request, and httptest.NewRecorder()will return
an initialized ResponseRecorder.

func NewRecorder() *ResponseRecorder

1 [views] go test . -v -run AddCommentWith

2 === RUN TestAddCommentWithWrongMethod

3 --- FAIL: TestAddCommentWithWrongMethod (0.00s)

4 addViews_test.go:100: Actual status: (200); Expected status:(400)

5 FAIL

6 exit status 1

7 FAIL github.com/thewhitetulip/Tasks/views 0.084s

We can see here that the actual status is 200, which is Okay. But this isn’t what we want, for invalid
status request, we should send a Bad Request.

We change the first line and add this, modify the rest of the function accordingly:

Unit Testing 179

1 if r.Method != "POST" {

2 log.Println(err)

3 http.Redirect(w, r, "/", http.StatusBadRequest)

4 return

5 }

If the method is anything but a POST, we’ll send a error message.

1 [views] go test . -v -run AddCommentWith

2 === RUN TestAddCommentWithWrongMethod

3 2016/08/27 14:19:33 <nil>

4 --- PASS: TestAddCommentWithWrongMethod (0.00s)

5 PASS

6 ok github.com/thewhitetulip/Tasks/views 0.071s

Incremental testing

An application requires suit of test cases. A suit is going to have a lot of test cases. Suppose you
already have a hundred test cases and you add TestValueAdd test case as a part of a new feature.
While developing that feature. While you are testing if the TestValueAdd feature works correctly,
you want to run only that one test case.

In such cases, you can run it as go test -run ValueAdd.

-run supports arguments as a regular expression.

After we are satisfied with this testcase, we have to run the entire test suit for integration testing.

Homework

Just as we tested the handler for wrong method, try running at able driven test for AddTask handler.
You’ll have to set up a dummy sqlite database, create few edge cases for inserting tasks, run the
AddTask method and if the number of tasks isn’t what you expect in the sqlite, then the test fails.

Links

-Previous section⁶⁴ -Next section⁶⁵

⁶⁴8.0buildingAPI.md
⁶⁵9.1versionControl.md

8.0buildingAPI.md
9.1versionControl.md
8.0buildingAPI.md
9.1versionControl.md

Version Control Basics
If you know the basics of git, please feel free to skip this chapter. This is for only those
who do not know git.

Version control systems are used to keep track of the code changes being done. They can be used in
any place which requires to keep track of changes, this book is written in markdown, using git to
store tracking information and it is uploaded on github.

We will be using git in this chapter, the concepts are same for other version control systems, just
the syntaxes might differ.

Using git

Init

We call each project a repository. We first need to initialize a git repository.

1 [Tasks] git init

This command will create an empty git repository in the current folder you are in. Ideally, this is
the root folder of your project, unless your requirement is different.

1 [Tasks] vi main.go

Stage changes

Create an empty file and write something into it.

1 [Tasks] git add main.go

Add the file to the git repo, so git knows that it should track it.

We can stage as many files we want, in this step, but the recommended things is to stage and commit
one change at a time. Suppose I add a new feature of notifications, I’ll make only those changes
and commit all the files related only to that change. Because, in future if we want to rollback to
the original repo, we’d rollback to the previous commit. As a consequence to this usage, we have
an awful number of commits to the repo, but that’s fine, since it doesn’t matter. Better software
managment is what matters.

When we add files to the git repo, the file is staged.

Commit

Version Control Basics 181

1 [Tasks] git commit -m "Added initial version of main.go"

When we commit, we tell git to finalize the changes, it creates a unique hash to point to this time
i.e. the files which we changed. Commit messages should be short and meaningful.

Checkout

1 [Tasks] git checkout main.go

This unstages all the changes made to this file before the last commit. Use this with caution because
it’ll remove all the file changes.

Log

1 [Tasks] git log

This prints a log of all commits made to the repo.

Diff

1 [Tasks] git diff

2 [Tasks] git diff <commit hash>

diff will show the changes made to the file as compared to the file’s contents of the last commit.

Branching

While working on a team project, we are using the same codebase (on the server) with local repos on
our individual machines. Adding a new feature to the master branch is a bad way of writing code,
because if our change fails and we push the changes to the remote server, we make the server’s
version fail as well. This is why, branching is a good way to write code.

1. Create a new branch per feature.
2. Make changes to the branch.
3. Submit a pull request.
4. Merge the branch only if everything works fine.

By default the branch is master.

Version Control Basics 182

1 [Tasks] git branch new-feature

Creates a new branch.

1 [Tasks] git branch

2 * master

new-feature

The branch in use is still the master.

1 [Tasks] git checkout new-feature

Now the branch being used is the new-feature.

Going forwards, all the changes would be made to the new-feature repository.

Remote

1 [Tasks] git remote add origin https://github.com/thewhitetulip/Tasks

2

3 [Tasks] git remote -v

4 origin https://github.com/thewhitetulip/Tasks (fetch)

5 origin https://github.com/thewhitetulip/Tasks (push)

Push and Pull

If you want to push your changes to the remote server, do a

1 [Tasks] git push origin master

Origin is the remote repo and master is the branch name which you want to push the commits to.

This book isn’t about git, there already is an amazing book⁶⁶ on git.

Gitignore

At times in a project we want a few files to be not tracked, such files are placed in the .gitignore
file in the root of the git repository. Any file or file pattern which is present in .gitignore is ignored
by Git.

⁶⁶https://git-scm.com/book/en/v2

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2

Version Control Basics 183

Links

-Previous section⁶⁷ -Next section⁶⁸

Links

-Previous section⁶⁹

⁶⁷9.0unitTesting.md
⁶⁸9.2socketProgramming.md
⁶⁹9.1versionControl.md

9.0unitTesting.md
9.2socketProgramming.md
9.1versionControl.md
9.0unitTesting.md
9.2socketProgramming.md
9.1versionControl.md

	Table of Contents
	Installation
	System requirements
	Install the Go tools

	Tools
	The toolchain

	Hello, Go
	Why Go?

	Variables & Data structures
	Variables
	Underlying data structures
	Important points
	array, slice, map

	Control statements and Functions
	Control statement
	Functions

	Struct
	Basics of Struct

	Object-oriented
	methods

	Interface
	Interface

	Concurrency
	Managing the Workspace
	Packages
	Internal deployment

	Web Programming Basics
	HTTP Methods
	What is a template?
	Static Files

	Basic web application
	Handling URLs
	Serving static files
	Homework

	Designing our web app
	The Design
	Homework

	Using databases in Go
	Creating and configuring database
	Installing sqlite driver

	Accessing the database
	Importing driver

	Retrieving Result Sets
	Fetching Data from the Database
	How Scan() Works
	Preparing Queries
	Single-Row Queries

	Modifying Data and Using Transactions
	Statements that Modify Data
	Working with Transactions

	Using Prepared Statements
	Prepared Statements And Connections
	Avoiding Prepared Statements
	Prepared Statements in Transactions
	Parameter Placeholder Syntax

	Handling Errors
	Errors From Iterating Resultsets
	Errors From Closing Resultsets
	Errors From QueryRow()
	Identifying Specific Database Errors
	Handling Connection Errors

	Working with NULLs
	Working with Unknown Columns
	The connection pool
	Surprises, Antipatterns and Limitations
	Resource Exhaustion
	Large uint64 Values
	Connection State Mismatch
	Database-Specific Syntax
	Multiple Result Sets
	Invoking Stored Procedures
	Multiple Statement Support

	Database Encapsulation
	An Example
	Homework

	Working with Forms
	CSRF
	Input Validation

	Uploading files
	Templates
	Sub templating
	Homework

	Authentication
	Cookies
	Sessions
	Users

	Files
	Routing
	Middlewares
	Example

	Building an API
	JWT
	Making an API call
	Formatting a JSON document
	Testing API

	Writing an client
	Getting the token
	Error handling
	Example
	Advanced Usage

	Unit Testing
	Version Control Basics
	Using git
	Branching
	Remote

