

Machine Learning With Go

Implement Regression, Classification, Clustering, Time-series Models, Neural
Networks, and More using the Go Programming Language

Daniel Whitenack

BIRMINGHAM - MUMBAI

Machine Learning With Go
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 1210917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78588-210-4

www.packtpub.com

http://www.packtpub.com

Credits

Author

Daniel Whitenack

Copy Editor

Tasneem Fatehi

Reviewers

Niclas Jern

Richard Townsend

Project Coordinator

Manthan Patel

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Varsha Shetty
Indexer

Tejal Daruwale Soni

Content Development Editor

Snehal Kolte

Graphics

Tania Dutta

Technical Editor

Sagar Sawant

Production Coordinator

Deepika Naik

About the Author
Daniel Whitenack (@dwhitena), PhD, is a trained data scientist working with
Pachyderm (@pachydermIO). Daniel develops innovative, distributed data pipelines that
include predictive models, data visualizations, statistical analyses, and more. He has
spoken at conferences around the world (GopherCon, JuliaCon, PyCon, ODSC,
Spark Summit, and more), teaches data science/engineering at Purdue University
(@LifeAtPurdue), and, with Ardan Labs (@ardanlabs), maintains the Go kernel for
Jupyter, and is actively helping to organize contributions to various open source data
science projects.

I would like to thank my wife for her boundless patience and support while writing
this book.
I would also like to acknowledge the many wonderful gophers and data scientists
that have mentored me, collaborated with me, and encouraged me. These include
Bill Kennedy, Brendan Tracey, Sebastien Binet, Alex Sanchez, the whole team at
Pachyderm (including Joey Zwicker and Joe Doliner), Chris Tava, Mat Ryer, David
Hernandez, Xuanyi Chew, the team at Minio (including Anand Babu Periasamy and
Garima Kapoor), and many more!

Soli Deo Gloria

About the Reviewers
Niclas Jern has been using Go to solve interesting problems at scale since Go 1.0.
He graduated from Abo Akademi University with an MSc in computer engineering,
majoring in software engineering.

He enjoys using Go and other programming languages to tackle problems, especially
in the fields of data processing and machine learning. His hobbies include long
walks, lifting heavy metal objects at the gym, the occasional rant at
http://www.njern.co, and spending quality time with his wife and daughter.

Niclas currently works at Walkbase, a company he founded together with some of
his class mates from Abo Akademi university, where he leads the engineering team,
which is tackling the data processing problems that come with revolutionizing retail
analytics.

Richard Townsend became the top contributor to GoLearn in 2014 (and hence is
responsible for a lot of its odd behavior) while studying for his undergraduate degree
at Warwick University. Since then, he's worked for a top UK technology company
on everything from embedded systems to Android operating system frameworks, and
currently spends his time optimizing web browsers. He still spends a significant
amount of time on sentiment analysis (co-authoring two papers on it) and other
natural language processing tasks like part of speech tagging often using the latest
deep learning technologies.

http://www.njern.co

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at service@packtpub.com for more details. At www.PacktPub.com, you
can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt Get the most in-demand software skills with Mapt. Mapt
gives you full access to all Packt books and video courses, as well as industry-
leading tools to help you plan your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1785882104.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/1785882104

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Gathering and Organizing Data
Handling data - Gopher style
Best practices for gathering and organizing data with Go
CSV files

Reading in CSV data from a file
Handling unexpected fields
Handling unexpected types
Manipulating CSV data with data frames

JSON
Parsing JSON
JSON output

SQL-like databases
Connecting to an SQL database
Querying the database
Modifying the database

Caching
Caching data in memory
Caching data locally on disk

Data versioning
Pachyderm jargon
Deploying/installing Pachyderm
Creating data repositories for data versioning
Putting data into data repositories
Getting data out of versioned data repositories

References
Summary

2. Matrices, Probability, and Statistics
Matrices and vectors

Vectors
Vector operations
Matrices
Matrix operations

Statistics
Distributions
Statistical measures

Measures of central tendency
Measures of spread or dispersion

Visualizing distributions
Histograms
Box plots

Probability
Random variables
Probability measures
Independent and conditional probability
Hypothesis testing

Test statistics
Calculating p-values

References
Summary

3. Evaluation and Validation
Evaluation

Continuous metrics
Categorical metrics

Individual evaluation metrics for categorical variables
Confusion matrices, AUC, and ROC

Validation
Training and test sets
Holdout set
Cross validation

References
Summary

4. Regression
Understanding regression model jargon
Linear regression

Overview of linear regression
Linear regression assumptions and pitfalls
Linear regression example

Profiling the data
Choosing our independent variable
Creating our training and test sets
Training our model
Evaluating the trained model

Multiple linear regression
Nonlinear and other types of regression
References
Summary

5. Classification
Understanding classification model jargon
Logistic regression

Overview of logistic regression
Logistic regression assumptions and pitfalls
Logistic regression example

Cleaning and profiling the data
Creating our training and test sets
Training and testing the logistic regression model

k-nearest neighbors
Overview of kNN
kNN assumptions and pitfalls
kNN example

Decision trees and random forests
Overview of decision trees and random forests
Decision tree and random forest assumptions and pitfalls
Decision tree example
Random forest example

Naive bayes
Overview of naive bayes and its big assumption
Naive bayes example

References
Summary

6. Clustering
Understanding clustering model jargon
Measuring Distance or Similarity
Evaluating clustering techniques

Internal clustering evaluation
External clustering evaluation

k-means clustering
Overview of k-means clustering
k-means assumptions and pitfalls

k-means clustering example
Profiling the data
Generating clusters with k-means
Evaluating the generated clusters

Other clustering techniques
References
Summary

7. Time Series and Anomaly Detection
Representing time series data in Go
Understanding time series jargon
Statistics related to time series

Autocorrelation
Partial autocorrelation

Auto-regressive models for forecasting
Auto-regressive model overview
Auto-regressive model assumptions and pitfalls
Auto-regressive model example

Transforming to a stationary series
Analyzing the ACF and choosing an AR order
Fitting and evaluating an AR(2) model

Auto-regressive moving averages and other time series models
Anomaly detection
References
Summary

8. Neural Networks and Deep Learning
Understanding neural net jargon
Building a simple neural network

Nodes in the network
Network architecture
Why do we expect this architecture to work?
Training our neural network

Utilizing the simple neural network
Training the neural network on real data
Evaluating the neural network

Introducing deep learning
What is a deep learning model?
Deep learning with Go

Setting up TensorFlow for use with Go
Retrieving and calling a pretrained TensorFlow model
Object detection using TensorFlow from Go

References

Summary
9. Deploying and Distributing Analyses and Models

Running models reliably on remote machines
A brief introduction to Docker and Docker jargon
Docker-izing a machine learning application

Docker-izing the model training and export
Docker-izing model predictions
Testing the Docker images locally
Running the Docker images on remote machines

Building a scalable and reproducible machine learning pipeline
Setting up a Pachyderm and Kubernetes cluster
Building a Pachyderm machine learning pipeline

Creating and filling the input repositories
Creating and running the processing stages

Updating pipelines and examining provenance
Scaling pipeline stages

References
Summary

10. Algorithms/Techniques Related to Machine Learning
Gradient descent
Entropy, information gain, and related methods
Backpropagation

Preface
It seems like machine learning and artificial intelligence is all the rage, both in hip
tech companies and increasingly in larger enterprise companies. Data scientists are
using machine learning to do everything from drive cars to draw cats. However, if
you follow the data science community, you have very likely seen something like
language wars unfold between Python and R users. These languages dominate the
machine learning conversation and often seem to be the only choices to integrate
machine learning in your organization. We will explore a third option in this book:
Go, the open source programming language created at Google.

The unique features of Go, along with the mindset of Go programmers, can help data
scientists overcome some of the common struggles that they encounter. In particular,
data scientists are (unfortunately) known to produce bad, inefficient, and
unmaintainable code. This book will address this issue, and will clearly show you
how to be productive in machine learning while also producing applications that
maintain a high level of integrity. It will also allow you to overcome the common
challenges of integrating analysis and machine learning code within an existing
engineering organization.

This book will develop readers into productive, innovative data analysts who
leverage Go to build robust and valuable applications. To this end, the book will
clearly introduce the technical, programming aspects of machine learning in Go, but
it will also guide the reader to understand sound workflows and philosophies for
real-world analysis.

What this book covers
Preparing and analyzing data in machine learning workflows:

Chapter 1, Gathering and Organizing Data, covers the gathering, organization,
and parsing of data to/from a local and remote sources. Once the reader is done
with this chapter, they will understand how to interact with data stored in
various places and in various formats, how to parse and clean that data, and how
to output that cleaned and parsed data.
Chapter 2, Matrices, Probability, and Statistics, covers the organization of data
into matrices and matrix operations. Once the reader is done with this material,
they will understand how to form matrices within Go programs and how to
utilize these matrices to perform various types of matrix operations. This
chapter also covers statistical measures and operations key to day-to-day data
analysis work. Once the reader is done with this chapter, they will understand
how to perform solid summary data analysis, describe and visualize
distributions, quantify hypotheses, and transform datasets with, for example,
dimensionality reductions.
Chapter 3, Evaluation and Validation, covers evaluation and validation, which
are key to measuring the performance of machine applications and ensuring that
they generalize. Once the reader is done with this chapter, they will understand
various metrics to gauge the performance of models (in other words, evaluate
the model) as well as various techniques to validate the model more generally.

Machine learning techniques:

Chapter 4, Regression, explains regression, a widely used technique to model
continuous variables and a basis for other models. Regression produces models
that are immediately interpretable. Thus, it can provide an excellent starting
point when introducing predictive capabilities in a organization.
Chapter 5, Classification, covers classification, a machine learning technique
distinct from regression in that the target variable is typically categorical or
labeled. For example, a classification model may classify emails into spam and
not spam categories or classify network traffic as fraudulent or not fraudulent.
Chapter 6, Clustering, covers clustering, an unsupervised machine learning
technique used to form groupings of samples. At the end of this chapter, readers
will be able to automatically form groupings of data points to better understand
their structure.

Chapter 7, Time Series and Anomaly Detection, introduces techniques utilized to
model time series data, such as stock prices, user events, and so on. After
reading this chapter, the reader will understand how to evaluate various terms in
a time series, build up a model of the time series, and detect anomalies in a time
series.

Taking machine learning to the next level:

Chapter 8, Neural Networks and Deep Learning, introduces techniques utilized to
perform regression, classification, and image processing with neural networks.
After reading this chapter, the reader will understand how and when to apply
these more complicated modeling techniques.
Chapter 9, Deploying and Distributing Analyses and Models, empowers readers
to deploy the models that we have developed throughout the class to production
environments and distribute processing over production scale data. This chapter
illustrates how both of these things can be done easily, without significant
modifications to the code utilized throughout the book.

The Appendix, Algorithms/Techniques Related to Machine Learning, can be
referenced throughout the text of the book and will provide information about
algorithms, optimizations, and techniques that are relevant to machine learning
workflows.

What you need for this book
To run the examples in this book and experiment with the techniques covered in the
book, you will generally need the following:

Access to a bash-like shell.
A complete Go environment including Go, an editor, and related default or
custom environment variables defined. You can, for example, follow this guide
at https://www.goinggo.net/2016/05/installing-go-and-your-workspace.html.
Various Go dependencies. These can be obtained as they are needed via go get
....

Then, to run the examples related to some of the advanced topics, such as data
pipelining and deep learning, you will need a few additional things:

An installation or deployment of Pachyderm. You can follow these docs to get
Pachyderm up and running locally or in the cloud, http://pachyderm.readthedocs.io/e
n/latest/.
A working Docker installation (https://www.docker.com/community-
edition#/download).
An installation of TensorFlow. To install TensorFlow locally, you can follow
this guide at https://www.tensorflow.org/install/.

https://www.goinggo.net/2016/05/installing-go-and-your-workspace.html
http://pachyderm.readthedocs.io/en/latest/
https://www.docker.com/community-edition#/download
https://www.tensorflow.org/install/

Who this book is for
If you are one of the following, this book is going to be useful for you:

1. A Go programmer who is interested in machine learning and data analysis
2. A data scientist / analyst / engineer who has interest in Go and wants to

integrate it in their machine learning and data analysis workflow

Conventions
Many Go code snippets will not include package main and func main() {}. It is assumed
that Go code snippets are compiled within this necessary structure, unless otherwise
noted. It will also be assumed throughout the book that code example are compiled
in a directory call myprogram and thus compiled to a myprogram binary. The reader will
recognize, however, that the code could be copied to any folder in your GOPATH/src
directory and/or compiled to a binary named according to the reader's preference.

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning. Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown
as follows: "The next lines of code read the link and assign it to the to the
BeautifulSoup function." A block of code is set as follows:

#import packages into the project
from bs4 import BeautifulSoup
from urllib.request import urlopen
import pandas as pd

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 [default] exten => s,1,Dial(Zap/1|30)
 exten => s,2,Voicemail(u100)
 exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

C:\Python34\Scripts> pip install -upgrade pip
C:\Python34\Scripts> pip install pandas

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In order
to download new modules, we will go to Files | Settings | Project Name | Project
Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book--what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
https://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the original code files from the date of publication by visiting
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your email address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublish
ing/Machine-Learning-With-Go. We also have other code bundles from our rich catalog
of books and videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Machine-Learning-With-Go
https://github.com/PacktPublishing/

Downloading the color images of this
book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www.pac
ktpub.com/sites/default/files/downloads/MachineLearningWithGo_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MachineLearningWithGo_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books-maybe a mistake in the text or
the code-we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.com/sub
mit-errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title. To view the previously submitted
errata, go to https://www.packtpub.com/books/content/support and enter the name of the
book in the search field. The required information will appear under the Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy. Please contact us at copyright@packtpub.com with a link to the
suspected pirated material. We appreciate your help in protecting our authors and our
ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Gathering and Organizing Data
Polls have shown that 90% or more of a data scientist's time is spent gathering data,
organizing it, and cleaning it, not training/tuning their sophisticated machine learning
models. Why is this? Isn't the machine learning part the fun part? Why do we need to
care so much about the state of our data? Firstly, without data, our machine learning
models can't learn. This might seem obvious. However, we need to realize that part
of the strength of the models that we build is in the data that we feed them. As the
common phrase goes, garbage in, garbage out. We need to make sure that we gather
relevant, clean data to power our machine learning models, such that they can
operate on the data as expected and produce valuable results.

Not all types of data are appropriate when using certain types of models. For
example, certain models do not perform well when we have high-dimensional data
(for example, text data), and other models assume that variables are normally
distributed, which is definitely not always the case. Thus, we must take care in
gathering data that fits our use case and make sure that we understand how our data
and models will interact.

Another reason why gathering and organizing data consumes so much of a data
scientist's time is that data is often messy and hard to aggregate. In most
organizations, data might be housed in various systems and formats, and have
various access control policies. We can't assume that supplying a training set to our
model will be as easy as specifying a file path; this is often not the case.

To form a training/test set or to supply variables to a model for predictions, we will
likely need to deal with various formats of data, such as CSV, JSON, database tables,
and so on, and we will likely need to transform individual values. Common
transformations include parsing date times, converting categorical data to numerical
data, normalizing values, and applying some function across values. However, we
can't always assume that all values of a certain variable are present or able to be
parsed in a similar manner.

Often data includes missing values, mixed types, or corrupted values. How we
handle each of these scenarios will directly influence the quality of the models that
we build, and thus, we have to be willing to carefully gather, organize, and
understand our data.

Even though much of this book will be focused on various modeling techniques, you
should always consider data gathering, parsing, and organization as a (or maybe the)
key component of a successful data science project. If this part of your project is not
carefully developed with a high level of integrity, you are setting yourself up for
trouble in the long run.

Handling data - Gopher style
In comparison to many other languages that are used for data science/analysis, Go
provides a very strong foundation for data manipulation and parsing. Although other
languages (for example, Python or R) may allow users to quickly explore data
interactively, they often promote integrity-breaking convenience, that is, dynamic
and interactive data exploration often results in code that behaves strangely when
applied more generally.

Take, for instance, this simple CSV file:

1,blah1
2,blah2
3,blah3

It is true that, very quickly, we can write some Python code to parse this CSV and
output the maximum value from the integer column without even knowing what
types are in the data:

import pandas as pd

Define column names.
cols = [
 'integercolumn',
 'stringcolumn'
]

Read in the CSV with pandas.
data = pd.read_csv('myfile.csv', names=cols)

Print out the maximum value in the integer column.
print(data['integercolumn'].max())

This simple program will print the correct result:

$ python myprogram.py
3

We now remove one of the integer values to produce a missing value, as shown here:

1,blah1
2,blah2
,blah3

The Python program consequently has a complete breakdown in integrity;
specifically, the program still runs, doesn't tell us that anything went differently, still

produces a value, and produces a value of a different type:

$ python myprogram.py
2.0

This is unacceptable. All but one of our integer values could disappear, and we
wouldn't have any insight into the changes. This could produce profound changes in
our modeling, but they would be extremely hard to track down. Generally, when we
opt for the conveniences of dynamic types and abstraction, we are accepting this sort
of variability in behavior.

The important thing here is not that you cannot handle such behavior
in Python, because Python, experts will quickly recognize that you can
properly handle such behavior. The point is that such conveniences do
not promote integrity by default, and thus, it is very easy to shoot
yourself in the foot.

On the other hand, we can leverage Go's static typing and explicit error handling to
ensure that our data is parsed as expected. In this small example, we can also write
some Go code, without too much trouble, to parse our CSV (don't worry about the
details right now):

// Open the CSV.
f, err := os.Open("myfile.csv")
if err != nil {
 log.Fatal(err)
}

// Read in the CSV records.
r := csv.NewReader(f)
records, err := r.ReadAll()
if err != nil {
 log.Fatal(err)
}

// Get the maximum value in the integer column.
var intMax int
for _, record := range records {

 // Parse the integer value.
 intVal, err := strconv.Atoi(record[0])
 if err != nil {
 log.Fatal(err)
 }

 // Replace the maximum value if appropriate.
 if intVal > intMax {
 intMax = intVal
 }
}

// Print the maximum value.
fmt.Println(intMax)

This will produce the same correct result for the CSV file with all the integer values
present:

$ go build
$./myprogram
3

But in contrast to our previous Python code, our Go code will inform us when we
encounter something that we don't expect in the input CSV (for the case when we
remove the value 3):

$ go build
$./myprogram
2017/04/29 12:29:45 strconv.ParseInt: parsing "": invalid syntax

Here, we have maintained integrity, and we can ensure that we can handle missing
values in a manner that is appropriate for our use case.

Best practices for gathering and
organizing data with Go
As you can see in the preceding section, Go itself provides us with an opportunity to
maintain high levels of integrity in our data gathering, parsing, and organization. We
want to ensure that we leverage Go's unique properties whenever we are preparing
our data for machine learning workflows.

Generally, Go data scientists/analysts should follow the following best practices
when gathering and organizing data. These best practices are meant to help you
maintain integrity in your applications, and been able you to reproduce any analysis:

1. Check for and enforce expected types: This might seem obvious, but it is too
often overlooked when using dynamically typed languages. Although it is
slightly verbose, explicitly parsing data into expected types and handling related
errors can save you big headaches down the road.

2. Standardize and simplify your data ingress/egress: There are many third-
party packages for handling certain types of data or interactions with certain
sources of data (some of which we will cover in this book). However, if you
standardize the ways you are interacting with data sources, particularly centered
around the use of stdlib, you can develop predictable patterns and maintain
consistency within your team. A good example of this is a choice to utilize
database/sql for database interactions rather than using various third-party APIs
and DSLs.

3. Version your data: Machine learning models produce extremely different
results depending on the training data you use, your choice of parameters, and
input data. Thus, it is impossible to reproduce results without versioning both
your code and data. We will discuss the appropriate techniques for data
versioning later in this chapter.

If you start to stray from these general principles, you should stop
immediately. You are likely to sacrifice integrity for the sake of
convenience, which is a dangerous road. We will let these principles
guide us through the book and as we consider various data
formats/sources in the following section.

CSV files
CSV files might not be a go-to format for big data, but as a data scientist or
developer working in machine learning, you are sure to encounter this format. You
might need a mapping of zip codes to latitude/longitude and find this as a CSV file
on the internet, or you may be given sales figures from your sales team in a CSV
format. In any event, we need to understand how to parse these files.

The main package that we will utilize in parsing CSV files is encoding/csv from Go's
standard library. However, we will also discuss a couple of packages that allow us to
quickly manipulate or transform CSV data--github.com/kniren/gota/dataframe and go-
hep.org/x/hep/csvutil.

Reading in CSV data from a file
Let's consider a simple CSV file, which we will return to later, named iris.csv
(available here: https://archive.ics.uci.edu/ml/datasets/iris). This CSV file includes four
float columns of flower measurements and a string column with the corresponding
flower species:

$ head iris.csv
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa

With encoding/csv imported, we first open the CSV file and create a CSV reader
value:

// Open the iris dataset file.
f, err := os.Open("../data/iris.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)

Then we can read in all of the records (corresponding to rows) of the CSV file.
These records are imported as [][]string:

// Assume we don't know the number of fields per line. By setting
// FieldsPerRecord negative, each row may have a variable
// number of fields.
reader.FieldsPerRecord = -1

// Read in all of the CSV records.
rawCSVData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

We can also read in records one at a time in an infinite loop. Just make sure that you
check for the end of the file (io.EOF) so that the loop ends after reading in all of your

https://archive.ics.uci.edu/ml/datasets/iris

data:

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)
reader.FieldsPerRecord = -1

// rawCSVData will hold our successfully parsed rows.
var rawCSVData [][]string

// Read in the records one by one.
for {

 // Read in a row. Check if we are at the end of the file.
 record, err := reader.Read()
 if err == io.EOF {
 break
 }

 // Append the record to our dataset.
 rawCSVData = append(rawCSVData, record)
}

If your CSV file is not delimited by commas and/or if your CSV file
contains commented rows, you can utilize the csv.Reader.Comma and
csv.Reader.Comment fields to properly handle uniquely formatted CSV
files. In cases where the fields in your CSV file are single-quoted, you
may need to add in a helper function to trim the single quotes and
parse the values.

Handling unexpected fields
The preceding methods work fine with clean CSV data, but, in general, we don't
encounter clean data. We have to parse messy data. For example, you might find
unexpected fields or numbers of fields in your CSV records. This is why
reader.FieldsPerRecord exists. This field of the reader value lets us easily handle
messy data, as follows:

4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,blah,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa

This version of the iris.csv file has an extra field in one of the rows. We know that
each record should have five fields, so let's set our reader.FieldsPerRecord value to 5:

// We should have 5 fields per line. By setting
// FieldsPerRecord to 5, we can validate that each of the
// rows in our CSV has the correct number of fields.
reader.FieldsPerRecord = 5

Then as we are reading in records from the CSV file, we can check for unexpected
fields and maintain the integrity of our data:

// rawCSVData will hold our successfully parsed rows.
var rawCSVData [][]string

// Read in the records looking for unexpected numbers of fields.
for {

 // Read in a row. Check if we are at the end of the file.
 record, err := reader.Read()
 if err == io.EOF {
 break
 }

 // If we had a parsing error, log the error and move on.
 if err != nil {
 log.Println(err)
 continue
 }

 // Append the record to our dataset, if it has the expected
 // number of fields.
 rawCSVData = append(rawCSVData, record)
}

Here, we have chosen to handle the error by logging the error, and we only collect
successfully parsed records into rawCSVData. The reader will note that this error could
be handled in many different ways. The important thing is that we are forcing
ourselves to check for an expected property of the data and increasing the integrity of
our application.

Handling unexpected types
We just saw that CSV data is read into Go as [][]string. However, Go is statically
typed, which allows us to enforce strict checks for each of the CSV fields. We can do
this as we parse each field for further processing. Consider some messy data that has
random fields that don't match the type of the other values in a column:

4.6,3.1,1.5,0.2,Iris-setosa
5.0,string,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,string,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa

To check the types of the fields in our CSV records, let's create a struct variable to
hold successfully parsed values:

// CSVRecord contains a successfully parsed row of the CSV file.
type CSVRecord struct {
 SepalLength float64
 SepalWidth float64
 PetalLength float64
 PetalWidth float64
 Species string
 ParseError error
}

Then, before we loop over the records, let's initialize a slice of these values:

// Create a slice value that will hold all of the successfully parsed
// records from the CSV.
var csvData []CSVRecord

Now as we loop over the records, we can parse into the relevant type for that record,
catch any errors, and log as needed:

// Read in the records looking for unexpected types.
for {

 // Read in a row. Check if we are at the end of the file.

 record, err := reader.Read()
 if err == io.EOF {
 break
 }

 // Create a CSVRecord value for the row.
 var csvRecord CSVRecord

 // Parse each of the values in the record based on an expected type.
 for idx, value := range record {

 // Parse the value in the record as a string for the string column.
 if idx == 4 {

 // Validate that the value is not an empty string. If the
 // value is an empty string break the parsing loop.
 if value == "" {
 log.Printf("Unexpected type in column %d\n", idx)
 csvRecord.ParseError = fmt.Errorf("Empty string value")
 break
 }

 // Add the string value to the CSVRecord.
 csvRecord.Species = value
 continue
 }

 // Otherwise, parse the value in the record as a float64.
 var floatValue float64

 // If the value can not be parsed as a float, log and break the
 // parsing loop.
 if floatValue, err = strconv.ParseFloat(value, 64); err != nil {
 log.Printf("Unexpected type in column %d\n", idx)
 csvRecord.ParseError = fmt.Errorf("Could not parse float")
 break
 }

 // Add the float value to the respective field in the CSVRecord.
 switch idx {
 case 0:
 csvRecord.SepalLength = floatValue
 case 1:
 csvRecord.SepalWidth = floatValue
 case 2:
 csvRecord.PetalLength = floatValue
 case 3:
 csvRecord.PetalWidth = floatValue
 }
 }

 // Append successfully parsed records to the slice defined above.
 if csvRecord.ParseError == nil {
 csvData = append(csvData, csvRecord)
 }
}

Manipulating CSV data with data
frames
As you can see, manually parsing many different fields and performing row-by-row
operations can be rather verbose and tedious. This is definitely not an excuse to
increase complexity and import a bunch of non standard functionalities. You should
still default to the use of encoding/csv in most cases.

However, manipulation of data frames has proven to be a successful and somewhat
standardized way (in the data science community) of dealing with tabular data. Thus,
in some cases, it is worth employing some third-party functionality to manipulate
tabular data, such as CSV data. For example, data frames and the corresponding
functionality can be very useful when you are trying to filter, subset, and select
portions of tabular datasets. In this section, we will introduce
github.com/kniren/gota/dataframe, a wonderful dataframe package for Go:

import "github.com/kniren/gota/dataframe"

To create a data frame from a CSV file, we open a file with os.Open() and then supply
the returned pointer to the dataframe.ReadCSV() function:

// Open the CSV file.
irisFile, err := os.Open("iris.csv")
if err != nil {
 log.Fatal(err)
}
defer irisFile.Close()

// Create a dataframe from the CSV file.
// The types of the columns will be inferred.
irisDF := dataframe.ReadCSV(irisFile)

// As a sanity check, display the records to stdout.
// Gota will format the dataframe for pretty printing.
fmt.Println(irisDF)

If we compile and run this Go program, we will see a nice, pretty-printed version of
our data with the types that were inferred during parsing:

$ go build
$./myprogram
[150x5] DataFrame

 sepal_length sepal_width petal_length petal_width species

 0: 5.100000 3.500000 1.400000 0.200000 Iris-setosa
 1: 4.900000 3.000000 1.400000 0.200000 Iris-setosa
 2: 4.700000 3.200000 1.300000 0.200000 Iris-setosa
 3: 4.600000 3.100000 1.500000 0.200000 Iris-setosa
 4: 5.000000 3.600000 1.400000 0.200000 Iris-setosa
 5: 5.400000 3.900000 1.700000 0.400000 Iris-setosa
 6: 4.600000 3.400000 1.400000 0.300000 Iris-setosa
 7: 5.000000 3.400000 1.500000 0.200000 Iris-setosa
 8: 4.400000 2.900000 1.400000 0.200000 Iris-setosa
 9: 4.900000 3.100000 1.500000 0.100000 Iris-setosa

 <float> <float> <float> <float> <string>

Once we have the data parsed into a dataframe, we can filter, subset, and select our
data easily:

// Create a filter for the dataframe.
filter := dataframe.F{
 Colname: "species",
 Comparator: "==",
 Comparando: "Iris-versicolor",
}

// Filter the dataframe to see only the rows where
// the iris species is "Iris-versicolor".
versicolorDF := irisDF.Filter(filter)
if versicolorDF.Err != nil {
 log.Fatal(versicolorDF.Err)
}

// Filter the dataframe again, but only select out the
// sepal_width and species columns.
versicolorDF = irisDF.Filter(filter).Select([]string{"sepal_width", "species"})

// Filter and select the dataframe again, but only display
// the first three results.
versicolorDF = irisDF.Filter(filter).Select([]string{"sepal_width", "species"}).Subset([]int{0, 1, 2})

This is really only scratching the surface of the github.com/kniren/gota/dataframe
package. You can merge datasets, output to other formats, and even process JSON
data. For more information about this package, you should visit the auto generated
GoDocs at https://godoc.org/github.com/kniren/gota/dataframe, which is good practice, in
general, for any packages we discuss in the book.

https://godoc.org/github.com/kniren/gota/dataframe

JSON
In a world in which the majority of data is accessed via the web, and most
engineering organizations implement some number of microservices, we are going to
encounter data in JSON format fairly frequently. We may only need to deal with it
when pulling some random data from an API, or it might actually be the primary
data format that drives our analytics and machine learning workflows.

Typically, JSON is used when ease of use is the primary goal of data interchange.
Since JSON is human readable, it is easy to debug if something breaks. Remember
that we want to maintain the integrity of our data handling as we process data with
Go, and part of that process is ensuring that, when possible, our data is interpretable
and readable. JSON turns out to be very useful in achieving these goals (which is
why it is also used for logging, in many cases).

Go offers really great JSON functionality in its standard library with encoding/json.
We will utilize this standard library functionality throughout the book.

Parsing JSON
To understand how to parse (that is, unmarshal) JSON data in Go, we will be using
some data from the Citi Bike API (https://www.citibikenyc.com/system-data), a bike-
sharing service operating in New York City. Citi Bike provides frequently updated
operational information about its network of bike sharing stations in JSON format at
https://gbfs.citibikenyc.com/gbfs/en/station_status.json:

{
 "last_updated": 1495252868,
 "ttl": 10,
 "data": {
 "stations": [
 {
 "station_id": "72",
 "num_bikes_available": 10,
 "num_bikes_disabled": 3,
 "num_docks_available": 26,
 "num_docks_disabled": 0,
 "is_installed": 1,
 "is_renting": 1,
 "is_returning": 1,
 "last_reported": 1495249679,
 "eightd_has_available_keys": false
 },
 {
 "station_id": "79",
 "num_bikes_available": 0,
 "num_bikes_disabled": 0,
 "num_docks_available": 33,
 "num_docks_disabled": 0,
 "is_installed": 1,
 "is_renting": 1,
 "is_returning": 1,
 "last_reported": 1495248017,
 "eightd_has_available_keys": false
 },

 etc...

 {
 "station_id": "3464",
 "num_bikes_available": 1,
 "num_bikes_disabled": 3,
 "num_docks_available": 53,
 "num_docks_disabled": 0,
 "is_installed": 1,
 "is_renting": 1,
 "is_returning": 1,
 "last_reported": 1495250340,
 "eightd_has_available_keys": false
 }
]

https://www.citibikenyc.com/system-data
https://gbfs.citibikenyc.com/gbfs/en/station_status.json

 }
}

To parse the import and this type of data in Go, we first need to import encoding/json
(along with a couple of other things from a standard library, such as net/http,
because we are going to pull this data off of the previously mentioned website). We
will also define struct that mimics the structure of the JSON shown in the preceding
code:

import (
 "encoding/json"
 "fmt"
 "io/ioutil"
 "log"
 "net/http"
)

// citiBikeURL provides the station statuses of CitiBike bike sharing stations.
const citiBikeURL = "https://gbfs.citibikenyc.com/gbfs/en/station_status.json"

// stationData is used to unmarshal the JSON document returned form citiBikeURL.
type stationData struct {
 LastUpdated int `json:"last_updated"`
 TTL int `json:"ttl"`
 Data struct {
 Stations []station `json:"stations"`
 } `json:"data"`
}

// station is used to unmarshal each of the station documents in stationData.
type station struct {
 ID string `json:"station_id"`
 NumBikesAvailable int `json:"num_bikes_available"`
 NumBikesDisabled int `json:"num_bike_disabled"`
 NumDocksAvailable int `json:"num_docks_available"`
 NumDocksDisabled int `json:"num_docks_disabled"`
 IsInstalled int `json:"is_installed"`
 IsRenting int `json:"is_renting"`
 IsReturning int `json:"is_returning"`
 LastReported int `json:"last_reported"`
 HasAvailableKeys bool `json:"eightd_has_available_keys"`
}

Note a couple of things here: (i) we have followed Go idioms by avoiding the struct
field name with underscores, but (ii) we have utilized the json struct tags to label the
struct fields with the corresponding expected fields in the JSON data.

Note, to properly parse JSON data, the struct fields need to be exported
fields. That is, the fields need to begin with a capital letter.
encoding/json does cannot view fields using reflect unless they are
exported.

Now we can get the JSON data from the URL and unmarshal it into a new

stationData value. This will produce a struct variable with the respective fields filled
with the data in the tagged JSON data fields. We can check it by printing out some
data associated with one of the stations:

// Get the JSON response from the URL.
response, err := http.Get(citiBikeURL)
if err != nil {
 log.Fatal(err)
}
defer response.Body.Close()

// Read the body of the response into []byte.
body, err := ioutil.ReadAll(response.Body)
if err != nil {
 log.Fatal(err)
}

// Declare a variable of type stationData.
var sd stationData

// Unmarshal the JSON data into the variable.
if err := json.Unmarshal(body, &sd); err != nil {
 log.Fatal(err)
}

// Print the first station.
fmt.Printf("%+v\n\n", sd.Data.Stations[0])

When we run this, we can see that our struct contains the parsed data from the URL:

$ go build
$./myprogram
{ID:72 NumBikesAvailable:11 NumBikesDisabled:0 NumDocksAvailable:25 NumDocksDisabled:0 IsInstalled:1 IsRenting:1 IsReturning:1 LastReported:1495252934 HasAvailableKeys:false}

JSON output
Now let's say that we have the Citi Bike station data in our stationData struct value
and we want to save that data out to a file. We can do this with json.marshal:

// Marshal the data.
outputData, err := json.Marshal(sd)
if err != nil {
 log.Fatal(err)
}

// Save the marshalled data to a file.
if err := ioutil.WriteFile("citibike.json", outputData, 0644); err != nil {
 log.Fatal(err)
}

SQL-like databases
Although there is a good bit of hype around interesting NoSQL databases and key-
value stores, SQL-like databases are still ubiquitous. Every data scientist will, at
some point, be processing data from an SQL-like database, such as Postgres,
MySQL, or SQLite.

For example, we may be required to query one or more tables in a Postgres database
to generate a set of features for model training. After using that model to make
predictions or identify anomalies, we may send results to another database table that
drives a dashboard or other reporting tool.

Go, of course, interacts nicely with all the popular data stores, such as SQL, NoSQL,
key-value, and so on, but here, we will focus on SQL-like interactions. We will
utilize database/sql for these interactions throughout the book.

Connecting to an SQL database
The first thing we need do before connecting to an SQL-like database is identify the
particular database that we will be interacting with and import a corresponding
driver. In the following examples, we will be connecting to a Postgres database and
will utilize the github.com/lib/pq database driver for database/sql. This driver can be
loaded via an empty import (with a corresponding comment):

import (
 "database/sql"
 "fmt"
 "log"
 "os"

 // pq is the library that allows us to connect
 // to postgres with databases/sql.
 _ "github.com/lib/pq"
)

Now let's assume that you have exported the Postgres connection string to an
environmental variable PGURL. We can easily create an sql.DB value for our connection
via the follow code:

// Get the postgres connection URL. I have it stored in
// an environmental variable.
pgURL := os.Getenv("PGURL")
if pgURL == "" {
 log.Fatal("PGURL empty")
}

// Open a database value. Specify the postgres driver
// for databases/sql.
db, err := sql.Open("postgres", pgURL)
if err != nil {
 log.Fatal(err)
}
defer db.Close()

Note that we need to defer the close method on this value. Also, note that creating
this value does not mean that you have made a successful connection to the database.
This is merely a value used by database/sql to connect to the database when triggered
to do so by certain operations (such as a query).

To ensure that we can make a successful connection to the database, we can use the
Ping method:

if err := db.Ping(); err != nil {

 log.Fatal(err)
}

Querying the database
Now that we know how to connect to the database, let's see how we can get data out
of the database. We won't cover the specifics of SQL queries and statements in this
book. If you are not familiar with SQL, I would highly recommend that you learn
how to query, insert, and so on, but for our purposes here, you should know that
there are basically two types of operations we want to perform as related to SQL
databases:

A Query operation selects, groups, or aggregates data in the database and returns
rows of data to us
An Exec operation updates, inserts, or otherwise modifies the state of the
database without an expectation that portions of the data stored in the database
should be returned

As you might expect, to get data out of our database, we will use a Query operation.
To do this, we need to query the database with an SQL statement string. For
example, imagine we have a database storing a bunch of iris flower measurements
(petal length, petal width, and so on), we could query some of that data related to a
particular iris species as follows:

// Query the database.
rows, err := db.Query(`
 SELECT
 sepal_length as sLength,
 sepal_width as sWidth,
 petal_length as pLength,
 petal_width as pWidth
 FROM iris
 WHERE species = $1`, "Iris-setosa")
if err != nil {
 log.Fatal(err)
}
defer rows.Close()

Note that this returns a pointer to an sql.Rows value, and we need to defer the closing
of this rows value. Then we can loop over our rows and parse the data into values of
expected type. We utilize the Scan method on rows to parse out the columns returned
by the SQL query and print them to standard out:

// Iterate over the rows, sending the results to
// standard out.
for rows.Next() {

 var (
 sLength float64
 sWidth float64
 pLength float64
 pWidth float64
)

 if err := rows.Scan(&sLength, &sWidth, &pLength, &pWidth); err != nil {
 log.Fatal(err)
 }

 fmt.Printf("%.2f, %.2f, %.2f, %.2f\n", sLength, sWidth, pLength, pWidth)
}

Finally, we need to check for any errors that might have occurred while processing
our rows. We want to maintain the integrity of our data handling, and we cannot
assume that we looped over all the rows without encountering an error:

// Check for errors after we are done iterating over rows.
if err := rows.Err(); err != nil {
 log.Fatal(err)
}

Modifying the database
As mentioned earlier, there is another flavor of interaction with the database called
Exec. With these types of statements, we are concerned with updating, adding to, or
otherwise modifying the state of one or more tables in the database. We use the same
type of database connection, but instead of calling db.Query, we will call db.Exec.

For example, let's say we want to update some of the values in our iris database
table:

// Update some values.
res, err := db.Exec("UPDATE iris SET species = 'setosa' WHERE species = 'Iris-setosa'")
if err != nil {
 log.Fatal(err)
}

But how do we know whether we were successful and changed something? Well, the
res function returned here allows us to see how many rows of our table were affected
by our update:

// See how many rows where updated.
rowCount, err := res.RowsAffected()
if err != nil {
 log.Fatal(err)
}

// Output the number of rows to standard out.
log.Printf("affected = %d\n", rowCount)

Caching
Sometimes, our machine learning algorithms will be trained by and/or given input
for prediction via data from external sources (for example, APIs), that is, data that
isn't local to the application running our modeling or analysis. Further, we might
have various sets of data that are being accessed frequently, may be accessed again
soon, or may need to be made available while the application is running.

In at least some of these cases, it might make sense to cache data in memory or
embed the data locally where the application is running. For example, if you are
reaching out to a government API (typically having high latency) for census data
frequently, you may consider maintaining a local or in-memory cache of the census
data being used so that you can avoid constantly reaching out to the API.

Caching data in memory
To cache a series of values in memory, we will use github.com/patrickmn/go-cache.
With this package, we can create an in-memory cache of keys and corresponding
values. We can even specify things, such as the time to live, in the cache for specific
key-value pairs.

To create a new in-memory cache and set a key-value pair in the cache, we do the
following:

// Create a cache with a default expiration time of 5 minutes, and which
// purges expired items every 30 seconds
c := cache.New(5*time.Minute, 30*time.Second)

// Put a key and value into the cache.
c.Set("mykey", "myvalue", cache.DefaultExpiration)

To then retrieve the value for mykey out of the cache, we just need to use the Get
method:

v, found := c.Get("mykey")
if found {
 fmt.Printf("key: mykey, value: %s\n", v)
}

Caching data locally on disk
The caching we just saw is in memory. That is, the cached data exists and is
accessible while your application is running, but as soon as your application exits,
your data disappears. In some cases, you may want your cached data to stick around
when your application restarts or exits. You may also want to back up your cache
such that you don't have to start applications from scratch without a cache of relevant
data.

In these scenarios, you may consider using a local, embedded cache, such as
github.com/boltdb/bolt. BoltDB, as it is referred to, is a very popular project for these
sorts of applications, and basically consists of a local key-value store. To initialize
one of these local key-value stores, do the following:

// Open an embedded.db data file in your current directory.
// It will be created if it doesn't exist.
db, err := bolt.Open("embedded.db", 0600, nil)
if err != nil {
 log.Fatal(err)
}
defer db.Close()

// Create a "bucket" in the boltdb file for our data.
if err := db.Update(func(tx *bolt.Tx) error {
 _, err := tx.CreateBucket([]byte("MyBucket"))
 if err != nil {
 return fmt.Errorf("create bucket: %s", err)
 }
 return nil
}); err != nil {
 log.Fatal(err)
}

You can, of course, have multiple different buckets of data in your BoltDB and use a
filename other than embedded.db.

Next, let's say you had a map of string values in memory that you need to cache in
BoltDB. To do this, you would range over the keys and values in the map, updating
your BoltDB:

// Put the map keys and values into the BoltDB file.
if err := db.Update(func(tx *bolt.Tx) error {
 b := tx.Bucket([]byte("MyBucket"))
 err := b.Put([]byte("mykey"), []byte("myvalue"))
 return err
}); err != nil {
 log.Fatal(err)

}

Then, to get values out of BoltDB, you can view your data:

// Output the keys and values in the embedded
// BoltDB file to standard out.
if err := db.View(func(tx *bolt.Tx) error {
 b := tx.Bucket([]byte("MyBucket"))
 c := b.Cursor()
 for k, v := c.First(); k != nil; k, v = c.Next() {
 fmt.Printf("key: %s, value: %s\n", k, v)
 }
 return nil
}); err != nil {
 log.Fatal(err)
}

Data versioning
As mentioned, machine learning models produce extremely different results
depending on the training data you use, the choices of parameters, and the input data.
It is essential to be able to reproduce results for collaborative, creative, and
compliance reasons:

Collaboration: Despite what you see on social media, there are no data science
and machine learning unicorns (that is, people with knowledge and capabilities
in every area of data science and machine learning). We need to have our
colleagues' reviews and improve on our work, and this is impossible if they
aren't able to reproduce our model results and analyses.
Creativity: I don't know about you, but I have trouble remembering even what
I did yesterday. We can't trust ourselves to always remember our reasoning and
logic, especially when we are dealing with machine learning workflows. We
need to track exactly what data we are using, what results we created, and how
we created them. This is the only way we will be able to continually improve
our models and techniques.
Compliance: Finally, we may not have a choice regarding data versioning and
reproducibility in machine learning very soon. Laws are being passed around
the world (for example, the General Data Protection Regulation (GDPR) in
the European Union) that give users a right to an explanation for algorithmically
made decisions. We simply cannot hope to comply with these rulings if we
don't have a robust way of tracking what data we are processing and what
results we are producing.

There are multiple open source data versioning projects. Some of these are focused
on security and peer-to-peer distributed storage of data. Others are focused on data
science workflows. In this book, we will focus on and utilize Pachyderm (http://pachyd
erm.io/), an open source framework for data versioning and data pipelining. Some of
the reasons for this will be clear later in the book when we talk about production
deploys and managing ML pipelines. For now, I will just summarize some of the
features of Pachyderm that make it an attractive choice for data versioning in Go-
based (and other) ML projects:

It has an convenient Go client, github.com/pachyderm/pachyderm/src/client
The ability to version any type and format of data
A flexible object store backing for the versioned data

http://pachyderm.io/

Integration with a data pipelining system for driving versioned ML workflows

Pachyderm jargon
Think about versioning data in Pachyderm kind of like versioning code in Git. The
primitives are similar:

Repositories: These are versioned collections of data, similar to having
versioned collections of code in Git repositories
Commits: Data is versioned in Pachyderm by making commits of that data into
data repositories
Branches: These lightweight points to certain commits or sets of commits (for
example, master points to the latest HEAD commit)
Files: Data is versioned at the file level in Pachyderm, and Pachyderm
automatically employs strategies, such as de-duplication, to keep your
versioned data space efficient

Even though versioning data with Pachyderm feels similar to
versioning code with Git, there are some major differences. For
example, merging data doesn't exactly make sense. If there are merge
conflicts on petabytes of data, no human could resolve these.
Furthermore, the Git protocol would not be space efficient in general
for large sets of data. Pachyderm uses its own internal logic to perform
the versioning and work with versioned data, and the logic is both
space efficient and processing efficient in terms of caching.

Deploying/installing Pachyderm
We will be using Pachyderm in various other places in the book to both version data
and create distributed ML workflows. Pachyderm itself is an app that runs on top of
Kubernetes (https://kubernetes.io/), and is backed by an object store of your choice. For
the purposes of this book, development, and experimentation, you can easily install
and run Pachyderm locally. It should take 5-10 minutes to install and doesn't require
much effort. The instructions for the local installation can be found in the Pachyderm
documentation at http://docs.pachyderm.io.

When you are ready to run your workflows in production or your deploy model, you
can easily deploy a production-ready Pachyderm cluster that will behave the same
exact way as your local installation. Pachyderm can be deployed to any cloud, or
even on premises.

As mentioned, Pachyderm is an open source project and has an active group of users.
If you have questions or need help, you can join the public Pachyderm Slack channel
by visiting http://slack.pachyderm.io/. The active Pachyderm users and the Pachyderm
team itself will be able to respond very quickly to your questions there.

https://kubernetes.io/
http://docs.pachyderm.io
http://slack.pachyderm.io/

Creating data repositories for data
versioning
If you followed the local installation of Pachyderm specified in the Pachyderm
documentation, you should have the following:

Kubernetes running in a Minikube VM on your machine
The pachctl command line tool installed and connected to your Pachyderm
cluster

Of course, if you have a production cluster running in a cloud, the following steps
still apply. Your pachctl would just be connected to the remote cluster.

We will be demonstrating data versioning functionality with the pachctl
Command-line Interface (CLI) tool below (which is a Go program).
However, as mentioned above, Pachyderm has a full-fledged Go client.
You can create repositories, commit data, and much more directly from
your Go programs. This functionality will be demonstrated later in
Chapter 9, Deploying and distributing Analyses and Models.

To create a repository of data called myrepo, you can run this code:

$ pachctl create-repo myrepo

You can then confirm that the repository exists with list-repo:

$ pachctl list-repo
NAME CREATED SIZE
myrepo 2 seconds ago 0 B

This myrepo repository is a collection of data that we have defined and is ready for
housing-versioned data. Right now, there is no data in the repository, because we
haven't put any data there yet.

Putting data into data repositories
Let's say that we have a simple text file:

$ cat blah.txt
This is an example file.

If this file is part of the data we are utilizing in our ML workflow, we should version
it. To version this file in our repository, myrepo, we just need to commit it into that
repository:

$ pachctl put-file myrepo master -c -f blah.txt

The -c flag specifies that we want Pachyderm to open a new commit, insert the file
we are referencing, and close the commit all in one shot. The -f flag specifies that we
are providing a file.

Note that we are committing a single file to the master branch of a single repository
here. However, the Pachyderm API is incredibly flexible. We can commit, delete, or
otherwise modify many versioned files in a single commit or over multiple commits.
Further, these files could be versioned via a URL, object store link, database dump,
and so on.

As a sanity check, we can confirm that our file was versioned in the repository:

$ pachctl list-repo
NAME CREATED SIZE
myrepo 10 minutes ago 25 B
$ pachctl list-file myrepo master
NAME TYPE SIZE
blah.txt file 25 B

Getting data out of versioned data
repositories
Now that we have versioned data in Pachyderm, we probably want to know how to
interact with that data. The primary way is via Pachyderm data pipelines (which will
be discussed later in this book). The mechanism for interacting with versioned data
when using pipelines is a simple file I/O.

However, if we manually want to pull certain sets of versioned data out of
Pachyderm, analyze them interactively, then we can use the pachctl CLI to get data:

$ pachctl get-file myrepo master blah.txt
This is an example file.

References
CSV data:

encoding/csv docs: https://golang.org/pkg/encoding/csv/
github.com/kniren/gota/dataframe docs: https://godoc.org/github.com/kniren/gota/datafra
me

JSON data:

encoding/json docs: https://golang.org/pkg/encoding/json/
Bill Kennedy's blog post of JSON decoding: https://www.goinggo.net/2014/01/decode
-json-documents-in-go.html
Ben Johnson's blog post Go Walkthrough: encoding/json package: https://medium.c
om/go-walkthrough/go-walkthrough-encoding-json-package-9681d1d37a8f

Caching:

github.com/patrickmn/go-cache docs: https://godoc.org/github.com/patrickmn/go-cache
github.com/boltdb/bolt docs: https://godoc.org/github.com/boltdb/bolt
Information about and motivation for BoltDB: https://npf.io/2014/07/intro-to-boltdb-
painless-performant-persistence/

Pachyderm:

General documentation: http://docs.pachyderm.io
Go client docs: https://godoc.org/github.com/pachyderm/pachyderm/src/client
Public users Slack team registration: http://docs.pachyderm.io

https://golang.org/pkg/encoding/csv/
https://godoc.org/github.com/kniren/gota/dataframe
https://golang.org/pkg/encoding/json/
https://www.goinggo.net/2014/01/decode-json-documents-in-go.html
https://medium.com/go-walkthrough/go-walkthrough-encoding-json-package-9681d1d37a8f
https://godoc.org/github.com/patrickmn/go-cache
https://godoc.org/github.com/boltdb/bolt
https://npf.io/2014/07/intro-to-boltdb-painless-performant-persistence/
http://docs.pachyderm.io
https://godoc.org/github.com/pachyderm/pachyderm/src/client
http://docs.pachyderm.io

Summary
In this chapter, you learned how to gather, organize, and parse data. This is the first
step, and one of the most important step, in developing machine learning models, but
having data does not get us very far if we do not gain some intuition about our data
and put it into a standard form for processing. Next, we will tackle some techniques
for further structuring our data (matrices) and for understanding our data (statistics
and probability).

Matrices, Probability, and Statistics
Although we will take a mostly practical/applied approach to machine learning
throughout this book, certain fundamental topics are essential to understand and
properly apply machine learning. In particular, a fundamental understanding of
probability and statistics will allow us to match certain algorithms with relevant
problems, understand our data and results, and apply necessary transformations to
our data. Matrices and a little linear algebra will then allow us to properly represent
our data and implement optimizations, minimizations, and matrix-based
transformations.

Do not worry too much if you are a little rusty in math or statistics. We will cover a
few of the basics here and show you how to programmatically work with the relevant
statistical measures and matrix techniques that will be utilized later in the book. That
being said, this is not a book on statistics, probability, and linear algebra. To truly be
proficient in machine learning, one should take time to learn these subjects on a
deeper level.

Matrices and vectors
If you spend much time learning and applying machine learning, you will see a
bunch of references to matrices and vectors. In fact, many machine learning
algorithms boil down to a series of iterative operations on matrices. What are
matrices and vectors, and how do we represent them in our Go programs?

For the most part, we will utilize packages from github.com/gonum to form and work
with matrices and vectors. This is a great series of Go packages focused on
numerical computing, and they just keep getting better and better.

Vectors
A vector is an ordered collection of numbers arranged in either a row (left to right) or
column (up and down). Each of the numbers in a vector is called a component. This
might be, for example, a collection of numbers that represents our company sales, or
it might be a collection of numbers representing temperatures.

It's, of course, natural for us to use Go slices to represent these ordered collections of
data, as follows:

// Initialize a "vector" via a slice.
var myvector []float64

// Add a couple of components to the vector.
myvector = append(myvector, 11.0)
myvector = append(myvector, 5.2)

// Output the results to stdout.
fmt.Println(myvector)

Slices are indeed ordered collections. However, they don't really represent the
concept of rows or columns, and we would still need to work out various vector
operations on top of slices. Thankfully, on the vector operation side, gonum provides
gonum.org/v1/gonum/floats to operate on slices of float64 values and
gonum.org/v1/gonum/mat, which, along with matrices, provides a Vector type (with
corresponding methods):

// Create a new vector value.
myvector := mat.NewVector(2, []float64{11.0, 5.2})

Vector operations
As mentioned here, working with vectors necessitates the use of certain vector-
/matrix-specific operations and rules. For example, how do we multiply vectors
together? How do we know if two vectors are similar? Both gonum.org/v1/gonum/floats
and gonum.org/v1/gonum/mat provide built-in methods and functions for vector/slice
operations, such as dot products, sorting, and distance. We won't cover all of the
functionality here, as there is quite a bit, but we can get a general feel for how we
might work with vectors. First, we can work with gonum.org/v1/gonum/floats in the
following way:

// Initialize a couple of "vectors" represented as slices.
vectorA := []float64{11.0, 5.2, -1.3}
vectorB := []float64{-7.2, 4.2, 5.1}

// Compute the dot product of A and B
// (https://en.wikipedia.org/wiki/Dot_product).
dotProduct := floats.Dot(vectorA, vectorB)
fmt.Printf("The dot product of A and B is: %0.2f\n", dotProduct)

// Scale each element of A by 1.5.
floats.Scale(1.5, vectorA)
fmt.Printf("Scaling A by 1.5 gives: %v\n", vectorA)

// Compute the norm/length of B.
normB := floats.Norm(vectorB, 2)
fmt.Printf("The norm/length of B is: %0.2f\n", normB)

We can also do similar operations with gonum.org/v1/gonum/mat:

// Initialize a couple of "vectors" represented as slices.
vectorA := mat.NewVector(3, []float64{11.0, 5.2, -1.3})
vectorB := mat.NewVector(3, []float64{-7.2, 4.2, 5.1})

// Compute the dot product of A and B
// (https://en.wikipedia.org/wiki/Dot_product).
dotProduct := mat.Dot(vectorA, vectorB)
fmt.Printf("The dot product of A and B is: %0.2f\n", dotProduct)

// Scale each element of A by 1.5.
vectorA.ScaleVec(1.5, vectorA)
fmt.Printf("Scaling A by 1.5 gives: %v\n", vectorA)

// Compute the norm/length of B.
normB := blas64.Nrm2(3, vectorB.RawVector())
fmt.Printf("The norm/length of B is: %0.2f\n", normB)

The semantics are similar in the two cases. If you are only working with vectors (not
matrices), and/or you just need some lightweight and quick operations on slices of

floats, then gonum.org/v1/gonum/floats is likely a good choice. However, if you are
working with both matrices and vectors, and/or want access to a wider range of
vector/matrix functionality, you are likely better off with gonum.org/v1/gonum/mat
(along with occasional references to gonum.org/v1/gonum/blas/blas64).

Matrices
Matrices and linear algebra may seem complicated to many people, but simply put,
matrices are just rectangular organizations of numbers, and linear algebra dictates the
rules associated with their manipulation. For example, a matrix A with numbers
arranged on a 4 x 3 rectangle may look like this:

The components of A (a11, a12, and so on) are the individual numbers that we are
arranging into a matrix, and the subscripts indicate the location of the components
within the matrix. The first index is the row index and the second index is the
column index. More generally, A could have any shape/size with M rows and N
columns:

To form a matrix like this with gonum.org/v1/gonum/mat, we need to create a slice of
float64 values that is a flat representation of all the matrix components. For instance,
in our example, we want to form the following matrix:

We would need to create a slice of float64 values as follows:

// Create a flat representation of our matrix.
components := []float64{1.2, -5.7, -2.4, 7.3}

Then, we can supply this, along with dimension information, to
gonum.org/v1/gonum/mat to form a new mat.Dense matrix value:

// Form our matrix (the first argument is the number of
// rows and the second argument is the number of columns).

a := mat.NewDense(2, 2, data)

// As a sanity check, output the matrix to standard out.
fa := mat.Formatted(a, mat.Prefix(" "))
fmt.Printf("mat = %v\n\n", fa)

Note that we have also used the nice formatting logic in gonum.org/v1/gonum/mat to
print the matrix as a sanity check. When you run this, you should see the following:

$ go build
$./myprogram
A = [1.2 -5.7]
 [-2.4 7.3]

We can then access and modify certain values within A via built-in methods:

// Get a single value from the matrix.
val := a.At(0, 1)
fmt.Printf("The value of a at (0,1) is: %.2f\n\n", val)

// Get the values in a specific column.
col := mat.Col(nil, 0, a)
fmt.Printf("The values in the 1st column are: %v\n\n", col)

// Get the values in a kspecific row.
row := mat.Row(nil, 1, a)
fmt.Printf("The values in the 2nd row are: %v\n\n", row)

// Modify a single element.
a.Set(0, 1, 11.2)

// Modify an entire row.
a.SetRow(0, []float64{14.3, -4.2})

// Modify an entire column.
a.SetCol(0, []float64{1.7, -0.3})

Matrix operations
As with vectors, matrices have their own set of rules for arithmetic, along with a
whole set of special operations. Some of the arithmetic associated with matrices
behaves in a similar way to what you might expect. However, you need to take
special care when doing things such as multiplying matrices together or taking an
inverse.

Conveniently, gonum.org/v1/gonum/mat provides a nice API for this arithmetic and
many other special operations. Here is an example showing a few operations, such as
adding, multiplying, dividing, and so on:

// Create two matrices of the same size, a and b.
a := mat.NewDense(3, 3, []float64{1, 2, 3, 0, 4, 5, 0, 0, 6})
b := mat.NewDense(3, 3, []float64{8, 9, 10, 1, 4, 2, 9, 0, 2})

// Create a third matrix of a different size.
c := mat.NewDense(3, 2, []float64{3, 2, 1, 4, 0, 8})

// Add a and b.
d := mat.NewDense(0, 0, nil)
d.Add(a, b)
fd := mat.Formatted(d, mat.Prefix(" "))
fmt.Printf("d = a + b = %0.4v\n\n", fd)

// Multiply a and c.
f := mat.NewDense(0, 0, nil)
f.Mul(a, c)
ff := mat.Formatted(f, mat.Prefix(" "))
fmt.Printf("f = a c = %0.4v\n\n", ff)

// Raising a matrix to a power.
g := mat.NewDense(0, 0, nil)
g.Pow(a, 5)
fg := mat.Formatted(g, mat.Prefix(" "))
fmt.Printf("g = a^5 = %0.4v\n\n", fg)

// Apply a function to each of the elements of a.
h := mat.NewDense(0, 0, nil)
sqrt := func(_, _ int, v float64) float64 { return math.Sqrt(v) }
h.Apply(sqrt, a)
fh := mat.Formatted(h, mat.Prefix(" "))
fmt.Printf("h = sqrt(a) = %0.4v\n\n", fh)

In particular, note the Apply() method above. This functionality is extremely useful as
it allow you to apply any function to the elements of a matrix. You can apply the
same function to all elements or make the function dependent on the indices of the
matrix elements. For example, you could you this method to perform element-wise

multiplications, applications of user defined functions, or applications of functions
from third party packages.

Then, for all the various things, such as determinants, eigenvalue/vector solvers, and
inverses, gonum.org/v1/gonum/mat has you covered. Again, I won't expand on all of the
functionality, but here is a sample of some of the operations:

// Create a new matrix a.
a := mat.NewDense(3, 3, []float64{1, 2, 3, 0, 4, 5, 0, 0, 6})

// Compute and output the transpose of the matrix.
ft := mat.Formatted(a.T(), mat.Prefix(" "))
fmt.Printf("a^T = %v\n\n", ft)

// Compute and output the determinant of a.
deta := mat.Det(a)
fmt.Printf("det(a) = %.2f\n\n", deta)

// Compute and output the inverse of a.
aInverse := mat.NewDense(0, 0, nil)
if err := aInverse.Inverse(a); err != nil {
 log.Fatal(err)
}
fi := mat.Formatted(aInverse, mat.Prefix(" "))
fmt.Printf("a^-1 = %v\n\n", fi)

Note that in this example, we leverage Go's explicit error handling functionality
when we need to ensure that we are maintaining integrity and readability. Matrices
don't always have inverses. There are various situations like this that arise when
working with matrices and large datasets, and we want to ensure that our application
behaves as expected.

Statistics
At the end of the day, the success of your machine learning application is going to
come down to the quality of your data, your understanding of the data, and your
evaluation/validation of the results. All three of these things require us to have an
understanding of statistics.

The field of statistics helps us to gain an understanding of our data, and to quantify
what our data and results look like. It also provides us with mechanisms to measure
how well our application is performing and prevent certain machine learning pitfalls
(such as overfitting).

As with linear algebra, we aren't able to give a complete introduction to statistics
here, but there are many resources online and in print to learn introductory statistics.
Here we will focus on a fundamental understanding of the basics, along with the
practicalities of implementation in Go. We will introduce the idea of distributions,
along with an introduction to quantifying and visualizing these distributions.

Distributions
A distribution is a representation of how often values appear within a dataset. Let's
say, for instance, that one thing you are tracking as a data scientist is the daily sales
of a certain product or service, and you have a long list (which you could represent
as a vector or part of a matrix) of these daily sales numbers. These sales numbers are
part of our dataset, and they include one day with sales of $121, another day with
sales of $207, and so on.

There will be one sales number that is the lowest out of the one we have
accumulated. There will also be one sales number that is the highest out of the one
we have accumulated, and the rest of the sales numbers that are somewhere in
between (at least if we assume no exact duplicates). The following image represents
these low, high, and in-between values of sales along a line:

This is, thus, a distribution of sales, or at least one representation of the distribution
of sales. Note that this distribution has areas where there are more numbers and areas
where the numbers are a little sparse. Additionally, note that there seems to be a
tendency for numbers to be near the center of the distribution.

Statistical measures
To quantify what a distribution looks like, we will use various statistical measures.
Generally, there are two types of these measures:

1. Central tendency measures: These measure where most of the values are
located, or where the center of the distribution is located (for example, along
the preceding linear representation).

2. Spread or dispersion measures: These measure how the values of the
distribution are spread across the distribution's range (from the lowest value to
the highest value).

There are various packages that allow you to quickly calculate and/or utilize these
statistical measures. We will make use of gonum.org/v1/gonum/stat (you are probably
starting to notice that we will be making heavy use of gonum) and
github.com/montanaflynn/stats.

Note, there is a one letter difference in the names of the
gonum.org/v1/gonum/stat and github.com/montanaflynn/stats packages.
Keep this in mind as you review the examples in the following sections.

Measures of central tendency
Measures of central tendency include the following:

Mean: This is what you might commonly refer to as an average. We calculate this
by summing all of the numbers in the distribution and then dividing by the
count of the numbers.
Median: If we sort all of the numbers in our distribution from the lowest to
highest, this is the number that separates the lowest half of the numbers from
the highest half of the numbers.
Mode: This is the most frequently occurring value in the distribution.

Let's calculate these measures for the values in one column of the iris dataset
previously introduced in Chapter 1, Gathering and Organizing Data. As a reminder,
this dataset included four columns of flower measurements, along with a column of
the corresponding flower species. Thus, each of the measurement columns includes a
bunch of values that represent a distribution of that measurement:

// Open the CSV file.
irisFile, err := os.Open("../data/iris.csv")
if err != nil {
 log.Fatal(err)
}
defer irisFile.Close()

// Create a dataframe from the CSV file.
irisDF := dataframe.ReadCSV(irisFile)

// Get the float values from the "sepal_length" column as
// we will be looking at the measures for this variable.
sepalLength := irisDF.Col("sepal_length").Float()

// Calculate the Mean of the variable.
meanVal := stat.Mean(sepalLength, nil)

// Calculate the Mode of the variable.
modeVal, modeCount := stat.Mode(sepalLength, nil)

// Calculate the Median of the variable.
medianVal, err := stats.Median(sepalLength)
if err != nil {
 log.Fatal(err)
}

// Output the results to standard out.
fmt.Printf("\nSepal Length Summary Statistics:\n")
fmt.Printf("Mean value: %0.2f\n", meanVal)
fmt.Printf("Mode value: %0.2f\n", modeVal)

fmt.Printf("Mode count: %d\n", int(modeCount))
fmt.Printf("Median value: %0.2f\n\n", medianVal)

Running this program results in the following:

$ go build
$./myprogram

Sepal Length Summary Statistics:
Mean value: 5.84
Mode value: 5.00
Mode count: 10
Median value: 5.80

You can see that the mean, mode, and median are all slightly different. However,
note that the mean and median are very close for the values in the sepal_length
column.

On the other hand, if we change sepal_length to petal_length in the preceding code,
we will get the following results:

$ go build
$./myprogram

Sepal Length Summary Statistics:
Mean value: 3.76
Mode value: 1.50
Mode count: 14
Median value: 4.35

For the petal_length values, the mean and median are not as close. We can already
start to get some intuition about the data from this information. If the mean and
median aren't close, this implies that high or low values are dragging the mean
higher or lower, respectively--an influence that isn't as noticeable in the median. We
call this a skewed distribution.

Measures of spread or dispersion
Now that we have an idea about where most of our values are located (or the center
of our distribution), let's try to quantify how the values of our distribution are spread
around the center of our distribution. Some of the widely used measures that quantify
this are as follows:

Maximum: The highest value of the distribution
Minimum: The lowest value of the distribution
Range: The difference between the maximum and minimum
Variance: This measure is calculated by taking each of the values in the
distribution, calculating each one's difference from the distribution's mean,
squaring this difference, adding it to the other squared differences, and dividing
by the number of values in the distribution
Standard deviation: The square root of the variance
Quantiles/quartiles: Similar to the median, these measures define cut-off
points in the distribution where a certain number of lower values are below the
measure and a certain number of higher values are above the measure

Using gonum.org/v1/gonum/stat, the calculation of these measures looks as follows:

// Open the CSV file.
irisFile, err := os.Open("../data/iris.csv")
if err != nil {
 log.Fatal(err)
}
defer irisFile.Close()

// Create a dataframe from the CSV file.
irisDF := dataframe.ReadCSV(irisFile)

// Get the float values from the "sepal_length" column as
// we will be looking at the measures for this variable.
sepalLength := irisDF.Col("petal_length").Float()

// Calculate the Max of the variable.
minVal := floats.Min(sepalLength)

// Calculate the Max of the variable.
maxVal := floats.Max(sepalLength)

// Calculate the Median of the variable.
rangeVal := maxVal - minVal

// Calculate the variance of the variable.
varianceVal := stat.Variance(sepalLength, nil)

// Calculate the standard deviation of the variable.
stdDevVal := stat.StdDev(sepalLength, nil)

// Sort the values.
inds := make([]int, len(sepalLength))
floats.Argsort(sepalLength, inds)

// Get the Quantiles.
quant25 := stat.Quantile(0.25, stat.Empirical, sepalLength, nil)
quant50 := stat.Quantile(0.50, stat.Empirical, sepalLength, nil)
quant75 := stat.Quantile(0.75, stat.Empirical, sepalLength, nil)

// Output the results to standard out.
fmt.Printf("\nSepal Length Summary Statistics:\n")
fmt.Printf("Max value: %0.2f\n", maxVal)
fmt.Printf("Min value: %0.2f\n", minVal)
fmt.Printf("Range value: %0.2f\n", rangeVal)
fmt.Printf("Variance value: %0.2f\n", varianceVal)
fmt.Printf("Std Dev value: %0.2f\n", stdDevVal)
fmt.Printf("25 Quantile: %0.2f\n", quant25)
fmt.Printf("50 Quantile: %0.2f\n", quant50)
fmt.Printf("75 Quantile: %0.2f\n\n", quant75)

Running this program gives the following result:

$ go build
$./myprogram

Sepal Length Summary Statistics:
Max value: 6.90
Min value: 1.00
Range value: 5.90
Variance value: 3.11
Std Dev value: 1.76
25 Quantile: 1.60
50 Quantile: 4.30
75 Quantile: 5.10

Okay, let's try to get through these numbers and see what they imply about the
distribution of values in the sepal_length column. We can deduce the following.

First, the standard deviation is 1.76 and the whole range of values is 5.90. As opposed
to the variance, the standard deviation has the same units as the values themselves,
and thus we can see that the values actually vary quite a bit within the range of
values (the standard deviation value is about 30% of the total range of values).

Next, let's look at the quantiles. The 25% quantile represents a point in the
distribution where 25% of the values in the distribution are below the measure and
the other 75% are above. This is similar for the 50% and 75% quantiles. As the 25%
quantile is much closer to the minimum than the distance between the 75% quantile
and the maximum, we can deduce that the higher values in the distribution are likely
more spread out than the lower values.

Of course, you can utilize any combination of these measures, along with the central
tendency measures, to help you quantify how a distribution looks, and there are other
statistical measures that can't be covered here.

The point here is that you should be making use of measures like these
to help you build mental models of your data. This will allow you to put
results in context and sanity-check your work.

Visualizing distributions
Even though it is important to quantify how a distribution looks, we should actually
visualize the distribution to gain the most intuition. There are various types of plots
and graphs that allow us to create a visual representation of a distribution of values.
These help us form a mental model of the data and communicate information about
our data to other members of our team, users of our applications, and so on.

Histograms
The first type of these graphs or charts that help us understand our distributions is
called a histogram. Actually, a histogram is really a certain way of organizing or
counting your values, which can then be plotted in a histogram plot. To form a
histogram, we first create a certain number of bins, carving out different areas of the
total range of our values. For example, take the distribution of sales numbers that we
discussed in the previous sections:

Next, we count how many of our values are in each of these bins:

These counts, along with the definition of the bins, form our histogram. We can then
easily convert this to a plot of the counts, which provides a nice visual representation
of our distribution:

We can again use gonum to create a histogram from actual data and plot the
histogram. The packages that gonum provides for this type of plotting, along with
other types of plotting, can be found in gonum.org/v1/plot. As an example, let's create

a histogram plot for each of the columns in the iris dataset.

First, import the following from gonum:

import (
 "gonum.org/v1/plot"
 "gonum.org/v1/plot/plotter"
 "gonum.org/v1/plot/vg"
)

Then we will read in the iris dataset, create a dataframe, and look over the numerical
columns generating the histogram plots:

// Open the CSV file.
irisFile, err := os.Open("../data/iris.csv")
if err != nil {
 log.Fatal(err)
}
defer irisFile.Close()

// Create a dataframe from the CSV file.
irisDF := dataframe.ReadCSV(irisFile)

// Create a histogram for each of the feature columns in the dataset.
for _, colName := range irisDF.Names() {

 // If the column is one of the feature columns, let's create
 // a histogram of the values.
 if colName != "species" {

 // Create a plotter.Values value and fill it with the
 // values from the respective column of the dataframe.
 v := make(plotter.Values, irisDF.Nrow())
 for i, floatVal := range irisDF.Col(colName).Float() {
 v[i] = floatVal
 }

 // Make a plot and set its title.
 p, err := plot.New()
 if err != nil {
 log.Fatal(err)
 }
 p.Title.Text = fmt.Sprintf("Histogram of a %s", colName)

 // Create a histogram of our values drawn
 // from the standard normal.
 h, err := plotter.NewHist(v, 16)
 if err != nil {
 log.Fatal(err)
 }

 // Normalize the histogram.
 h.Normalize(1)

 // Add the histogram to the plot.
 p.Add(h)

 // Save the plot to a PNG file.

 if err := p.Save(4*vg.Inch, 4*vg.Inch, colName+"_hist.png"); err != nil {
 log.Fatal(err)
 }
 }
}

Note that we have normalized our histograms (with h.Normalize()). This is typical
because often you will want to compare different distributions with different counts
of values. Normalizing the histogram allows us to compare the different distributions
side by side.

The preceding code will generate four *.png files with the following histograms for
the numerical columns in the iris dataset:

Each of these distributions looks different from the others. The sepal_width
distribution looks like a bell curve or normal/Gaussian distribution (which we will
discuss later in the book). On the other hand, the petal distributions look like they
have two different distinct clumps of values. We will make use of these observations
later on when we are developing our machine learning workflows, but for now, just

note how these visualizations are able to help us develop a mental model of our data.

Box plots
Histograms are by no means the only way to visually gain an understanding of our
data. Another commonly used type of plot is called a box plot. This type of plot also
gives us an idea about the grouping and spread of values in a distribution, but, as
opposed to the histogram, the box plot has several marked features that help guide
our eyes:

Because the borders of the boxes in the box plots are defined by the median, first
quartile (25% quantile/percentile), and third quartile, the same number of
distribution values that are contained in the two central boxes. If one box is bigger
than the other, it means that the distribution is skewed.

The box plots also include two tails or whiskers. These give us a quick visual
indication of the range of the distribution as compared to the area that includes most
of the values (the middle 50%).

To solidify this type of plot, let's again create plots for the iris dataset. Similar to the
histograms, we will use gonum.org/v1/plot. However, in this case, we will put all the
box plots into the same *.png:

// Open the CSV file.

irisFile, err := os.Open("../data/iris.csv")
if err != nil {
 log.Fatal(err)
}
defer irisFile.Close()

// Create a dataframe from the CSV file.
irisDF := dataframe.ReadCSV(irisFile)

// Create the plot and set its title and axis label.
p, err := plot.New()
if err != nil {
 log.Fatal(err)
}

p.Title.Text = "Box plots"
p.Y.Label.Text = "Values"

// Create the box for our data.
w := vg.Points(50)

// Create a box plot for each of the feature columns in the dataset.
for idx, colName := range irisDF.Names() {

 // If the column is one of the feature columns, let's create
 // a histogram of the values.
 if colName != "species" {

 // Create a plotter.Values value and fill it with the
 // values from the respective column of the dataframe.
 v := make(plotter.Values, irisDF.Nrow())
 for i, floatVal := range irisDF.Col(colName).Float() {
 v[i] = floatVal
 }

 // Add the data to the plot.
 b, err := plotter.NewBoxPlot(w, float64(idx), v)
 if err != nil {
 log.Fatal(err)
 }
 p.Add(b)
 }
}

// Set the X axis of the plot to nominal with
// the given names for x=0, x=1, etc.
p.NominalX("sepal_length", "sepal_width", "petal_length", "petal_width")

if err := p.Save(6*vg.Inch, 8*vg.Inch, "boxplots.png"); err != nil {
 log.Fatal(err)
}

This will generate the following figure:

As we observed in the histograms, the sepal_length column appears to be relatively
symmetrical. On the other hand, petal_length appears to be much less symmetrical.
Note also that gonum has included several outliers (marked as circles or dots) in the
box plots. Many plotting packages include these. They indicate the values that are at
least a certain distance away from the median of the distribution.

Probability
At this point, we now understand a couple of ways to represent/manipulate our data
(matrices and vectors), and we know how to gain and understanding about our data,
and how to quantify how our data looks (statistics). However, sometimes when we
are developing machine learning applications, we also want to know how likely it is
that a prediction is correct or how significant certain results are, given a history of
results. Probability can help us answer these how likely and how significant
questions.

Generally, probability has to do with the likelihood of events or observations. For
example, if we are going to flip a coin to make a decision, how likely is it that we
would see heads (50%), how likely is it that we would see tails (50%), or even how
likely is it that the coin is a fair coin? This might seem like a trivial example, but
many similar questions come up when doing machine learning. In fact, some
machine learning algorithms are built on probabilistic rules and theorems.

Random variables
Let's say that we have an experiment, like our scenario of flipping the coin, which
could have multiple outcomes (heads or tails). Now let's define a variable whose
value could be one of these outcomes. This variable is referred to as a random
variable.

In the case of the coin toss (at least if we are considering a fair coin), each of the
outcomes of the random variable is equally likely. That is, we have a 50% chance of
seeing a heads outcome and a 50% chance of seeing a tails outcome. Yet, the various
values of the random variable need not be equally likely. If we are trying to predict
whether it will rain or not, those outcomes will not be equally likely.

Random variables allow us to define these how likely and how significant sort of
questions that we mentioned earlier. They can have a finite number of outcomes
and/or could represent ranges of continuous variables.

Probability measures
So how likely is it that we observe a specific outcome of an experiment? Well, to
quantify the answer to this question, we introduce probability measures, which are
often referred to as probabilities. They are represented by a number between 0 and 1
and/or by a percentage between 0% and 100%.

In the case of flipping a fair coin, we have the following scenario:

There is a 0.5 or 50% chance, or probability, of heads, where 0.5 or 50% is a
probability measure
There is a 0.5 or 50% chance of tails

Probability measures for a certain experiment must add up to 1 because when an
event occurs, it has to correspond to one of the possible outcomes.

Independent and conditional
probability
Two events (outcomes of experiments) are independent if the probability of one of
the events in no way affects the probability of the other events. An example of
independent events is the flipping of coins or the rolling of dice. On the other hand,
dependent events are those events where the probability of one event influences the
probability of another event. An example of dependent events is drawing cards from
a deck of cards without replacement.

How can we quantify this second type of probability, which is commonly referred to
as conditional probability? Symbolically, independent probabilities can be
represented by P(A), which is the probability of A (where A could represent flipping
a coin, rolling a die, and so on). Then conditional probabilities are represented by
P(B|A), which is the probability of A given B (where B is another outcome).

To actually calculate a conditional probability, we can use the Bayes theorem/rule:
P(A|B) = P(B|A) P(A) / P(B). Sometimes you will see these terms defined as
follows:

P(A|B): The posterior, because it is something we know about A after observing
B
P(A): The prior, because it is data we have about A before observing B
P(B|A): The likelihood, because it is a measure of the compatibility of B with A
P(B): The evidence, because it measures the probability of B, which we already
know is true

This theorem is the basis for various techniques that will be discussed later in the
book, such as the naive the Bayes technique for classification.

Hypothesis testing
We can quantify how likely questions with probabilities and can even calculate
conditional probabilities with Bayes theorem, but how can we quantify how
significant questions that correspond to real-world observations? For example, we
can quantify the probability of heads/tails with a fair coin, but how can we determine
how significant it is when we flip a coin a bunch of times and observe 48% heads
and 52% tails? Is this significant? Does it mean that we have an unfair coin?

These how significant questions can be answered using a process called hypothesis
testing. This process generally includes the following steps:

1. Formulate a null hypothesis, referred to as H0, and an alternate hypothesis,
referred to as Ha. H0 represents the scenario where what you observe (for
example, 48% heads and 52% tails) is the result of pure chance, whereas Ha
represents the scenario where some type of underlying effect is causing
significant deviation from pure chance (for example, an unfair coin). The null
hypothesis is always assumed to be true.

2. Determine a test statistic that you will use to determine the validity of H0.
3. Determine a p-value, which indicates the probability of observing a test statistic

at least as significant as your test statistic assuming that H0 is true. This p-value
can be obtained from a probability distribution corresponding to the test statistic
(often represented as a table or distribution function).

4. Compare your p-value with a predetermined threshold. If the p-value is less or
equal to the predetermined threshold, H0 is ruled out in favor of Ha.

This might seem rather abstract, but this process will intersect with your machine
learning workflows at some point. For example, you may change one of your
machine learning models that optimizes advertisements, and then you may want to
quantify if an increase in sales is actually statistically significant. In another scenario,
you may be analyzing logs representing possible fraudulent network traffic, and you
might need to build a model that recognizes statistically significant deviations from
expected network traffic.

Note that you may also see certain hypothesis tests referred to as A/B
tests, and, although the process listed here is common, it is by no

means the only methodology for hypothesis testing. There are methods
for Bayesian A/B testing, bandit algorithms for optimization, and more,
which won't be covered in detail in this book.

Test statistics
There are many different test statistics that can be used in hypothesis testing. These
include the Z-statistic, T-statistic, F-statistic, and chi-square statistic. You can, of
course, implement these measures from scratch in Go without too much trouble.
However, there are also some pre-existing implementations that you can use.

Returning to gonum.org/v1/gonum/stat, we can calculate a chi-square statistic as
follows:

// Define observed and expected values. Most
// of the time these will come from your
// data (website visits, etc.).
observed := []float64{48, 52}
expected := []float64{50, 50}

// Calculate the ChiSquare test statistic.
chiSquare := stat.ChiSquare(observed, expected)

Calculating p-values
Let's say that we have the following scenario:

A survey of local residents reveals that 60% of all residents get no regular exercise,
25% exercise sporadically, and 15% exercise regularly. After doing some fancy
modeling and putting some community services in place, the survey was repeated
with the same questions. The follow up survey was completed by 500 residents with
the following results:

No Regular Exercise: 260
Sporadic Exercise: 135
Regular Exercise: 105
Total: 500

Now, we want to determine if there is evidence for a statistically significant shift in
the responses of the residents. Our null and alternate hypotheses are as follows:

H0: The deviations from the previously observed percentages are due to pure
chance
Ha: The deviations are due to some underlying effect outside of pure chance
(possibly our new community services)

First, let's calculate our test statistic using the chi-square test statistic:

// Define the observed frequencies.
observed := []float64{
 260.0, // This number is the number of observed with no regular exercise.
 135.0, // This number is the number of observed with sporatic exercise.
 105.0, // This number is the number of observed with regular exercise.
}

// Define the total observed.
totalObserved := 500.0

// Calculate the expected frequencies (again assuming the null Hypothesis).
expected := []float64{
 totalObserved * 0.60,
 totalObserved * 0.25,
 totalObserved * 0.15,
}

// Calculate the ChiSquare test statistic.
chiSquare := stat.ChiSquare(observed, expected)

// Output the test statistic to standard out.
fmt.Printf("\nChi-square: %0.2f\n", chiSquare)

This will give us the following value for chi-square:

$ go build
$./myprogram

Chi-square: 18.13

Next, we need to calculate the p-value corresponding to this Chi-square. This requires
us to know information about the chi-squared distribution, which defines the p-
values for certain measures of chi-square and certain degrees of freedom.
github.com/gonum/stat also includes a representation of this chi-squared distribution
from which we can calculate our p-value:

// Create a Chi-squared distribution with K degrees of freedom.
// In this case we have K=3-1=2, because the degrees of freedom
// for a Chi-squared distribution is the number of possible
// categories minus one.
chiDist := distuv.ChiSquared{
 K: 2.0,
 Src: nil,
}

// Calculate the p-value for our specific test statistic.
pValue := chiDist.Prob(chiSquare)

// Output the p-value to standard out.
fmt.Printf("p-value: %0.4f\n\n", pValue)

This gives us the following result:

$ go build
$./myprogram

Chi-square: 18.13
p-value: 0.0001

So, there is a 0.01% probability that the results we see in the deviations in the second
version of the survey are purely due to chance. If we, for example, are using a
threshold of 5% (which is common), we would need to reject the null hypothesis and
adopt our alternative hypothesis.

References
Vectors and matrices:

gonum.org/v1/gonum/floats docs: https://godoc.org/gonum.org/v1/gonum/floats
gonum.org/v1/gonum/mat docs: https://godoc.org/gonum.org/v1/gonum/mat

Statistics:

gonum.org/v1/gonum/stat docs: https://godoc.org/gonum.org/v1/gonum/stat
github.com/montanaflynn/stats docs: https://godoc.org/github.com/montanaflynn/stats

Visualization:

gonum.org/v1/plot docs: https://godoc.org/gonum.org/v1/plot
gonum.org/v1/plot wiki with examples: https://github.com/gonum/plot/wiki/Example-plo
ts

Probability:

gonum.org/v1/gonum/stat/distuv docs: https://godoc.org/gonum.org/v1/gonum/stat/distuv

https://godoc.org/gonum.org/v1/gonum/floats
https://godoc.org/gonum.org/v1/gonum/mat
https://godoc.org/gonum.org/v1/gonum/stat
https://godoc.org/github.com/montanaflynn/stats
https://godoc.org/gonum.org/v1/plot
https://github.com/gonum/plot/wiki/Example-plots
https://godoc.org/gonum.org/v1/gonum/stat/distuv

Summary
This introduction to matrices, linear algebra, statistics, and probability in Go has
given us a set of tools to understand, structure, and operate on data. This set of tools
will be used throughout the book as we work on a diverse set of problems, and these
tools could be used in a variety of contexts outside of machine learning. However, in
the next chapter, we will discuss some ideas and techniques that will be extremely
important in the machine learning context, specifically, evaluation and validation.

Evaluation and Validation
In order to have sustainable, responsible machine learning workflows and develop
machine learning applications that produce true value, we need to be able to measure
how well our machine learning models perform. We also need to ensure that our
machine learning models generalize to data that they will see in production. If we
don't do these things, we are basically shooting in the dark. We will have no
understanding of the expected behavior of our models and we won't be able to
improve them over time.

The process of measuring how a model is performing (with respect to certain data) is
called evaluation. The process of ensuring that our model generalizes to data that we
might expect to encounter is called validation. Both processes need to be present in
every machine learning workflow and application, and we will cover both in this
chapter.

Evaluation
A basic tenet of science is measurement, and the science of machine learning is not
an exception. We need to be able to measure, or evaluate, how well our models are
performing, so we can continue to improve on them, compare one model to another,
and detect when our models are behaving poorly.

There's only one problem. How do we evaluate how our models are performing?
Should we measure how fast they can be trained or make inferences? Should we
measure how many times they get the right answer? How do we know what the right
answer is? Should we measure how far we deviated from the observed values? How
do we measure that distance?

As you can see, there are a lot of decisions to make around how we evaluate our
models. What really matters is the context. In some cases, efficiency definitely
matters, but every machine learning context requires us to measure how our
predictions, inferences, or results match the ideal predictions, inferences, or results.
Thus, measuring this comparison between computed results and ideal results should
always take priority over speed optimizations.

Generally, there are some types of results that we will need to evaluate:

Continuous: Results such as total sales, stock price, and temperature that can
take any continuous numerical value ($12102.21, 92 degrees, and so on)
Categorical: Results such as fraud/not fraud, activity, and name that can take
one of a finite number of categories (fraud, standing, Frank, and so on)

Each of these types of results have corresponding evaluation metrics
that will be covered here. However, remember that your choice of
evaluation metric depends on what you are trying to achieve with your
machine learning model. There is no one-size-fits-all metric, and in
some cases, you may even need to create your own metric.

Continuous metrics
Let's say that we have a model that is supposed to predict some continuous value,
like a stock price. Suppose that we have accumulated some predicted values that we
can compare to actual observed values:

observation,prediction
22.1,17.9
10.4,9.1
9.3,7.8
18.5,14.2
12.9,15.6
7.2,7.4
11.8,9.7
...

Now, how do we measure the performance of this model? Well, the first step would
be taking the difference between the observed and predicted values to get an error:

observation,prediction,error
22.1,17.9,4.2
10.4,9.1,1.3
9.3,7.8,1.5
18.5,14.2,4.3
12.9,15.6,-2.7
7.2,7.4,-0.2
11.8,9.7,2.1
...

The error gives us a general idea of how far off we were from the value that we were
supposed to predict. However, it's not really feasible or practical to look at all the
error values individually, especially when there is a lot of data. There could be a
million or more of these error values. Thus, we need a way to understand the errors
in aggregate.

The mean squared error (MSE) and mean absolute error (MAE) provide us with
a view on errors in aggregate:

MSE or mean squared deviation (MSD) is the average of the squares of all the
errors
MAE is the average of the absolute values of all the errors

Both MSE and MAE give us a good overall picture of how good our predictions are,
but they do have differences. As the MSE takes the squares of the errors, large error

values (for example, corresponding to outliers) are emphasized more than in the
MAE. In other words, MSE is more sensitive to outliers. MAE, on the other hand,
maintains the same units as the variable that we are trying to predict, and is thus
directly comparable to these values.

For this dataset, we can parse the observed and predicted values and calculate the
MAE and MSE as follows:

// Open the continuous observations and predictions.
f, err := os.Open("continuous_data.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)

// observed and predicted will hold the parsed observed and predicted values
// form the continuous data file.
var observed []float64
var predicted []float64

// line will track row numbers for logging.
line := 1
// Read in the records looking for unexpected types in the columns.
for {

 // Read in a row. Check if we are at the end of the file.
 record, err := reader.Read()
 if err == io.EOF {
 break
 }

 // Skip the header.
 if line == 1 {
 line++
 continue
 }

 // Read in the observed and predicted values.
 observedVal, err := strconv.ParseFloat(record[0], 64)
 if err != nil {
 log.Printf("Parsing line %d failed, unexpected type\n", line)
 continue
 }

 predictedVal, err := strconv.ParseFloat(record[1], 64)
 if err != nil {
 log.Printf("Parsing line %d failed, unexpected type\n", line)
 continue
 }

 // Append the record to our slice, if it has the expected type.
 observed = append(observed, observedVal)
 predicted = append(predicted, predictedVal)
 line++

}

// Calculate the mean absolute error and mean squared error.
var mAE float64
var mSE float64
for idx, oVal := range observed {
 mAE += math.Abs(oVal-predicted[idx]) / float64(len(observed))
 mSE += math.Pow(oVal-predicted[idx], 2) / float64(len(observed))
}

// Output the MAE and MSE value to standard out.
fmt.Printf("\nMAE = %0.2f\n", mAE)
fmt.Printf("\nMSE = %0.2f\n\n", mSE)

For our example data, this results in the following:

$ go build
$./myprogram

MAE = 2.55

MSE = 10.51

To judge if these are good values or not, we need to compare them to the values in
our observed data. In particular, the MAE is 2.55 and the mean of our observed
values is 14.0, so our MAE is about 20% of our mean value. Not very good,
depending on the context.

Along with the MSE and MAE, you will likely see R-squared (also known as R2 or
R2), or the coefficient of determination, used as an evaluation metric for
continuous variable models. R-squared also gives us a general idea about the
deviations of our predictions, but the idea of R-squared is slightly different.

R-squared measures the proportion of the variance in the observed values that we
capture in the predicted values. Remember that the values that we are trying to
predict have some variability. For example, we might be trying to predict stock
prices, interest rates, or disease progressions, which, by their very nature, aren't all
the same. We are attempting to create a model that can predict this variability in the
observed values, and the percentage of the variation that we capture is represented by
R-squared.

Conveniently, gonum.org/v1/gonum/stat has a built-in function to calculate R-squared:

// Calculate the R^2 value.
rSquared := stat.RSquaredFrom(observed, predicted, nil)

// Output the R^2 value to standard out.
fmt.Printf("\nR^2 = %0.2f\n\n", rSquared)

Running the preceding code for our example dataset results in the following:

$ go build
$./myprogram

R^2 = 0.37

So, is this a good or bad R-squared? Remember that R-squared is a percentage and
higher percentages are better. Here, we are capturing about 37% of the variance in
the variable that we are trying to predict. Not very good.

Categorical metrics
Let's say that we have a model that is supposed to predict some discrete value, such
as fraud/not fraud, standing/sitting/walking, approved/not approved, and so on. Our
data might look something like the following:

observed,predicted
0,0
0,1
2,2
1,1
1,1
0,0
2,0
0,0
...

The observed values could take any one of a finite number of values (in this case 1,
2, or 3). Each of these values represents one of the discrete categories in our data
(class 1 might correspond to a fraudulent transaction, class 2 might correspond to a
transaction that is not fraudulent, and class 3 might correspond to an invalid
transaction, for example). The predicted values could also take one of these discrete
values. In evaluating our predictions, we want to somehow measure how right we
were in making those discrete predictions.

Individual evaluation metrics for
categorical variables
Actually, there are a huge number of ways to evaluate discrete predictions with
metrics, including accuracy, precision, recall, specificity, sensitivity, fallout, false
omission rate, and many more. As with continuous variables, there is no one-size-
fits-all metric for evaluation. Each time you approach a problem, you need to
determine the metric that fits the problem and matches the goals of the project. You
don't want to optimize for the wrong things and then waste a bunch of time
reimplementing your model based on other metrics.

To understand these metrics and determine which is appropriate for our use case, we
need to realize that there are a number of different scenarios that could occur when
we are making discrete predictions:

True Positive (TP): We predicted a certain category, and the observation was
actually that category (for example, we predicted fraud and the observation was
fraud)
False Positive (FP): We predicted a certain category, but the observation was
actually another category (for example, we predicted fraud but the observation
was not fraud)
True Negative (TN): We predicted that the observation wasn't a certain
category, and the observation was not that category (for example, we predicted
not fraud and the observation was not fraud)
False Negative (FN): We predicted that the observation wasn't a certain
category, but the observation was actually that category (for example, we
predicted not fraud but the observation was fraud)

You can see that there are a number of ways we can combine, aggregate, and
measure these scenarios. In fact, we could even aggregate/measure them in some sort
of unique way related to our specific problem. However, there are some pretty
standard ways of aggregating and measuring these scenarios that result in the
following common metrics:

Accuracy: The percentage of predictions that were right, or (TP + TN)/(TP +
TN + FP + FN)
Precision: The percentage of positive predictions that were actually positive, or

TP/(TP + FP)
Recall: The percentage of positive predictions that were identified as positive,
or TP/(TP + FN)

Even though I'm going to emphasize these here, you should take a look
at other common metrics and their implications. A good overview can
be found at https://en.wikipedia.org/wiki/Precision_and_recall.

The following is an example that parses our data and calculates accuracy. First, we
read in our labeled.csv file, create a CSV reader, and initialize two slices that will
hold our parsed observed/predicted values:

// Open the binary observations and predictions.
f, err := os.Open("labeled.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)

// observed and predicted will hold the parsed observed and predicted values
// form the labeled data file.
var observed []int
var predicted []int

Then we will iterate over the records in the CSV parsing the values, and we will
compare the observed and predicted values to calculate accuracy:

// line will track row numbers for logging.
line := 1

// Read in the records looking for unexpected types in the columns.
for {

 // Read in a row. Check if we are at the end of the file.
 record, err := reader.Read()
 if err == io.EOF {
 break
 }

 // Skip the header.
 if line == 1 {
 line++
 continue
 }

 // Read in the observed and predicted values.
 observedVal, err := strconv.Atoi(record[0])
 if err != nil {
 log.Printf("Parsing line %d failed, unexpected type\n", line)
 continue

https://en.wikipedia.org/wiki/Precision_and_recall

 }

 predictedVal, err := strconv.Atoi(record[1])
 if err != nil {
 log.Printf("Parsing line %d failed, unexpected type\n", line)
 continue
 }

 // Append the record to our slice, if it has the expected type.
 observed = append(observed, observedVal)
 predicted = append(predicted, predictedVal)
 line++
}

// This variable will hold our count of true positive and
// true negative values.
var truePosNeg int

// Accumulate the true positive/negative count.
for idx, oVal := range observed {
 if oVal == predicted[idx] {
 truePosNeg++
 }
}

// Calculate the accuracy (subset accuracy).
accuracy := float64(truePosNeg) / float64(len(observed))

// Output the Accuracy value to standard out.
fmt.Printf("\nAccuracy = %0.2f\n\n", accuracy)

Running this results in the following:

$ go build
$./myprogram

Accuracy = 0.97

97%! That's pretty good. That means we were right 97% of the time.

We can similarly calculate precision and recall. However, you may have noticed that
there are a couple of ways we can do this when we have more than two categories or
classes. We could consider class 1 as positive and the other classes as negative, class
2 as positive and the other classes as negative, and so on. That is, we could calculate
a precision or recall for each of our classes, as shown in the following code sample:

// classes contains the three possible classes in the labeled data.
classes := []int{0, 1, 2}

// Loop over each class.
for _, class := range classes {

 // These variables will hold our count of true positives and
 // our count of false positives.
 var truePos int
 var falsePos int

 var falseNeg int

 // Accumulate the true positive and false positive counts.
 for idx, oVal := range observed {

 switch oVal {

 // If the observed value is the relevant class, we should check to
 // see if we predicted that class.
 case class:
 if predicted[idx] == class {
 truePos++
 continue
 }

 falseNeg++

 // If the observed value is a different class, we should
 // check to see if we predicted a false positive.
 default:
 if predicted[idx] == class {
 falsePos++
 }
 }
 }

 // Calculate the precision.
 precision := float64(truePos) / float64(truePos+falsePos)

 // Calculate the recall.
 recall := float64(truePos) / float64(truePos+falseNeg)

 // Output the precision value to standard out.
 fmt.Printf("\nPrecision (class %d) = %0.2f", class, precision)
 fmt.Printf("\nRecall (class %d) = %0.2f\n\n", class, recall)
}

Running this code results in the following:

$ go build
$./myprogram

Precision (class 0) = 1.00
Recall (class 0) = 1.00

Precision (class 1) = 0.96
Recall (class 1) = 0.94

Precision (class 2) = 0.94
Recall (class 2) = 0.96

Notice that the precision and recall are slightly different metrics and have different
implications. If we wanted to get an overall precision or recall, we could average the
per-class precisions and recalls. In fact, if certain classes were more important than
other classes, we could take a weighted average of these and use that as our

evaluation metric.

You can see that a couple of the metrics are 100%. This seems good, but it might
actually indicate a problem, as we will further discuss.

In some cases, such as finance and banking, false positives or other
cases may be very costly for certain classes. For example, a
mislabeling a transaction as fraudulent might result in significant
losses. On the other hand, certain results for other classes might be
negligible. These scenario might warrant the use of a custom metric or
cost function that weights certain classes, certain results, or certain
combinations of results as more important than others.

Confusion matrices, AUC, and ROC
In addition to calculating individual numerical metrics for our models, there are a
variety of techniques to combine various metrics into a form that gives you a more
complete representation of model performance. These include, but are certainly not
limited to, confusion matrices and area under the curve (AUC)/Receiver
Operating Characteristic (ROC) curves.

Confusion matrices allow us to visualize the various TP, TN, FP, and FN values that
we predict in a two-dimensional format. A confusion matrix has rows corresponding
to the categories that you were supposed to predict, and columns corresponding to
categories that were predicted. Then, the value of each element is the corresponding
count:

As you can see, the ideal situation is that your confusion matrix only has entries on
the diagonal (TP, TN). The diagonal elements represent predicting a certain category
and the observation actually being in that category. The off-diagonal elements
include counts for predictions that were incorrect.

This type of confusion matrix can be especially useful for problems that have more
than two categories. For example, you may be trying to predict various activities
based on mobile accelerator and position data. These activities may include more
than two categories, such as standing, sitting, running, driving, and so on. The
confusion matrix for this problem with be larger than 2 x 2 and would allow you to
quickly gauge the overall performance of your model on all categories, and identify
categories in which your model is performing poorly.

In addition to confusion matrices, ROC curves are commonly used to get an overall
picture of the performance of binary classifiers (or models that are trained to predict
one of two categories). ROC curves plot the recall versus false positive rate (FP/(FP
+ TN)) for every possible classification threshold.

The thresholds used in an ROC curve represent various boundaries or rankings in
which you are separating the two categories of your classification. That is, the model
that is evaluated by the ROC curve must make a prediction for the two classes based
on probability, ranking, or score (referred to as a score in the following image). In
every example mentioned earlier, a score is classified one way, and vise versa:

To generate an ROC curve, we plot a point for each score or rank in our testing
examples (recall, false positive rate). We can then connect these to form a curve. In
many cases, you will see a straight line plotted down the diagonal of the ROC curve
plot. This straight line is a reference line for a classifier, with approximately random
predictive power:

A good ROC curve is one that is in the upper left section of the plot, which means
that our model has better than random predictive power. The more that the ROC
curve hugs the upper left hand side of the plot, the better. This means that good ROC
curves have more AUC; AUC for ROC curves is also used as an evaluation metric.
Refer to the following figure:

gonum.org/v1/gonum/stat has some built-in functions and types that help you build
ROC curves and AUC metrics:

func ROC(n int, y []float64, classes []bool, weights []float64) (tpr, fpr []float64)

Here is a quick example that calculates the AUC for an ROC curve with gonum:

// Define our scores and classes.
scores := []float64{0.1, 0.35, 0.4, 0.8}
classes := []bool{true, false, true, false}

// Calculate the true positive rates (recalls) and
// false positive rates.
tpr, fpr := stat.ROC(0, scores, classes, nil)
// Compute the Area Under Curve.
auc := integrate.Trapezoidal(fpr, tpr)

// Output the results to standard out.
fmt.Printf("true positive rate: %v\n", tpr)
fmt.Printf("false positive rate: %v\n", fpr)
fmt.Printf("auc: %v\n", auc)

Running this code results in the following:

$ go build
$./myprogram
true positive rate: [0 0.5 0.5 1 1]
false positive rate: [0 0 0.5 0.5 1]
auc: 0.75

Validation
So, now we know some ways to measure how well our model is performing. In fact,
if we wanted to, we could create a super sophisticated, complicated model that could
predict every observation without error. For example, we could create a model that
would take the index of the row of the observation and return the exact answer for
each of those rows. It might be a really big function with a lot of parameters, but it
would return the correct answers.

So, what's the problem with this? Well, the problem is that it would not generalize to
new data. Our complicated model would predict really well for the data that we
would expose it to, but once we try some new input data (that isn't part of our
training dataset), the model would likely perform poorly.

We call this type of model (that doesn't generalize) a model that has been overfit.
That is, our process of making the model more and more complicated based on the
data that was available to us was overfitting the model.

Overfitting can happen when predicting continuous values or discrete/categorical
values:

To prevent overfitting, we need to validate our model. There are multiple ways to
perform validation, and we will cover a couple of these here.

Every time you are productionizing a model, you need to ensure that
you have validated your model and understand how it will generalize to
new data.

Training and test sets
The first method to help prevent overfitting is to train or fit your model on a portion
of your dataset and then test or evaluate your model on a different portion of your
dataset. Training your model generally consists of parameterizing one or more
functions that make up your model, such that the functions that predict what you are
trying to predict. Then, you can evaluate this trained model using one or more of the
evaluation metrics that we discussed previously. The important thing here is that you
do not want to test/evaluate your model on the same data that is used to train your
model.

By reserving part of your data for testing, you are simulating the scenario in which
your model sees new data. That is, the model is making predictions based on data
that was not used in parameterizing the model.

Many people start by splitting 80% of their data into a training data set and 20% into
a test set (an 80/20 split). However, you will see different people splitting their
datasets up in different proportions. The proportion of test to training data depends a
little bit on the type and amount of data that you have and the model that you are
trying to train. Generally, you want to ensure that both your training data and test
data are a fairly accurate representation of your data on a large scale.

For example, if you are trying to predict one of a few different categories, A, B, and
C, you wouldn't want your training data to include observations that only correspond
to A and B. A model trained on such a dataset would likely only be able to predict
the A and B categories. Likewise, you wouldn't want your test set to include some
subset of the categories, or artificially weighted proportions of the categories. This
could very easily happen, depending on how your data was generated.

In addition, you want to make sure that you have enough training data to reduce the
variability in your determined parameters as they are computed over and over. If you

have too few training data points, or poorly sampled training data points, your model
training may produce parameters with a lot of variability, or it may not even be able
to converge numerically. These are indications that your model lacks predictive
power.

Typically, as you increase the complexity of your model, you will be able to improve
the evaluation metric that you are using for your training data, but at some point, the
evaluation metric will start getting worse for your test data. When the evaluation
metric starts to get worse for your test data, you are starting to overfit your model.
The ideal scenario is when you are able to increase your model complexity up to the
inflection point, where the test evaluation metric starts to degrade. Another way of
putting this (which fits very well into our general philosophy for model building in
this book) is that we want the most interpretable model (or simplistic model) that can
produce valuable results.

One way to quickly split a dataset into training and test sets is with
github.com/kniren/gota/dataframe. Let's demonstrate this using a dataset, which
includes a bunch of anonymized information about medical patients and a
corresponding indication of the progression of disease and diabetes:

age,sex,bmi,map,tc,ldl,hdl,tch,ltg,glu,y
0.0380759064334,0.0506801187398,0.0616962065187,0.021872354995,-0.0442234984244,-0.0348207628377,-0.043400845652,-0.00259226199818,0.0199084208763,-0.0176461251598,151.0
-0.00188201652779,-0.044641636507,-0.0514740612388,-0.0263278347174,-0.00844872411122,-0.0191633397482,0.0744115640788,-0.0394933828741,-0.0683297436244,-0.0922040496268,75.0
0.0852989062967,0.0506801187398,0.0444512133366,-0.00567061055493,-0.0455994512826,-0.0341944659141,-0.0323559322398,-0.00259226199818,0.00286377051894,-0.0259303389895,141.0
-0.0890629393523,-0.044641636507,-0.0115950145052,-0.0366564467986,0.0121905687618,0.0249905933641,-0.0360375700439,0.0343088588777,0.0226920225667,-0.00936191133014,206.0
0.00538306037425,-0.044641636507,-0.0363846922045,0.021872354995,0.00393485161259,0.0155961395104,0.00814208360519,-0.00259226199818,-0.0319914449414,-0.0466408735636,135.0
...

You can retrieve this data set here: https://archive.ics.uci.edu/ml/datasets/diabetes.

To split this data with github.com/kniren/gota/dataframe, we can do the following

https://archive.ics.uci.edu/ml/datasets/diabetes

(where we save the training and test splits to respective CSV files):

// Open the diabetes dataset file.
f, err := os.Open("diabetes.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a dataframe from the CSV file.
// The types of the columns will be inferred.
diabetesDF := dataframe.ReadCSV(f)

// Calculate the number of elements in each set.
trainingNum := (4 * diabetesDF.Nrow()) / 5
testNum := diabetesDF.Nrow() / 5
if trainingNum+testNum < diabetesDF.Nrow() {
 trainingNum++
}

// Create the subset indices.
trainingIdx := make([]int, trainingNum)
testIdx := make([]int, testNum)

// Enumerate the training indices.
for i := 0; i < trainingNum; i++ {
 trainingIdx[i] = i
}

// Enumerate the test indices.
for i := 0; i < testNum; i++ {
 testIdx[i] = trainingNum + i
}

// Create the subset dataframes.
trainingDF := diabetesDF.Subset(trainingIdx)
testDF := diabetesDF.Subset(testIdx)

// Create a map that will be used in writing the data
// to files.
setMap := map[int]dataframe.DataFrame{
 0: trainingDF,
 1: testDF,
}

// Create the respective files.
for idx, setName := range []string{"training.csv", "test.csv"} {

 // Save the filtered dataset file.
 f, err := os.Create(setName)
 if err != nil {
 log.Fatal(err)
 }

 // Create a buffered writer.
 w := bufio.NewWriter(f)

 // Write the dataframe out as a CSV.
 if err := setMap[idx].WriteCSV(w); err != nil {
 log.Fatal(err)

 }
}

Running this results in the following:

$ go build
$./myprogram
$ wc -l *.csv
 443 diabetes.csv
 89 test.csv
 355 training.csv
 887 total

Holdout set
We are making progress to ensure that our models generalize using training and test
sets. However, imagine the following scenario:

1. We develop a first version of our model based on our training set.
2. We test this first version of our model on the test set.
3. We aren't satisfied with the result on the test set, so we loop back to step 1 and

repeat.

This process might seem logical, but you are probably already seeing a problem that
can result from this procedure. We can actually overfit our model on the test data by
iteratively exposing the model to our test set.

There are a couple of ways to deal with this extra level of overfitting. The first is by
simply creating another split of our data called a holdout set (also known as a
validation set). So, now we would have a training set, test set, and holdout set. This
is sometimes called the three dataset validation, for obvious reasons.

Keep in mind that, to truly get an idea about the general performance of your model,
your holdout set must never be used in training and testing. You should reserve this
dataset for validation after you have gone through the process of training your
model, making adjustments to the model, and getting an acceptable performance on
the test dataset.

You might be wondering how you can manage this splitting of data
over time and recover different sets of data used to train or test certain
models. This "provenance" of data is crucial when trying to maintain
integrity in your machine learning workflows. This is also exactly what
Pachyderm's data versioning (introduced in Chapter 1, Gathering and
Organizing Data) was created to handle. We will see exactly how this

plays out at scale later in Chapter 9, Deploying and distributing
Analyses and Models.

Cross validation
In addition to reserving a holdout set for validation, cross validation is a common
technique to validate the generality of a model. In cross validation, or k-fold cross
validation, you actually perform k random splits of your dataset into different
training and test combinations. Think of these as k experiments.

Once you have performed each split, you train your model on the training data for
that split, and then evaluate it on the test data for that split. This process results in an
evaluation metric result for each random split of your data. You can then average
these evaluation metrics to get an overall evaluation metric that is a more general
representation of model performance than any one of the individual evaluation
metrics by themselves. You can also look at the variance in the evaluation metrics to
get an idea about the stability of your various experiments. This process is illustrated
in the following image:

Some advantages of using cross validation, in comparison to dataset validation, are
as follows:

You are making use of your entire dataset, and thus, are actually exposing your
model to more training examples and more testing examples
There are some convenience functions and packaging already written for cross
validation
It helps prevent the biases that may result from choosing a single validation set

The github.com/sjwhitworth/golearn is one Go package that provides some
convenience functions for cross validation. Actually, github.com/sjwhitworth/golearn
includes a bunch of machine learning functionality that we will cover later on in the
book, but for now, let's just look at what functionality is available for cross
validation.

If you look at the github.com/sjwhitworth/golearn/evaluation package Godocs, you will
see the following function that is available for cross validation:

func GenerateCrossFoldValidationConfusionMatrices(data base.FixedDataGrid, cls base.Classifier, folds int) ([]ConfusionMatrix, error)

This function can actually be used with a variety of models, but here is an example
using a decision tree model (don't worry about the details of the model here):

// Define the decision tree model.
tree := trees.NewID3DecisionTree(param)

// Perform the cross validation.
cfs, err := evaluation.GenerateCrossFoldValidationConfusionMatrices(myData, tree, 5)
if err != nil {
 panic(err)
}

// Calculate the metrics.
mean, variance := evaluation.GetCrossValidatedMetric(cfs, evaluation.GetAccuracy)
stdev := math.Sqrt(variance)

// Output the results to standard out.
fmt.Printf("%0.2f\t\t%.2f (+/- %.2f)\n", param, mean, stdev*2)

References
Evaluation:

Essay on overfitting: http://scott.fortmann-roe.com/docs/MeasuringError.html
Essay on bias-variance trade-off: http://scott.fortmann-roe.com/docs/BiasVariance.html
Comparison of categorical evaluation metrics: https://en.wikipedia.org/wiki/Precision
_and_recall
gonum.org/v1/gonum/stat docs: https://godoc.org/gonum.org/v1/gonum/stat
github.com/sjwhitworth/golearn/evaluation docs: https://godoc.org/github.com/sjwhitwor
th/golearn/evaluation

Validation:

github.com/kniren/gota/dataframe docs: https://godoc.org/github.com/kniren/gota/datafra
me
github.com/sjwhitworth/golearn/evaluation docs: https://godoc.org/github.com/sjwhitwor
th/golearn/evaluation

http://scott.fortmann-roe.com/docs/MeasuringError.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
https://en.wikipedia.org/wiki/Precision_and_recall
https://godoc.org/gonum.org/v1/gonum/stat
https://godoc.org/github.com/sjwhitworth/golearn/evaluation
https://godoc.org/github.com/kniren/gota/dataframe
https://godoc.org/github.com/sjwhitworth/golearn/evaluation

Summary
Choosing an appropriate evaluation metric and laying out a procedure for
evaluation/validation are essential parts of any machine learning project. You have
learned about a variety of relevant evaluation metrics and how to avoid overfitting
using holdout sets and/or cross validation. In the next chapter, we will start looking
at machine learning models and we will build our first model using linear regression!

Regression
The first group of machine learning techniques that we will explore is generally
referred to as regression. Regression is a process through which we can understand
how one variable (for example, sales) changes with respect to another variable (for
example, number of users). These techniques are useful on their own. However, they
are also a good starting point to discuss machine learning techniques because they
form the basis of other, more complicated, techniques that we will discuss later in the
book.

Generally, regression techniques in machine learning are concerned with predicting
continuous values (for example, stock price, temperature, or disease progression).
Classification, which we will cover in the next chapter, is concerned with predicting
discrete variables, or one of a discrete set of categories (for example, fraud/not fraud,
sitting/standing/running, or hot dog/not hot dog). As mentioned, regression
techniques are used throughout machine learning as part of classification algorithms,
but in this chapter we will focus on their basic application to predict continuous
values.

Understanding regression model jargon
As already mentioned, regression itself is a process to analyze a relationship between
one variable and another variable, but there are some terms used in machine learning
to describe these variables along with various types of regression and processes
associated with regression:

Response or dependent variable: These terms will be used interchangeably for
the variable that we are trying to predict based on one or more other variables.
This variable is often labeled y.
Explanatory variables, independent variables, features, attributes, or
regressors: These terms will be used interchangeably for the variables that we
are using to predict the response. These variables are often labeled x or x1, x2,
and so on.
Linear regression: This type of regression assumes that the dependent variable
depends on the independent variable linearly (that is, following the equation for
a line).
Nonlinear regression: This type of regression assumes that the dependent
variable depends on the independent variable in a relationship that is not linear
(for example, polynomial or exponential).
Multiple regression: A regression with more than one independent variable.
Fitting or training: The process of parameterizing a model, such as a
regression model, so that it can predict a certain dependent variable.
Prediction: The process of using a parameterized model, such as a regression
model, to predict a certain dependent variable.

Some of these terms will be used both in the context of regression and in other
contexts throughout the rest of the book.

Linear regression
Linear regression is one of the most simple machine learning models. However, you
should not dismiss this model by any means. As mentioned previously, it is an
essential building block that is utilized in other models, and it has some very
important advantages.

As discussed throughout this book, integrity in machine learning applications is
crucial, and the simpler and more interpretable a model is, the easier it is to maintain
integrity. In addition, because the model is simple and interpretable, it allows you to
understand inferred relationships between variables and check your work mentally as
you develop. In the words of Mike Lee Williams from Fast Forward Labs (in http://bl
og.fastforwardlabs.com/2017/08/02/interpretability.html):

The future is algorithmic. Interpretable models offer a safer, more productive, and
ultimately more collaborative relationship between humans and intelligent
machines.

Linear regression models are interpretable, and thus, they can provide a safe and
productive option for data scientists. When you are searching for a model to predict a
continuous variable, you should consider and try linear regression (or even multiple
linear regression) if your data and problem allows you to use it.

http://blog.fastforwardlabs.com/2017/08/02/interpretability.html

Overview of linear regression
In linear regression, we attempt to model our dependent variable, y, by an
independent variable, x, using the equation for a line:

Here, m is the slope of the line and b is the intercept. For example, let's say that we
want to model daily sales by the number of users on our website each day. To do this
with linear regression, we would want to determine an m and b that would allow us
to predict sales via the following formula:

Thus, our trained model is really just this parameterized function. We put in a
Number of Users and we get the predicted Sales, as follows:

The training or fitting of a linear regression model involves determining the values
of m and b, such that the resulting formula has predictive power for our response.
There are a variety of methods to determine m and b, but the most common and
simple method is called ordinary least squares (OLS).

To find m and b with OLS, we first pick a value for m and b to create a first example
line. We then measure the vertical distance between each of our known points (for
example, from our training set) and the example line. These distances are called
errors or residuals, similar to the errors that we discussed in Chapter 3, Evaluation
and Validation, and are illustrated in the following figure:

Next, we add up the sum of the squares of these errors:

We adjust m and b until we minimize this sum of the squares of the errors. In other
words, our trained linear regression line is the line that minimizes this sum of the
squares.

There are a variety of methods to find the line that minimizes the sum of the squared
errors and, for OLS, the line can be found analytically. However, a very popular and
general optimization technique that is used to minimize the sum of the squared error
is called gradient descent. This method can be more efficient in terms of
implementation, advantageous computationally (in terms of memory, for example),
and more flexible than analytic solutions.

Gradient descent is discussed in more detail in the Appendix, Algorithms/Techniques
Related to Machine Learning, so we will avoid a lengthy discussion here. Suffice it
to say that many implementations of linear and other regressions utilize gradient
descent for the fitting or training of the linear regression line. In fact, gradient
descent is ubiquitous in machine learning and also powers much more complicated
modeling techniques such as deep learning.

Linear regression assumptions and
pitfalls
Like all machine learning models, linear regression does not work in all situations
and it does make certain assumptions about your data and the relationships in your
data. The assumptions of linear regression are as follows:

Linear relationship: This might seem obvious, but linear regression assumes
that your dependent variable depends on your independent variable linearly (by
means of the equation for a line). If this relationship is not linear, linear
regression will likely perform poorly.
Normality: This assumption means that your variables should be distributed
according to a normal distribution (which looks like a bell shape). We will
come back to this property later in the chapter and discuss some trade-offs and
options when encountering non-normally distributed variables.
No multicollinearity: Multicollinearity is a fancy term that means that
independent variables are not really independent. They depend on each other in
some fashion.
No auto-correlation: Auto-correlation is another fancy term that means that a
variable depends on itself or some shifted version of itself (like in some
predictable time series).
Homoscedasticity: This may be the fanciest word of this bunch of terms, but it
means something relatively simple and is not really something you have to
worry about very often. Linear regression assumes that the variance of your
data is about the same around the regression line for all values of your
independent variable.

Technically, all of these assumptions need to be fulfilled for us to use linear
regression. It's very important that we know how our data is distributed and how it
behaves. We will look into these assumptions when we profile data in an example
use of linear regression.

As a data scientist or analyst, you want to keep the following pitfalls in mind as you
apply linear regression:

You are training your linear regression model for a certain range of your
independent variable. You should be careful making predictions for values

outside of this range because your regression line might not be applicable (for
example, your dependent variable may start behaving non-linearly at extreme
values).
You can misspecify a linear regression model by finding some spurious
relationship between two variables that really have nothing to do with one
another. You should check to make sure that there is some logical reason why
variables might be functionally related.
Outliers or extreme values in your data may throw off a regression line for
certain types of fitting, such as OLS. There are ways to fit a regression line that
is more immune to outliers, or behaves differently with respect to outliers, such
as orthogonal least squares or ridge regression.

Linear regression example
To illustrate linear regression, let's take an example problem and create our first
machine learning model! The example data that we are going to use is example
advertising data. It is in the .csv format and looks as follows:

$ head Advertising.csv
TV,Radio,Newspaper,Sales
230.1,37.8,69.2,22.1
44.5,39.3,45.1,10.4
17.2,45.9,69.3,9.3
151.5,41.3,58.5,18.5
180.8,10.8,58.4,12.9
8.7,48.9,75,7.2
57.5,32.8,23.5,11.8
120.2,19.6,11.6,13.2
8.6,2.1,1,4.8

The dataset includes a set of attributes representing spend on advertising outlets (TV,
Radio, and Newspaper) along with corresponding sales (Sales). Our goal in this example
will be to model the sales (our dependent variable) by one of the attributes of
advertising spend (our independent variable).

Profiling the data
To make sure that we create a model, or at least process, that we understand, and to
make sure that we can mentally check our results, we need to start every machine
learning model building process with data profiling. We need to gain an
understanding of how each of our variables are distributed and their range and
variability.

To do this, we will calculate the summary statistics that we discussed earlier in Chapt
er 2, Matrices, Probability, and Statistics. Here, we will utilize a method built into
the github.com/kniren/gota/dataframe package to calculate our summary statistics for
all of the columns of our dataset in one operation:

// Open the CSV file.
advertFile, err := os.Open("Advertising.csv")
if err != nil {
 log.Fatal(err)
}
defer advertFile.Close()

// Create a dataframe from the CSV file.
advertDF := dataframe.ReadCSV(advertFile)

// Use the Describe method to calculate summary statistics
// for all of the columns in one shot.
advertSummary := advertDF.Describe()

// Output the summary statistics to stdout.
fmt.Println(advertSummary)

Compiling and running this gives the following result:

$ go build
$./myprogram
[7x5] DataFrame

 column TV Radio Newspaper Sales
 0: mean 147.042500 23.264000 30.554000 14.022500
 1: stddev 85.854236 14.846809 21.778621 5.217457
 2: min 0.700000 0.000000 0.300000 1.600000
 3: 25% 73.400000 9.900000 12.600000 10.300000
 4: 50% 149.700000 22.500000 25.600000 12.900000
 5: 75% 218.500000 36.500000 45.100000 17.400000
 6: max 296.400000 49.600000 114.000000 27.000000
 <string> <float> <float> <float> <float>

As you can see, this prints out all of our summary statistics in a nice tabular form and
includes mean, standard deviation, minimum value, maximum value, 25%/75%

percentiles, and median (or 50% percentile).

These values give us a good numerical reference for the numbers that we will be
seeing as we train our linear regression model. However, this does not give us a very
good visual understanding of our data. For this, we will create a histogram for the
values in each of the columns:

// Open the advertising dataset file.
f, err := os.Open("Advertising.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a dataframe from the CSV file.
advertDF := dataframe.ReadCSV(f)

// Create a histogram for each of the columns in the dataset.
for _, colName := range advertDF.Names() {

 // Create a plotter.Values value and fill it with the
 // values from the respective column of the dataframe.
 plotVals := make(plotter.Values, advertDF.Nrow())
 for i, floatVal := range advertDF.Col(colName).Float() {
 plotVals[i] = floatVal
 }

 // Make a plot and set its title.
 p, err := plot.New()
 if err != nil {
 log.Fatal(err)
 }
 p.Title.Text = fmt.Sprintf("Histogram of a %s", colName)

 // Create a histogram of our values drawn
 // from the standard normal.
 h, err := plotter.NewHist(plotVals, 16)
 if err != nil {
 log.Fatal(err)
 }

 // Normalize the histogram.
 h.Normalize(1)

 // Add the histogram to the plot.
 p.Add(h)

 // Save the plot to a PNG file.
 if err := p.Save(4*vg.Inch, 4*vg.Inch, colName+"_hist.png"); err != nil {
 log.Fatal(err)
 }
}

This program will create a .png image for each histogram:

Now, looking at these histograms and the summary statistics that we calculated, we
need to consider if we are working within the assumptions of linear regression. In
particular, we can see that not all of our variables are normally distributed (that is,
they are in a bell shape). The sales might be somewhat bell-shaped, but the others do
not look to be normal.

We could use a statistical tool, such as a quantile-quantile (q-q) plot, to determine
how close the distributions are to normal distributions, and we could even perform a
statistical test to determine the probability of the variables following a normal
distribution. However, most of the time, we can get a general idea from the
histograms.

Now we have to make a decision. At least some of our data does not technically fit
within the assumptions of our linear regression model. We could now do one of the
following:

Try to transform our variables (with, for example, a power transformation) that
follow a normal distribution, and then use these transformed variables in our
linear regression model. The advantage of this option is that we would be

operating within the assumptions of the model. The disadvantage is that we
would be making our model harder to understand, and less interpretable.
Get different data to solve our problem.
Ignore our issue with the linear regression assumptions and try to create the
model.

There may be other views on this, but my recommendation is that you try the third
option first. There is not much harm in this option because you can train the linear
regression model quickly. If you end up with a model that performs nicely, you have
avoided further complications and have a nice simple model. If you end up with a
model that performs poorly, you might need to resort to one of the other options.

Choosing our independent variable
So, now we have some intuition about our data and have come to terms with how our
data fits within the assumptions of the linear regression model. Now, how do we
choose which variable to use as our independent variable in trying to predict our
dependent variable, and average points per game?

The easiest way to make this decision is by visually exploring the correlation
between the dependent variable and all of the choices that you have for independent
variables. In particular, you can make scatter plots (using gonum.org/v1/plot) of your
dependent variable versus each of the other variables:

// Open the advertising dataset file.
f, err := os.Open("Advertising.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a dataframe from the CSV file.
advertDF := dataframe.ReadCSV(f)

// Extract the target column.
yVals := advertDF.Col("Sales").Float()

// Create a scatter plot for each of the features in the dataset.
for _, colName := range advertDF.Names() {

 // pts will hold the values for plotting
 pts := make(plotter.XYs, advertDF.Nrow())

 // Fill pts with data.
 for i, floatVal := range advertDF.Col(colName).Float() {
 pts[i].X = floatVal
 pts[i].Y = yVals[i]
 }

 // Create the plot.
 p, err := plot.New()
 if err != nil {
 log.Fatal(err)
 }
 p.X.Label.Text = colName
 p.Y.Label.Text = "y"
 p.Add(plotter.NewGrid())

 s, err := plotter.NewScatter(pts)
 if err != nil {
 log.Fatal(err)
 }
 s.GlyphStyle.Radius = vg.Points(3)

 // Save the plot to a PNG file.
 p.Add(s)
 if err := p.Save(4*vg.Inch, 4*vg.Inch, colName+"_scatter.png"); err != nil {
 log.Fatal(err)
 }
}

This will create the following scatter plots:

As we look at these scatter plots, we want to deduce which of the attributes (TV,
Radio, and/or Newspaper) have a linear relationship with our dependent variable,
Sales. That is, could we draw a line on any of these scatter plots that would fit the
trend of Sales versus the respective attribute? This is not always possible, and it
likely will not be possible for all of the attributes that you have to work with for a
given problem.

In this case, both Radio and TV appear to be somewhat linearly correlated with
Sales. Newspaper may be slightly correlated with Sales, but the correlation is far
from obvious. The linear relationship with TV seems most obvious, so let's start out
with TV as our independent variable in our linear regression model. This would
make our linear regression formula as follows:

One other thing to note here is that the variable TV might not be strictly
homoscedastic, which was discussed earlier as an assumption of linear regression.
This is worth noting (and likely worth documenting in the project), but we will
continue on to see if we can create the linear regression model with some predictive

power. We can always revisit this assumption if our model is behaving poorly, as a
possible explanation.

Creating our training and test sets
To avoid overfitting and make sure that our model can generalize, we are going to
split our dataset into a training set and a test set, as was discussed in Chapter 3,
Evaluation and Validation. We will not bother with a holdout set here, because we
are only going to make one pass through our model training without an iterative back
and forth between training and testing. However, if you are experimenting with
various dependent variables and/or iteratively adjusting any parameters of your
model, you would want to create a holdout set that you save until the end of your
model development process for validation.

We will use github.com/kniren/gota/dataframe to create our training and test datasets
and then save them to respective .csv files. In this case, we will use an 80/20 split for
our training and test data:

// Open the advertising dataset file.
f, err := os.Open("Advertising.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a dataframe from the CSV file.
// The types of the columns will be inferred.
advertDF := dataframe.ReadCSV(f)

// Calculate the number of elements in each set.
trainingNum := (4 * advertDF.Nrow()) / 5
testNum := advertDF.Nrow() / 5
if trainingNum+testNum < advertDF.Nrow() {
 trainingNum++
}

// Create the subset indices.
trainingIdx := make([]int, trainingNum)
testIdx := make([]int, testNum)

// Enumerate the training indices.
for i := 0; i < trainingNum; i++ {
 trainingIdx[i] = i
}

// Enumerate the test indices.
for i := 0; i < testNum; i++ {
 testIdx[i] = trainingNum + i
}

// Create the subset dataframes.
trainingDF := advertDF.Subset(trainingIdx)
testDF := advertDF.Subset(testIdx)

// Create a map that will be used in writing the data
// to files.
setMap := map[int]dataframe.DataFrame{
 0: trainingDF,
 1: testDF,
}

// Create the respective files.
for idx, setName := range []string{"training.csv", "test.csv"} {

 // Save the filtered dataset file.
 f, err := os.Create(setName)
 if err != nil {
 log.Fatal(err)
 }

 // Create a buffered writer.
 w := bufio.NewWriter(f)

 // Write the dataframe out as a CSV.
 if err := setMap[idx].WriteCSV(w); err != nil {
 log.Fatal(err)
 }
}

This code will output the following training and test sets that we will use:

$ wc -l *.csv
 201 Advertising.csv
 41 test.csv
 161 training.csv
 403 total

The data that we were using here was not sorted or ordered by data in
any fashion. However, if you are dealing with data that is sorted by
response, by date, or in any other way, it is important that you
randomly split your data into training and test sets. If you do not do
this, your training and test sets may include only certain ranges of the
response, may be influenced artificially by time/date, and so on.

Training our model
Next, we are going to actually train, or fit, our linear regression model. If you
remember, this just means that we are finding the slope (m) and intercept (b) for the
line that minimizes the sum of the squared errors. To perform this training, we will
use a really great package from Sajari: github.com/sajari/regression. Sajari is a web
search company that relies heavily on Go and machine learning, and they use github.c
om/sajari/regression in production.

To train a regression model using github.com/sajari/regression, we need to initialize a
regression.Regression value, set a couple of labels, and fill the regression.Regression
value with labeled training data points. After this, training our linear regression
model is as easy as calling the Run() method on the regression.Regression value:

// Open the training dataset file.
f, err := os.Open("training.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)

// Read in all of the CSV records
reader.FieldsPerRecord = 4
trainingData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// In this case we are going to try and model our Sales (y)
// by the TV feature plus an intercept. As such, let's create
// the struct needed to train a model using github.com/sajari/regression.
var r regression.Regression
r.SetObserved("Sales")
r.SetVar(0, "TV")

// Loop of records in the CSV, adding the training data to the regression value.
for i, record := range trainingData {

 // Skip the header.
 if i == 0 {
 continue
 }

 // Parse the Sales regression measure, or "y".
 yVal, err := strconv.ParseFloat(record[3], 64)
 if err != nil {
 log.Fatal(err)

http://github.com/sajari/regression
http://github.com/sajari/regression

 }

 // Parse the TV value.
 tvVal, err := strconv.ParseFloat(record[0], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Add these points to the regression value.
 r.Train(regression.DataPoint(yVal, []float64{tvVal}))
}

// Train/fit the regression model.
r.Run()

// Output the trained model parameters.
fmt.Printf("\nRegression Formula:\n%v\n\n", r.Formula)

Compiling and running this will result in the trained linear regression formula being
printed to stdout:

$ go build
$./myprogram

Regression Formula:
Predicted = 7.07 + TV*0.05

Here, we can see that the package determined our linear regression line with an
intercept of 7.07 and a slope of 0.5. We can perform a little mental check here,
because we saw in the scatter plots how the correlation between TV and Sales was
up and to the right (that is, a positive correlation). This means that the slope should
be positive in the formula, which it is.

Evaluating the trained model
We now need to measure the performance of our model to see if we really have any
power to predict Sales using TV as in independent variable. To do this, we can load
in our test set, make predictions using our trained model for each test example, and
then calculate one of the evaluation metrics discussed in Chapter 3, Evaluation and
Validation.

For this problem, let's use the Mean Absolute Error (MAE) as our evaluation metric.
This seems reasonable, because it results in something directly comparable with our
Sales values and we do not have to be too worried about outliers or extreme values.

To calculate the predicted Sales values using our trained regression.Regression value,
we just need to parse the values in our test set and call the Predict() method on the
regression.Regression value. We will then take the difference of these predicted values
from the observed values, get the absolute value of the difference, and then add up
all of the absolute values to get the MAE:

// Open the test dataset file.
f, err = os.Open("test.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a CSV reader reading from the opened file.
reader = csv.NewReader(f)

// Read in all of the CSV records
reader.FieldsPerRecord = 4
testData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// Loop over the test data predicting y and evaluating the prediction
// with the mean absolute error.
var mAE float64
for i, record := range testData {

 // Skip the header.
 if i == 0 {
 continue
 }

 // Parse the observed Sales, or "y".
 yObserved, err := strconv.ParseFloat(record[3], 64)
 if err != nil {

 log.Fatal(err)
 }

 // Parse the TV value.
 tvVal, err := strconv.ParseFloat(record[0], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Predict y with our trained model.
 yPredicted, err := r.Predict([]float64{tvVal})

 // Add the to the mean absolute error.
 mAE += math.Abs(yObserved-yPredicted) / float64(len(testData))
}

// Output the MAE to standard out.
fmt.Printf("MAE = %0.2f\n\n", mAE)

Compiling and running this evaluation gives the following result:

$ go build
$./myprogram

Regression Formula:
Predicted = 7.07 + TV*0.05

MAE = 3.01

How do we know if MAE = 3.01 is good or bad? This is, again, why having a good
mental model of your data is important. If you remember, we already computed the
mean, range, and standard deviation of sales. The mean sales value was 14.02 and the
standard deviation was 5.21. Thus, our MAE is less than the standard deviations of
our sales values and is about 20% of the mean value, and our model has some
predictive power.

So, congratulations! We have built our first machine learning model that has
predictive power!

To get better intuition about how our model is performing, we can also create a plot
to help us visualize the linear regression line. This can be done with
gonum.org/v1/plot. First, however, let's create a predict function that allows us to make
our predictions without importing github.com/sajari/regression. This gives us a
lightweight, in-memory version of the trained model:

// predict uses our trained regression model to made a prediction.
func predict(tv float64) float64 {
 return 7.07 + tv*0.05
}

Then, we can create the visualization of our regression line:

// Open the advertising dataset file.
f, err := os.Open("Advertising.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a dataframe from the CSV file.
advertDF := dataframe.ReadCSV(f)

// Extract the target column.
yVals := advertDF.Col("Sales").Float()

// pts will hold the values for plotting.
pts := make(plotter.XYs, advertDF.Nrow())

// ptsPred will hold the predicted values for plotting.
ptsPred := make(plotter.XYs, advertDF.Nrow())

// Fill pts with data.
for i, floatVal := range advertDF.Col("TV").Float() {
 pts[i].X = floatVal
 pts[i].Y = yVals[i]
 ptsPred[i].X = floatVal
 ptsPred[i].Y = predict(floatVal)
}

// Create the plot.
p, err := plot.New()
if err != nil {
 log.Fatal(err)
}
p.X.Label.Text = "TV"
p.Y.Label.Text = "Sales"
p.Add(plotter.NewGrid())

// Add the scatter plot points for the observations.
s, err := plotter.NewScatter(pts)
if err != nil {
 log.Fatal(err)
}
s.GlyphStyle.Radius = vg.Points(3)

// Add the line plot points for the predictions.
l, err := plotter.NewLine(ptsPred)
if err != nil {
 log.Fatal(err)
}
l.LineStyle.Width = vg.Points(1)
l.LineStyle.Dashes = []vg.Length{vg.Points(5), vg.Points(5)}

// Save the plot to a PNG file.
p.Add(s, l)
if err := p.Save(4*vg.Inch, 4*vg.Inch, "regression_line.png"); err != nil {
 log.Fatal(err)
}

It will produce this plot when compiled and run:

As you can see, our trained linear regression line follows the linear trend of the real
data points. This is another visual confirmation that we are on the right track!

Multiple linear regression
Linear regression is not limited to simple formulas of lines that depend on only one
independent variable. Multiple linear regression is similar to what we discussed
previously, but here we have multiple independent variables (x1, x2, and so on). In
this case, our simple equation of a line is as follows:

Here, the x's are the various independent variables and the m's are the various slopes
associated with those independent variables. We also still have an intercept, b.

Multiple linear regression is a little harder to visualize and think about because this is
no longer a line that can be visualized in two dimensions. It is a linear surface in two,
three, or more dimensions. However, many of the same techniques that we used for
our single linear regression will carry through.

Multiple linear regression has the same assumptions as regular linear regression.
However, there are a few more pitfalls that we should keep in mind:

Overfitting: By adding more and more independent variables to our model, we
are increasing our model complexity, which puts us at risk of overfitting. One
technique to deal with this problem, which I would recommend looking into, is
called regularization. Regularization creates a penalty term in your model that
is a function of the complexity of your model, which helps keep this effect in
check.
Relative Scale: In some cases, one of your independent variables will be orders
of magnitude different in scale than another independent variable. The larger of
these could wash out any effect of the smaller, and you may need to consider
normalizing your variables.

With this in mind, let's try to expand our Sales model from a linear regression model
to a multiple regression model. Looking back at our scatter plots from the previous
section, we can see that Radio also appears to be linearly correlated with Sales, so
let's try to create a multiple linear regression model that looks like the following:

To do this with github.com/sajari/regression, we just need to label another variable in the

http://github.com/sajari/regression

regression.Regression value and make sure that these values get paired in the training
data points. We will then run the regression and see how the formula comes out:

// Open the training dataset file.
f, err := os.Open("training.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)

// Read in all of the CSV records
reader.FieldsPerRecord = 4
trainingData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// In this case we are going to try and model our Sales
// by the TV and Radio features plus an intercept.
var r regression.Regression
r.SetObserved("Sales")
r.SetVar(0, "TV")
r.SetVar(1, "Radio")

// Loop over the CSV records adding the training data.
for i, record := range trainingData {

 // Skip the header.
 if i == 0 {
 continue
 }

 // Parse the Sales.
 yVal, err := strconv.ParseFloat(record[3], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the TV value.
 tvVal, err := strconv.ParseFloat(record[0], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the Radio value.
 radioVal, err := strconv.ParseFloat(record[1], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Add these points to the regression value.
 r.Train(regression.DataPoint(yVal, []float64{tvVal, radioVal}))
}

// Train/fit the regression model.
r.Run()

// Output the trained model parameters.
fmt.Printf("\nRegression Formula:\n%v\n\n", r.Formula)

Compiling and running this gives us the following regression formula:

$ go build
$./myprogram

Regression Formula:
Predicted = 2.93 + TV*0.05 + Radio*0.18

As you can see, the regression formula now includes an additional term for the Radio
independent variable. The intercept value has also changed from our previous single
regression model.

We can test this model similarly to the single regression model using the Predict
method:

// Open the test dataset file.
f, err = os.Open("test.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a CSV reader reading from the opened file.
reader = csv.NewReader(f)

// Read in all of the CSV records
reader.FieldsPerRecord = 4
testData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// Loop over the test data predicting y and evaluating the prediction
// with the mean absolute error.
var mAE float64
for i, record := range testData {

 // Skip the header.​
 if i == 0 {
 continue
 }

 // Parse the Sales.
 yObserved, err := strconv.ParseFloat(record[3], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the TV value.
 tvVal, err := strconv.ParseFloat(record[0], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the Radio value.
 radioVal, err := strconv.ParseFloat(record[1], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Predict y with our trained model.
 yPredicted, err := r.Predict([]float64{tvVal, radioVal})

 // Add the to the mean absolute error.
 mAE += math.Abs(yObserved-yPredicted) / float64(len(testData))
}

// Output the MAE to standard out.
fmt.Printf("MAE = %0.2f\n\n", mAE)

Running this reveals the following MAE for our new multiple regression model:

$ go build
$./myprogram

Regression Formula:
Predicted = 2.93 + TV*0.05 + Radio*0.18

MAE = 1.26

Our new multiple regression model has improved our MAE! Now we are definitely
in pretty good shape to predict Sales based on our advertising spends. You could also
try adding Newspaper to the model as a follow-up exercise to see how the model
performance is influenced.

Remember that as you add more complication to the model, you are
sacrificing simplicity and you are potentially in danger of overfitting,
so you should only add more complication if the gains in model
performance actually create more value for your use case.

Nonlinear and other types of regression
Although we have focused on linear regression in this chapter, you certainly are not
limited to performing regression with linear formulas. You can model your
dependent variable by one or more nonlinear terms such as powers, exponentials, or
other transformations on your independent variables. For example, we could model
Sales by a polynomial series of TV terms:

Keep in mind, however, that as you add this complexity, you are again putting
yourself in danger of overfitting.

In terms of implementing non-linear regressions, you cannot use
github.com/sajari/regression, which is limited to linear regression. However, go-
hep.org/x/hep/fit allows you to fit or train certain nonlinear models, and there are
other various people in the Go community that have, or are, developing other tools
for nonlinear modeling.

There are also other linear regression techniques, outside of OLS, that help overcome
some of the assumptions and weaknesses associated with least squared linear
regression. These include ridge regression and lasso regression. Both of these
techniques penalize regression coefficients so as to mitigate the effects of
multicollinearity and non-normality of independent variables.

In terms of Go implementations, ridge regression is implemented in
github.com/berkmancenter/ridge. As opposed to github.com/sajari/regression, our
independent variable and dependent variable data is input into
github.com/berkmancenter/ridge via gonum matrices. Thus, to illustrate this method,
let's first form a matrix containing our advertising spend features (TV, Radio, and
Newspaper) and a matrix containing our Sales data. Note that in
github.com/berkmancenter/ridge, we need to explicitly add a column to our input
independent variable matrix for an intercept if we want to have an intercept in our
model. Each value in this column is just 1.0.

// Open the training dataset file.
f, err := os.Open("training.csv")
if err != nil {
 log.Fatal(err)
}

defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)
reader.FieldsPerRecord = 4

// Read in all of the CSV records
rawCSVData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// featureData will hold all the float values that will eventually be
// used to form our matrix of features.
featureData := make([]float64, 4*len(rawCSVData))
yData := make([]float64, len(rawCSVData))

// featureIndex and yIndex will track the current index of the matrix values.
var featureIndex int
var yIndex int

// Sequentially move the rows into a slice of floats.
for idx, record := range rawCSVData {

 // Skip the header row.
 if idx == 0 {
 continue
 }

 // Loop over the float columns.
 for i, val := range record {

 // Convert the value to a float.
 valParsed, err := strconv.ParseFloat(val, 64)
 if err != nil {
 log.Fatal(err)
 }

 if i < 3 {

 // Add an intercept to the model.
 if i == 0 {
 featureData[featureIndex] = 1
 featureIndex++
 }

 // Add the float value to the slice of feature floats.
 featureData[featureIndex] = valParsed
 featureIndex++
 }

 if i == 3 {

 // Add the float value to the slice of y floats.
 yData[yIndex] = valParsed
 yIndex++
 }
 }
}

// Form the matrices that will be input to our regression.

features := mat64.NewDense(len(rawCSVData), 4, featureData)
y := mat64.NewVector(len(rawCSVData), yData)

Next, we create a new ridge.RidgeRegression value with our independent and
dependent variable matrices and call the Regress() method to train our model. We can
then print out our trained regression formula:

// Create a new RidgeRegression value, where 1.0 is the
// penalty value.
r := ridge.New(features, y, 1.0)

// Train our regression model.
r.Regress()

// Print our regression formula.
c1 := r.Coefficients.At(0, 0)
c2 := r.Coefficients.At(1, 0)
c3 := r.Coefficients.At(2, 0)
c4 := r.Coefficients.At(3, 0)
fmt.Printf("\nRegression formula:\n")
fmt.Printf("y = %0.3f + %0.3f TV + %0.3f Radio + %0.3f Newspaper\n\n", c1, c2, c3, c4)

Compiling this program and running it gives the following regression formula:

$ go build
$./myprogram

Regression formula:
y = 3.038 + 0.047 TV + 0.177 Radio + 0.001 Newspaper

Here, you can that see the coefficients for TV and Radio are similar to what we got
with least squares regression, but they are slightly different. Also, note that we went
ahead and added a term for the Newspaper feature.

We can test this ridge regression formula by creating our own predict function:

// predict uses our trained regression model to made a prediction based on a
// TV, Radio, and Newspaper value.
func predict(tv, radio, newspaper float64) float64 {
 return 3.038 + tv*0.047 + 0.177*radio + 0.001*newspaper
}

Then, we use this predict function to test our ridge regression formula on our test
examples:

// Open the test dataset file.
f, err := os.Open("test.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.

reader := csv.NewReader(f)

// Read in all of the CSV records
reader.FieldsPerRecord = 4
testData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// Loop over the holdout data predicting y and evaluating the prediction
// with the mean absolute error.
var mAE float64
for i, record := range testData {

 // Skip the header.
 if i == 0 {
 continue
 }

 // Parse the Sales.
 yObserved, err := strconv.ParseFloat(record[3], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the TV value.
 tvVal, err := strconv.ParseFloat(record[0], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the Radio value.
 radioVal, err := strconv.ParseFloat(record[1], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the Newspaper value.
 newspaperVal, err := strconv.ParseFloat(record[2], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Predict y with our trained model.
 yPredicted := predict(tvVal, radioVal, newspaperVal)

 // Add the to the mean absolute error.
 mAE += math.Abs(yObserved-yPredicted) / float64(len(testData))
}

// Output the MAE to standard out.
fmt.Printf("\nMAE = %0.2f\n\n", mAE)

Compiling and running this gives us the following new MAE:

$ go build
$./myprogram

MAE = 1.26

Notice that adding Newspaper to the model did not actually improve our MAE. Thus, this
would not be a good idea in this case, because it is adding further complications and
not providing any significant changes in our model performance.

Any complication or sophistication that you are adding to a model
should be accompanied by a measurable justification for this added
complication. Using a sophisticated model because it is intellectually
interesting is a recipe for headaches.

References
Linear regression:

Ordinary least squares regression explained visually: http://setosa.io/ev/ordinary-leas
t-squares-regression/

github.com/sajari/regression docs: http://godoc.org/github.com/sajari/regression

Multiple regression:

Multiple regression visualization: http://shiny.stat.calpoly.edu/3d_regression/

Nonlinear and other regressions:

go-hep.org/x/hep/fit docs: https://godoc.org/go-hep.org/x/hep/fit
github.com/berkmancenter/ridge docs: https://godoc.org/github.com/berkmancenter/ridge

http://setosa.io/ev/ordinary-least-squares-regression/
http://godoc.org/github.com/sajari/regression
http://shiny.stat.calpoly.edu/3d_regression/
https://godoc.org/go-hep.org/x/hep/fit
https://godoc.org/github.com/berkmancenter/ridge

Summary
Congratulations! You have officially done machine learning using Go. In particular,
you have learned about regression models, including linear regression, multiple
regression, nonlinear regression, and ridge regression. You should be able to
implement basic linear regressions and multiple regressions in Go.

Now that we have our feet wet with machine learning, we are going to move on to
classification problems in the next chapter.

Classification
When many people think about machine learning or artificial intelligence, they
probably first think about machine learning to solve classification problems. These
are problems where we want to train a model to predict one of a finite number of
distinct categories. For example, we may want to predict if a financial transaction is
fraudulent or not fraudulent, or we may want to predict whether an image contains a
hot dog, airplane, cat, and so on, or none of those things.

The categories that we try to predict could number from two to many hundreds or
thousands. In addition, we could be making our predictions based on only a few
attributes or many attributes. All of the scenarios arising from these combinations
lead to a host of models with a corresponding host of assumptions, advantages, and
disadvantages.

We will cover some of these models in this chapter and later in the book, but there
are many that we will skip for brevity. However, as with any of the problems that we
tackle in this book, simplicity and integrity should be a major concern as we choose
a type of model for our use cases. There are highly sophisticated and complicated
models that solve certain problems very well, but these models are not necessary for
many use cases. Applying simple and interpretable classification models should
continue to be one of our goals.

Understanding classification model
jargon
As with regression, classification problems come with their own set of jargon. There
is some overlap with terms used in regression, but there are also some new terms
specific to classification:

Categories, labels, or classes: These terms are used interchangeably to
represent the various distinct choices for our prediction. For example, we could
have a fraud class and a not fraud class, or we could have sitting, standing,
running, and walking categories.
Binary classification: This type of classification is one with only two
categories or classes, such as yes/no or fraud/not fraud.
Multi-class classification: This type of classification is one with more than two
classes, such as a classification trying to assign one of hot dog, airplane, cat,
and so on, to an image.
Labeled data or annotated data: Real-world observations or records that have
been paired with their corresponding class. For example, if we are predicting
fraud via transaction time, this data would include a bunch of measured
transaction times along with a corresponding label indicating whether they were
fraudulent or not.

Logistic regression
The first classification model that we are going to explore is called logistic
regression. As you can tell from the name, this method is based on a regression,
which we discussed in more detail in the previous chapter. However, this particular
regression uses a function that is particularly well suited to classification problems.

This is also a simple and interpretable model, which makes it a great first choice
when solving classification problems. There are a variety of existing Go packages
that implement logistic regression for you, including github.com/xlvector/hector,
github.com/cdipaolo/goml, and github.com/sjwhitworth/golearn. However, in our
example, we will implement logistic regression from scratch, so that you can both
form a full understanding of what goes into training a model and understand the
simplicity of logistic regression. Further, in some cases, you may want to utilize a
from-scratch implementation as illustrated in the following section to avoid extra
dependencies in your code base.

Overview of logistic regression
Let's say that we have two classes, A and B, that we are trying to predict. Let's also
suppose that we are trying to predict A or B based on a variable x. Classes A and B
might look something like this when plotted against x:

Although we could draw a line modeling this behavior, this is clearly not linear
behavior and does not fit the assumptions of linear regression. The shape of the data
is more of a step from one class to another class as a function of x. What we really
need is some function that goes to and stays at A for low values of x, and goes to and
stays at B for higher values of x.

Well, we are in luck! There is such a function. The function is called the logistic
function, and it gives logistic regression its name. It has the following form:

Implemented in Go, this looks as follows:

// logistic implements the logistic function, which
// is used in logistic regression.
func logistic(x float64) float64 {
 return 1 / (1 + math.Exp(-x))
}

Let's plot the logistic function with gonum.org/v1/plot to see what it looks like:

// Create a new plot.
p, err := plot.New()
if err != nil {
 log.Fatal(err)

}
p.Title.Text = "Logistic Function"
p.X.Label.Text = "x"
p.Y.Label.Text = "f(x)"

// Create the plotter function.
logisticPlotter := plotter.NewFunction(func(x float64) float64 { return logistic(x) })
logisticPlotter.Color = color.RGBA{B: 255, A: 255}

// Add the plotter function to the plot.
p.Add(logisticPlotter)

// Set the axis ranges. Unlike other data sets,
// functions don't set the axis ranges automatically
// since functions don't necessarily have a
// finite range of x and y values.
p.X.Min = -10
p.X.Max = 10
p.Y.Min = -0.1
p.Y.Max = 1.1

// Save the plot to a PNG file.
if err := p.Save(4*vg.Inch, 4*vg.Inch, "logistic.png"); err != nil {
 log.Fatal(err)
}

Compiling and running this plotting code creates the following graph:

As you can see, this function has the step-like behavior that we are looking for to
model the steps between classes A and B (imagining that A corresponds to 0.0 and B
corresponds to 1.0).

Not only that, the logistic function has some really convenient properties that we can
take advantage of while doing classification. To see this, let's take a step back and
consider how we might model p, the probability of one of the classes A or B,
occurring. One way to do this would be to model the log of the odds ratio, log(p /
(1 - p)) linearly, where the odds ratio tells us how the presence or absence of class A

has an effect on the presence or absence of class B. The reason for using this strange
log (referred to as logit) will make sense shortly, but for now, let's just assume that
we want to model this linearly as follows:

Now, if we take the exponential of this odds ratio, we get the following:

This is what we get when we simplify the preceding equation:

If you look at the right-hand side of this equation, you will see that our logistic
function has popped up. This equation then gives some formal underpinning to our
assumption that the logistic function would be good for modeling the separation
between two classes: A and B. If, for instance, we take p to be the probability of
observing B and we fit the logistic function to our data, we could get a model that
predicts the probability of B as a function of x (and thus one minus the probability of
predicting A). This is pictured in the following plot, in which we have formalized our
original plot of A and B and overlaid the logistic function that models probability:

Thus, creating a logistic regression model involves finding the logistic function that
maximizes the number of observations that we can predict with the logistic function.

Note that one advantage of logistic regression is that it remains simple
and interpretable. However, the coefficients m and b in the model do
not have the same interpretation as in linear regression. The coefficient
m (or coefficients m1, m2, and so on, if we have multiple independent
variables) has an exponential relationship with the odds ratio. Thus, if
you have a coefficient m of 0.5, this is related to the odds ratio via
exp(0.5 x). If we had two coefficients exp(0.5 x1 + 1.0 x2), we could
conclude that the odds of the modeled class for x1 is exp(0.5) = 1.65
when compared to exp(1.0) = 2.72 for x2. In other words, we cannot
directly compare the coefficients. We need to keep them in the context
of the exponential.

Logistic regression assumptions and
pitfalls
Remember the long list of assumptions that applied to linear regression? Well,
logistic regression is not limited by those same assumptions. However, there are still
some important assumptions that we make when using logistic regression:

Linear relationship with the log odds: As we discussed earlier, underlying
logistic regression is an assumption that we can model the log of the odds ratio
with a line.
Encoding of dependent variable: When we set up our model earlier, we
assumed that we were trying to predict the probability of B, where a probability
of 1.0 corresponded to a positive B example. Thus, we need to prepare our data
with this type of encoding. This will be demonstrated in the following example.
Independence of observations: Each of the examples of x in our data must be
independent. That is, we have to avoid things like including the same example
several times.

Also, some common pitfalls of logistic regression to keep in mind are as follows:

Logistic regression can be more sensitive to outliers than other classification
techniques. Keep this in mind and try to profile your data accordingly.
As logistic regression relies on an exponential function that never truly goes to
0.0 or 1.0 (except at +/- infinity), you may have very small degradations in your
evaluation metric.

All being said, logistic regression is a fairly robust method that remains interpretable.
It is a flexible model that should be at the top of your list when considering how you
might solve classification problems.

Logistic regression example
The dataset that we are going to use to illustrate logistic regression is data
corresponding to loans issues by LendingClub. LendingClub publishes this data
quarterly and it can be found in its original form at https://www.lendingclub.com/info/dow
nload-data.action. We will work with a trimmed down and simplified version of this
data (available in the code bundles that come with this book) including only two
columns, FICO.Range (indicating a loan applicants credit score as given by Fair, Isaac
and Company, or FICO) and Interest.Rate (indicating the interest rate of a loan
granted to the loan applicant). The data looks like this:

$ head loan_data.csv
FICO.Range,Interest.Rate
735-739,8.90%
715-719,12.12%
690-694,21.98%
695-699,9.99%
695-699,11.71%
670-674,15.31%
720-724,7.90%
705-709,17.14%
685-689,14.33%

Our goal for this exercise will be to create a logistic regression model that will tell
us, for a given credit score, if we can get a loan at or below a certain interest rate. For
example, let's say that we are interested in getting an interest rate below 12%. Our
model would tell us that we could (yes, or class one) or could not (no, class two) get
a loan, given a certain credit score.

https://www.lendingclub.com/info/download-data.action

Cleaning and profiling the data
Looking at the preceding sample of the loan data, we can see that it is not exactly in
the form that we need for our classification. Specifically, we need to do the
following:

1. Remove non-numerical characters from the interest rate and FICO score
columns.

2. Encode our interest rate into two classes for a given interest rate threshold. We
will use 1.0 to represent our first class (yes, we can get the loan with that
interest rate) and 0.0 to represent our second class (no, we cannot get the loan
with that interest rate).

3. Select a single value for the FICO credit score. We are given a range of credit
scores, but we need a single value. The average, minimum, or maximum score
are natural choices and, in our example, we will use the minimum value (to be
conservative).

4. In this case, we are going to standardize our FICO scores (by subtracting the
minimum score value from each score and then dividing by the score range).
This will spread out our score values between 0.0 and 1.0. We need to have a
justification for this as it is making our data less readable. However, there is a
good justification. We will be training our logistic regression using a gradient
descent method that can perform better with normalized data. In fact, when
running the same example with non-normalized data, there are convergence
issues.

Let's write a Go program that will clean our data for a given interest rate (12% for
our example). We will read in the data from a given file, parse the values using
encoding/csv, and put the cleaned data in an output file called clean_loan_data.csv.
During the cleaning of the data we will make use of the following minimum and
maximum values, that we define as constants:

const (
 scoreMax = 830.0
 scoreMin = 640.0
)

Then, the actual cleaning functionality is shown in the following code:

// Open the loan dataset file.
f, err := os.Open("loan_data.csv")

if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)
reader.FieldsPerRecord = 2

// Read in all of the CSV records
rawCSVData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// Create the output file.
f, err = os.Create("clean_loan_data.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a CSV writer.
w := csv.NewWriter(f)

// Sequentially move the rows writing out the parsed values.
for idx, record := range rawCSVData {

 // Skip the header row.
 if idx == 0 {

 // Write the header to the output file.
 if err := w.Write(record); err != nil {
 log.Fatal(err)
 }
 continue
 }

 // Initialize a slice to hold our parsed values.
 outRecord := make([]string, 2)

 // Parse and standardize the FICO score.
 score, err := strconv.ParseFloat(strings.Split(record[0], "-")[0], 64)
 if err != nil {
 log.Fatal(err)
 }

 outRecord[0] = strconv.FormatFloat((score-scoreMin)/(scoreMax-scoreMin), 'f', 4, 64)

 // Parse the Interest rate class.
 rate, err := strconv.ParseFloat(strings.TrimSuffix(record[1], "%"), 64)
 if err != nil {
 log.Fatal(err)
 }

 if rate <= 12.0 {
 outRecord[1] = "1.0"

 // Write the record to the output file.
 if err := w.Write(outRecord); err != nil {

 log.Fatal(err)
 }
 continue
 }

 outRecord[1] = "0.0"

 // Write the record to the output file.
 if err := w.Write(outRecord); err != nil {
 log.Fatal(err)
 }
}

// Write any buffered data to the underlying writer (standard output).
w.Flush()

if err := w.Error(); err != nil {
 log.Fatal(err)
}

Compiling this and running it confirms our desired output:

$ go build
$./example3
$ head clean_loan_data.csv
FICO_score,class
0.5000,1.0
0.3947,0.0
0.2632,0.0
0.2895,1.0
0.2895,1.0
0.1579,0.0
0.4211,1.0
0.3421,0.0
0.2368,0.0

Great! We have our data in the desired format. Now, let's gain a little more intuition
about our data by creating histograms for the FICO score and interest rate data and
calculating summary statistics. We will utilize github.com/kniren/gota/dataframe to
calculate summary statistics and gonum.org/v1/plot to generate histograms:

// Open the CSV file.
loanDataFile, err := os.Open("clean_loan_data.csv")
if err != nil {
 log.Fatal(err)
}
defer loanDataFile.Close()

// Create a dataframe from the CSV file.
loanDF := dataframe.ReadCSV(loanDataFile)

// Use the Describe method to calculate summary statistics
// for all of the columns in one shot.
loanSummary := loanDF.Describe()

// Output the summary statistics to stdout.
fmt.Println(loanSummary)

// Create a histogram for each of the columns in the dataset.
for _, colName := range loanDF.Names() {

 // Create a plotter.Values value and fill it with the
 // values from the respective column of the dataframe.
 plotVals := make(plotter.Values, loanDF.Nrow())
 for i, floatVal := range loanDF.Col(colName).Float() {
 plotVals[i] = floatVal
 }

 // Make a plot and set its title.
 p, err := plot.New()
 if err != nil {
 log.Fatal(err)
 }
 p.Title.Text = fmt.Sprintf("Histogram of a %s", colName)

 // Create a histogram of our values.
 h, err := plotter.NewHist(plotVals, 16)
 if err != nil {
 log.Fatal(err)
 }

 // Normalize the histogram.
 h.Normalize(1)

 // Add the histogram to the plot.
 p.Add(h)

 // Save the plot to a PNG file.
 if err := p.Save(4*vg.Inch, 4*vg.Inch, colName+"_hist.png"); err != nil {
 log.Fatal(err)
 }
}

Running this results in the following output:

$ go build
$./myprogram
[7x3] DataFrame

 column FICO_score class
 0: mean 0.346782 0.396800
 1: stddev 0.184383 0.489332
 2: min 0.000000 0.000000
 3: 25% 0.210500 0.000000
 4: 50% 0.315800 0.000000
 5: 75% 0.447400 1.000000
 6: max 1.000000 1.000000
 <string> <float> <float>

$ ls *.png
class_hist.png FICO_score_hist.png

We can see that the average credit score is pretty high at 706.1 and there is a pretty
good balance between the classes one and zero, as indicated by a mean near 0.5.
However, there appears to be more class zero examples (which corresponds to not

receiving a loan with an interest rate of 12% or lower). Also, the *.png histogram
graphs look as follows:

This confirms our suspicions about the balance between the classes and shows us
that the FICO scores are skewed a bit to lower values.

Creating our training and test sets
Similar to our examples in the previous chapter, we need to split our data into a
training and test set. We will once again use github.com/kniren/gota/dataframe to do
this:

// Open the clean loan dataset file.
f, err := os.Open("clean_loan_data.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a dataframe from the CSV file.
// The types of the columns will be inferred.
loanDF := dataframe.ReadCSV(f)

// Calculate the number of elements in each set.
trainingNum := (4 * loanDF.Nrow()) / 5
testNum := loanDF.Nrow() / 5
if trainingNum+testNum < loanDF.Nrow() {
 trainingNum++
}

// Create the subset indices.
trainingIdx := make([]int, trainingNum)
testIdx := make([]int, testNum)

// Enumerate the training indices.
for i := 0; i < trainingNum; i++ {
 trainingIdx[i] = i
}

// Enumerate the test indices.
for i := 0; i < testNum; i++ {
 testIdx[i] = trainingNum + i
}

// Create the subset dataframes.
trainingDF := loanDF.Subset(trainingIdx)
testDF := loanDF.Subset(testIdx)

// Create a map that will be used in writing the data
// to files.
setMap := map[int]dataframe.DataFrame{
 0: trainingDF,
 1: testDF,
}

// Create the respective files.
for idx, setName := range []string{"training.csv", "test.csv"} {

 // Save the filtered dataset file.
 f, err := os.Create(setName)

 if err != nil {
 log.Fatal(err)
 }

 // Create a buffered writer.
 w := bufio.NewWriter(f)

 // Write the dataframe out as a CSV.
 if err := setMap[idx].WriteCSV(w); err != nil {
 log.Fatal(err)
 }
}

Compiling and running this results in two files with our training and test examples:

$ go build
$./myprogram
$ wc -l *.csv
 2046 clean_loan_data.csv
 410 test.csv
 1638 training.csv
 4094 total

Training and testing the logistic
regression model
Now, let's create a function that trains a logistic regression model. This function
needs to perform the following:

1. Accept our FICO score data as an independent variable.
2. Add an intercept to our model.
3. Initialize and optimize the coefficients (or weights) of the logistic regression

model.
4. Return the optimized weights which define our trained model.

To optimize the coefficient/weights, we will use a technique called stochastic
gradient descent. This technique will be covered in greater detail in the Appendix,
Algorithms/Techniques Related to Machine Learning. For now, suffice it to say that
we are trying to make predictions with some non-optimized weights, calculating an
error for those weights, and then updating them iteratively to maximize the
likelihood of making a correct prediction.

An implementation of this optimization is as follows. The function takes the
following as input:

features: A pointer to a gonum mat64.Dense matrix. This matrix includes a
column for any independent variable that we are using (FICO score, in our case)
along with columns of 1.0s representing an intercept.
labels: A slice of floats including all of the class labels corresponding to our
features.
numSteps: A maximum number of iterations for the optimization.
learningRate: An adjustable parameter that helps with the convergence of the
optimization.

The function then outputs the optimized weights for the logistic regression model:

// logisticRegression fits a logistic regression model
// for the given data.
func logisticRegression(features *mat64.Dense, labels []float64, numSteps int, learningRate float64) []float64 {

 // Initialize random weights.
 _, numWeights := features.Dims()

 weights := make([]float64, numWeights)

 s := rand.NewSource(time.Now().UnixNano())
 r := rand.New(s)

 for idx, _ := range weights {
 weights[idx] = r.Float64()
 }

 // Iteratively optimize the weights.
 for i := 0; i < numSteps; i++ {

 // Initialize a variable to accumulate error for this iteration.
 var sumError float64

 // Make predictions for each label and accumulate error.
 for idx, label := range labels {

 // Get the features corresponding to this label.
 featureRow := mat64.Row(nil, idx, features)

 // Calculate the error for this iteration's weights.
 pred := logistic(featureRow[0]*weights[0]
 featureRow[1]*weights[1])
 predError := label - pred
 sumError += math.Pow(predError, 2)

 // Update the feature weights.
 for j := 0; j < len(featureRow); j++ {
 weights[j] += learningRate * predError * pred * (1 - pred) * featureRow[j]
 }
 }
 }

 return weights
}

As you can see, this function is relatively compact and simple. This will keep our
code readable and allow people on our team to quickly understand what is happening
in our model without hiding things in a black box.

Despite the popularity of R and Python in machine learning, you can
see that machine learning algorithms can be implemented quickly and
compactly in Go. Moreover, these implementations immediately
achieve a level of integrity that far surpasses naive implementations in
other languages.

To train our logistic regression model on our training dataset, we will parse our
training file with encoding/csv and then supply the necessary parameters to our
logisticRegression function. This process is as follows, along with some code to
output our trained logistic formula to stdout:

// Open the training dataset file.

f, err := os.Open("training.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)
reader.FieldsPerRecord = 2

// Read in all of the CSV records
rawCSVData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// featureData and labels will hold all the float values that
// will eventually be used in our training.
featureData := make([]float64, 2*len(rawCSVData))
labels := make([]float64, len(rawCSVData))

// featureIndex will track the current index of the features
// matrix values.
var featureIndex int

// Sequentially move the rows into the slices of floats.
for idx, record := range rawCSVData {

 // Skip the header row.
 if idx == 0 {
 continue
 }

 // Add the FICO score feature.
 featureVal, err := strconv.ParseFloat(record[0], 64)
 if err != nil {
 log.Fatal(err)
 }

 featureData[featureIndex] = featureVal

 // Add an intercept.
 featureData[featureIndex+1] = 1.0

 // Increment our feature row.
 featureIndex += 2

 // Add the class label.
 labelVal, err := strconv.ParseFloat(record[1], 64)
 if err != nil {
 log.Fatal(err)
 }

 labels[idx] = labelVal
}

// Form a matrix from the features.
features := mat64.NewDense(len(rawCSVData), 2, featureData)

// Train the logistic regression model.
weights := logisticRegression(features, labels, 100, 0.3)

// Output the Logistic Regression model formula to stdout.
formula := "p = 1 / (1 + exp(- m1 * FICO.score - m2))"
fmt.Printf("\n%s\n\nm1 = %0.2f\nm2 = %0.2f\n\n", formula, weights[0], weights[1])

Compiling and running this training functionality results in the following trained
logistic regression formula:

$ go build
$./myprogram

p = 1 / (1 + exp(- m1 * FICO.score - m2))

m1 = 13.65
m2 = -4.89

We can then utilize this formula directly to make predictions. Remember, however,
that this model makes a prediction for the probability of getting the loan (at the
interest rate of 12%). As such, we need to utilize a threshold for the probability in
making predictions. For example, we can say that any p of 0.5+ will be deemed
positive (class one, or getting the loan) and any lower p values will be deemed
negative. This type of prediction is implemented in the following function:

// predict makes a prediction based on our
// trained logistic regression model.
func predict(score float64) float64 {

 // Calculate the predicted probability.
 p := 1 / (1 + math.Exp(-13.65*score+4.89))

 // Output the corresponding class.
 if p >= 0.5 {
 return 1.0
 }

 return 0.0
}

Using this predict function, we can evaluate our trained logistic regression model
using one of the evaluation metrics introduced earlier in the book. In this case, let's
use accuracy, as shown in the following code:

// Open the test examples.
f, err := os.Open("test.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)

// observed and predicted will hold the parsed observed and predicted values
// form the labeled data file.
var observed []float64
var predicted []float64

// line will track row numbers for logging.
line := 1

// Read in the records looking for unexpected types in the columns.
for {

 // Read in a row. Check if we are at the end of the file.
 record, err := reader.Read()
 if err == io.EOF {
 break
 }

 // Skip the header.
 if line == 1 {
 line++
 continue
 }

 // Read in the observed value.
 observedVal, err := strconv.ParseFloat(record[1], 64)
 if err != nil {
 log.Printf("Parsing line %d failed, unexpected type\n", line)
 continue
 }

 // Make the corresponding prediction.
 score, err := strconv.ParseFloat(record[0], 64)
 if err != nil {
 log.Printf("Parsing line %d failed, unexpected type\n", line)
 continue
 }

 predictedVal := predict(score)

 // Append the record to our slice, if it has the expected type.
 observed = append(observed, observedVal)
 predicted = append(predicted, predictedVal)
 line++
}

// This variable will hold our count of true positive and
// true negative values.
var truePosNeg int

// Accumulate the true positive/negative count.
for idx, oVal := range observed {
 if oVal == predicted[idx] {
 truePosNeg++
 }
}

// Calculate the accuracy (subset accuracy).
accuracy := float64(truePosNeg) / float64(len(observed))

// Output the Accuracy value to standard out.
fmt.Printf("\nAccuracy = %0.2f\n\n", accuracy)

Running this test on our data results in the following accuracy:

$ go build
$./myprogram

Accuracy = 0.83

Nice! 83% accuracy is not that bad for a machine learning model that we
implemented in about 30 lines of Go. With this simple model, we were able to
predict whether, given a certain credit score, loan applicants would be accepted for a
loan with less than or equal to 12% interest. Not only that, we did it with real-world
messy data from a real company.

k-nearest neighbors
Moving on from logistic regression, let's try our first non-regression model, k-
nearest neighbors (kNN). kNN is also a simple classification model, and it's one of
the easiest model algorithms to grasp. It follows on from the basic premise that if I
want to classify a record, I should consider other similar records.

kNN is implemented in multiple existing Go packages including
github.com/sjwhitworth/golearn, github.com/rikonor/go-ann, github.com/akreal/knn, and
github.com/cdipaolo/goml. We will be using the github.com/sjwhitworth/golearn
implementation, which will serve as a great introduction to using
github.com/sjwhitworth/golearn in general.

Overview of kNN
As mentioned, kNN operates on the principle that we should classify records
according to similar records. There are some details to be dealt with in defining
similar. However, kNN does not have the complexity of parameters and options that
come with many models.

Imagine again that we have two classes A and B. This time, however, suppose that
we are wanting to classify based on two features, x1 and x2. Visually, this looks
something like the following:

Now, suppose we have a new point of data with an unknown class. This new point of
data will sit somewhere in this space. kNN says that, to classify this new point, we
should perform the following:

1. Find the k nearest point to the new point according to some measure of nearness
(straight distance in this space of x1 and x2, for example).

2. Determine how many of those k nearest neighbors are of class A and how many
are of class B.

3. Classify the new point as the dominant class among the k nearest neighbors.

For example, if we choose k to be four, this would look something as follows:

Our mystery point has three A nearest neighbors and only one B nearest neighbor.
Thus, we would classify the new mystery point as a class A point.

There are many measures of similarity that you can use to determine the k nearest
neighbors. The most common of these is the Euclidean distance, which is just the
straight line distance from one point to the next in the space made up of your features
(x1 and x2 in our example). Others include Manhattan distance, Minkowski
distance, cosine similarity, and Jaccard Similarity.

As with evaluation metrics, there are a whole host of ways that distance
or similarity can be measured. When using kNN, you should look into
the advantages and disadvantages of these measures and choose one
that fits your use case and data. When in doubt, however, you can try
starting with the Euclidean distance.

kNN assumptions and pitfalls
Due to its simplicity, kNN does not have too many assumptions. However, there are
some common pitfalls that you should be aware of as you apply kNN:

kNN is evaluated lazily. By this, we mean that the distances or similarities are
calculated when we need to make a prediction. There is not really anything to
train or fit prior to making a prediction. This has some advantages, but the
calculation and search over points can be slow when you have many data
points.
The choice of k is up to you, but you should put some formalism around
choosing k and provide justification for the k that you choose. A common
technique to choose k is just to search over a range of k values. You could, for
example, start with k = 2. Then, you could start increasing k, and for each k,
evaluate on a test set.
kNN does not take into consideration which features are more important than
other features. Moreover, if the scale of certainty of your features is much larger
than other features, this could unnaturally weight the importance of those larger
features.

kNN example
For this, and the remaining examples in this chapter, we are going to solve a classic
classification problem using a dataset about iris flowers. The dataset looks like this:

$ head iris.csv
sepal_length,sepal_width,petal_length,petal_width,species
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa

The first four columns are various measurements of iris flowers and the last column
is a corresponding species label. The goal of this example will be to create a kNN
classifier that is able to predict the species of an iris flower from a set of
measurements. There are three species of flowers, or three classes, making this a
multi-class classification (in contrast to the binary classification that we did with
logistic regression).

You may remember that we already profiled the iris dataset in detail in
Chapter 2, Matrices, Probability, and Statistics. We will not reprofile the
data here. However, it is still important that we have intuition about
our data as we develop the kNN model. Make sure you flip back to Chap
ter 2, Matrices, Probability, and Statistics, to remind yourself about the
distributions of variables in this dataset.

We will be using github.com/sjwhitworth/golearn in this example.
github.com/sjwhitworth/golearn implements a variety of machine learning models,
including kNN and some others that we will explore shortly.
github.com/sjwhitworth/golearn also implements cross-validation. We will take
advantage of cross-validation here to perform training, testing, and validation, which
is convenient and lets us avoid performing a manual split between training and test
sets.

To use any of github.com/sjwhitworth/golearn's models, we must first convert the data
into a github.com/sjwhitworth/golearn internal format called instances. For the iris
data, we can do this as follows:

// Read in the iris data set into golearn "instances".
irisData, err := base.ParseCSVToInstances("iris.csv", true)
if err != nil {
 log.Fatal(err)
}

Then, initializing our kNN model and performing the cross-validation is quick and
simple:

// Initialize a new KNN classifier. We will use a simple
// Euclidean distance measure and k=2.
knn := knn.NewKnnClassifier("euclidean", "linear", 2)

// Use cross-fold validation to successively train and evaluate the model
// on 5 folds of the data set.
cv, err := evaluation.GenerateCrossFoldValidationConfusionMatrices(irisData, knn, 5)
if err != nil {
 log.Fatal(err)
}

Finally, we can get the average accuracy across the five folds of the cross-validation
and output that accuracy to stdout:

// Get the mean, variance and standard deviation of the accuracy for the
// cross validation.
mean, variance := evaluation.GetCrossValidatedMetric(cv, evaluation.GetAccuracy)
stdev := math.Sqrt(variance)

// Output the cross metrics to standard out.
fmt.Printf("\nAccuracy\n%.2f (+/- %.2f)\n\n", mean, stdev*2)

Compiling and running all of this together gives the following output:

$ go build
$./myprogram
Optimisations are switched off
Optimisations are switched off
Optimisations are switched off
Optimisations are switched off
Optimisations are switched off
KNN: 95.00 % done
Accuracy
0.95 (+/- 0.05)

After some benign logging from the package during the cross-validation, we can see
that kNN (k = 2) was able to predict iris flower species with 95% accuracy!

The next step here would be to try this model out with a variety of different k values.
Actually, it would be a good exercise to plot the accuracy versus k values to see
which k value gives you the best performance.

Decision trees and random forests
Tree-based models are very different from the previous types of models that we have
discussed, but they are widely utilized and very powerful. You can think about a
decision tree model like a series of if-then statements applied to your data. When
you train this type of model, you are constructing a series of control flow statements
that eventually allow you to classify records.

Decision trees are implemented in github.com/sjwhitworth/golearn and
github.com/xlvector/hector, among others, and random forests are implemented in
github.com/sjwhitworth/golearn, github.com/xlvector/hector, and
github.com/ryanbressler/CloudForest, among others. We will utilize
github.com/sjwhitworth/golearn again in our examples shown in the following section.

Overview of decision trees and random
forests
Again, consider our classes A and B. In this case, suppose that we have one feature,
x1, that ranges from 0.0 to 1.0, and we have another feature, x2 that is categorical and
can take on one of two values, a1 and a2 (this could be something like male/female
or red/blue). A decision tree to classify a new data point might look something like
the following:

There are a variety of ways to choose how decision trees are constructed, split, and
so on. One of the most common ways to determine how decision trees are
constructed is using a quantity called entropy. This entropy-based approach is
discussed in more detail in the Appendix, but, basically, we construct the tree and
splits based on which features give us the most information about the problem we are
solving. The more important features are prioritized higher on the tree.

This prioritization of important features and a natural looking structure makes
decision trees very interpretable. This makes decision trees important for
applications in which you might have to explain your inferences (for compliance
reasons, for example).

However, a single decision tree can be unstable with respect to changes in your
training data. In other words, the structure of the tree may change significantly with
even small changes in your training data. This can be challenging to manage both
operationally and cognitively, and this is one of the reasons why the random forest
model was created.

A random forest is a collection of decision trees that work together to make a
prediction. Random forests are more stable when compared to single decision trees,

and they are more robust against overfitting. In fact, this idea of combining models
in an ensemble is prevalent throughout machine learning both to improve the
performance of simple classifiers (such as decision trees) and to help prevent
overfitting.

To construct a random forest, we choose N random subsets of features and construct
N separate decision trees based on these subsets. When making a prediction, we can
then have each of these N decision trees make a prediction. To obtain a final
prediction, we can take the majority vote of these N predictions.

Decision tree and random forest
assumptions and pitfalls
Tree-based approaches are non-statistical approaches without many of the
assumptions that come along with things like regression. However, there are some
pitfalls to keep in mind:

Single decision tree models can easily overfit to your data, especially if you do
not limit the depth of the trees. Most implementations allow you to limit this
depth via a parameter (or prune your decision trees). A pruning parameter will
often allow you to remove sections of the tree that have little influence on the
predictions, and, thus, reduce the overall complexity of the model.
When we start talking about ensemble models, such as random forest, we are
getting into models that are somewhat opaque. It's very hard to gain intuition
about an ensemble of models and you have to treat it like a black box to some
degree. Less interpretable models like these should be applied only when
necessary.
Although decision trees themselves are very computationally efficient, random
forests can be very computationally inefficient depending on how many features
you have and how many trees are in your random forest.

Decision tree example
We will again utilize the iris dataset for this example. You have already learned how
to handle this dataset in github.com/sjwhitworth/golearn, and we can follow a similar
pattern again. We will again use cross-validation. However, this time we will fit a
decision tree model:

// Read in the iris data set into golearn "instances".
irisData, err := base.ParseCSVToInstances("iris.csv", true)
if err != nil {
 log.Fatal(err)
}

// This is to seed the random processes involved in building the
// decision tree.
rand.Seed(44111342)

// We will use the ID3 algorithm to build our decision tree. Also, we
// will start with a parameter of 0.6 that controls the train-prune split.
tree := trees.NewID3DecisionTree(0.6)

// Use cross-fold validation to successively train and evaluate the model
// on 5 folds of the data set.
cv, err := evaluation.GenerateCrossFoldValidationConfusionMatrices(irisData, tree, 5)
if err != nil {
 log.Fatal(err)
}

// Get the mean, variance and standard deviation of the accuracy for the
// cross validation.
mean, variance := evaluation.GetCrossValidatedMetric(cv, evaluation.GetAccuracy)
stdev := math.Sqrt(variance)

// Output the cross metrics to standard out.
fmt.Printf("\nAccuracy\n%.2f (+/- %.2f)\n\n", mean, stdev*2)

Compiling and running this decision tree model gives the following:

$ go build
$./myprogram

Accuracy
0.94 (+/- 0.06)

94% accuracy this time. Slightly worse than our kNN model, but still very
respectable.

Random forest example
github.com/sjwhitworth/golearn also implements random forests. To utilize random
forest in solving the iris problem, we simply swap our decision tree model for the
random forests. We will need to tell the package how many trees we want to build
and with how many randomly chosen features per tree.

A sane default for the number of features per tree is the square root of the number of
total features, which in our case would be two. We will see that this choice for our
small dataset does not produce good results because we need all of the features to
make a good prediction here. However, we will illustrate random forest with the sane
default to see how it works:

// Assemble a random forest with 10 trees and 2 features per tree,
// which is a sane default (number of features per tree is normally set
// to sqrt(number of features)).
rf := ensemble.NewRandomForest(10, 2)

// Use cross-fold validation to successively train and evaluate the model
// on 5 folds of the data set.
cv, err := evaluation.GenerateCrossFoldValidationConfusionMatrices(irisData, rf, 5)
if err != nil {
 log.Fatal(err)
}

Running this gives an accuracy that is worse than the single decision tree. If we
change the number of features per tree back up to four, we will recreate the accuracy
of the single decision tree. This means that every tree is being trained with the same
information as the single decision tree, and thus produces the same results.

Random forest is likely to overkill here and cannot be justified with any performance
gains, so it would be best to stick with the single decision tree. This single decision
tree is also more interpretable and more efficient.

Naive bayes
The final model that we will cover here for classification is called Naive bayes. In C
hapter 2, Matrices, Probability, and Statistics, we discussed the Bayes rule, which
forms the basis of this technique. Naive Bayes is a probability-based method like
logistic regression, but its basic ideas and assumptions are different.

Naive Bayes is also implemented in github.com/sjwhitworth/golearn, which will allow
us to easily try it out. However, there are a variety of other Go implementations
including github.com/jbrukh/bayesian, github.com/lytics/multibayes, and
github.com/cdipaolo/goml.

Overview of naive bayes and its big
assumption
Naive bayes operates under one large assumption. This assumption says that the
probability of the classes and the presence or absence of a certain feature in our
dataset is independent of the presence or absence of other features in our dataset.
This allows us to write a very simple formula for the probability of a certain class,
given the presence or absence of certain features.

Let's take an example to make this more concrete. Again, let's say that we are trying
to predict two classes of emails, A and B (spam and not spam, for example), based on
words in the emails. Naive bayes would assume that the presence/absence of a
certain word is independent of other words. If we make this assumption, the
probability that a certain class contains certain words is proportional to all of the
individual conditional probabilities multiplied together. Using this, the Bayes rule,
some chain rules, and our independent assumptions, we can write the conditional
probability of a certain class as follows:

Everything on the right-hand side we can calculate by counting the occurrences of
the features and labels in our training set, which is what is done when training the
model. Predictions can then be made by stringing together chains of these
probabilities.

Actually, in practice, a little trick is used to avoid having to string
together a bunch of numbers that are close to zero. We can take the log
of the probabilities, add these, and then take the exponential of the
expression. This process is generally better in practice.

Naive bayes example
Circling back to our loan dataset for a final time, we are going to use
github.com/sjwhitworth/golearn to solve the same loan acceptance problem with Naive
bayes. We will utilize the same training and test sets that we used in the logistic
regression example. However, we need to convert the labels in the datasets to a
binary classifier format used in github.com/sjwhitworth/golearn. We can write a simple
function to perform this conversion:

// convertToBinary utilizes built in golearn functionality to
// convert our labels to a binary label format.
func convertToBinary(src base.FixedDataGrid) base.FixedDataGrid {
 b := filters.NewBinaryConvertFilter()
 attrs := base.NonClassAttributes(src)
 for _, a := range attrs {
 b.AddAttribute(a)
 }
 b.Train()
 ret := base.NewLazilyFilteredInstances(src, b)
 return ret
}

Once we have that, we can train and test our naive bayes model, as shown in the
following code:

// Read in the loan training data set into golearn "instances".
trainingData, err := base.ParseCSVToInstances("training.csv", true)
if err != nil {
 log.Fatal(err)
}

// Initialize a new Naive Bayes classifier.
nb := naive.NewBernoulliNBClassifier()

// Fit the Naive Bayes classifier.
nb.Fit(convertToBinary(trainingData))

// Read in the loan test data set into golearn "instances".
// This time we will utilize a template of the previous set
// of instances to validate the format of the test set.
testData, err := base.ParseCSVToTemplatedInstances("test.csv", true, trainingData)
if err != nil {
 log.Fatal(err)
}

// Make our predictions.
predictions := nb.Predict(convertToBinary(testData))

// Generate a Confusion Matrix.
cm, err := evaluation.GetConfusionMatrix(testData, predictions)
if err != nil {

 log.Fatal(err)
}

// Retrieve the accuracy.
accuracy := evaluation.GetAccuracy(cm)
fmt.Printf("\nAccuracy: %0.2f\n\n", accuracy)

Compiling and running this gives the following accuracy:

$ go build
$./myprogram

Accuracy: 0.63

This is not quite as good as our from-scratch logistic regression. However, there is
still some predictive power here. A good exercise would be to add some of the other
features from the LendingClub dataset to this model, especially some of the
categorical variables. This would likely improve the naive bayes result.

References
General classification:

github.com/sjwhitworth/golearn docs: https://godoc.org/github.com/sjwhitworth/golearn

https://godoc.org/github.com/sjwhitworth/golearn

Summary
We have covered a variety of classification models including logistic regression, k-
nearest neighbors, decision trees, random forest, and naive bayes. In fact, we even
implemented logistic regression from scratch. All of these models have their
different strengths and weaknesses, which we have discussed. However, they should
provide you with a good set of tools to start doing classification with Go.

In the next chapter, we will discuss yet another type of machine learning called
clustering. This is the first unsupervised technique that we will discuss, and we will
try a few different approaches.

Clustering
Often, a set of data can be organized into a set of clusters. For example, you may be
able to organize data into clusters that correspond to certain underlying properties
(such as demographic properties including age, sex, geography, employment status,
and so on) or certain underlying processes (such as browsing, shopping, bot
interactions, and other such behaviors on a website). The machine learning
techniques to detect and label these clusters are referred to as clustering techniques,
naturally.

Up to this point, the machine learning algorithms that we have explored have been
supervised. That is, we have a set of features or attributes paired with a
corresponding label or number that we are trying to predict. We use this labeled data
to fit our model to the behavior that we already knew about prior to training the
model.

Most clustering techniques are unsupervised. As opposed to supervised techniques
for regression and classification, we often do not know about the clusters in our
dataset prior to finding them with a clustering model. Thus, we go into a clustering
problem with an unlabeled dataset and an algorithm, and we generate the cluster
labels for our data using the clustering algorithm.

Further, clustering techniques are distinguished from other machine learning
techniques in that it is rather difficult to say what the correct or accurate clusters for
the given dataset are. Depending on how many clusters you are looking for and the
measures that you are using for similarity between data points, you might end up
with a variety of sets of clusters, each having some underlying meaning. This does
not mean that clustering techniques cannot be evaluated or validated, but it does
mean that we need to understand our limitations and be careful when quantifying our
results.

Understanding clustering model jargon
Clustering is quite unique and comes with it's own set of terms, which are shown
below. Keep in mind that the following list is only a partial list as there are many
different types of clustering with corresponding jargon:

Clusters or groups: Each of these clusters or groups is a collection of data
points into which our clustering technique organizes our data points.
Intra-group or intra-cluster: Clusters resulting from clustering can be
evaluated using a measure of similarity between data points and other data
points in the same resulting cluster. This is called intra-group or intra-cluster
evaluation and similarity.
Inter-groupor inter-cluster: Clusters resulting from clustering can be
evaluated using a measure of dissimilarity between data points and other data
points in other resulting clusters. This is called inter-group or inter-cluster
evaluation and dissimilarity.
Internal criteria: Often, we do not have a gold standard set of cluster labels
that we can use to evaluate our resulting clusters. In these cases, we utilize inter
and intra cluster similarities to measure the performance of our clustering
technique.
External criteria: In other cases, we might have a gold standard for cluster
labels or grouping, such as a standard generated by human judges. These
scenarios allow us to evaluate our clustering techniques using the standard, or
external, criteria.
Distance or similarity: This is a measure of how close two data points are. This
could be a Euclidean distance in the space of your features or some other
measure of closeness.

Measuring Distance or Similarity
In order to cluster data points together, we need to define and utilize some distance
or similarity that quantitatively defines the closeness between data points. Choosing
this measure is an essential part of every clustering project because it directly
influences how the clusters are generated. Clusters resulting from the use of one
similarity measure might be very different from those resulting from the use of
another similarity measure.

The most common and simple of these distance measures is the Euclidean distance
or the squared Euclidean distance. This is simply the straight line distance between
two data points in your space of features (you might remember this distance as it was
also used in our kNN example in Chapter 5, Classification) or quantity squared.
However, there are a whole host of other, sometimes more complicated, distance
metrics. A few of these are shown in the following diagram:

For example, the Manhattan distance is the absolute x distance plus y distance
between the points, and the Minkowski distance generalizes between the Euclidean
distance and the Manhattan distance. These distance metrics will be more robust
against unusual values (or outliers) in your data, as compared to the Euclidean
distance.

Other distance metrics, such as the Hamming distance, are applicable to certain
kinds of data, such as strings. In the example shown, the Hamming distance between
Golang and Gopher is four because there are four positions in the strings in which

the strings are different. Thus, the Hamming distance might be a good choice of
distance metric if you are working with text data, such as news articles or tweets.

For our purposes here, we will mostly stick to the Euclidean distance. This distance
is implemented in gonum.org/v1/gonum/floats via the Distance() function. By way of
illustration, let's say that we want to calculate the distance between a point at (1, 2)
and a point at (3, 4). We can do this as follows:

// Calculate the Euclidean distance, specified here via
// the last argument in the Distance function.
distance := floats.Distance([]float64{1, 2}, []float64{3, 4}, 2)

fmt.Printf("\nDistance: %0.2f\n\n", distance)

Evaluating clustering techniques
As we are not trying to predict a number or category, our previously discussed
evaluation metrics for continuous and discrete variables do not really apply to
clustering techniques. That does not mean that we will just avoid measuring the
performance of clustering algorithms. We need to know how well our clustering is
performing. We just need to introduce a few clustering-specific evaluation metrics.

Internal clustering evaluation
If we do not have a gold standard set of labels for our clusters for comparison, we are
stuck with evaluating how well our clustering technique performs using internal
criteria. In other words, we can still evaluate our clustering by making similarity and
dissimilarity measurements within the clusters themselves.

The first of these internal metrics that we will present here is called the silhouette
coefficient. The silhouette coefficient can be calculated for each clustered data point
as follows:

Here, a is the mean distance between a data point and all other points in the same
cluster (the Euclidean distance, for example), and b is the mean distance between a
data point and all other points in the cluster nearest to the data point's cluster. The
average of this silhouette coefficient for all data points represents how tightly packed
the points are in each cluster. This average could be taken per cluster or for data
points in all clusters.

Let's try calculating this for the iris dataset, which can be seen as a set of three
clusters corresponding to each of the three iris species. First, in order to calculate the
silhouette coefficient, we need to know the centroids of the three clusters. These
centroids are simply the central points of the three clusters (in our four-dimensional
feature space), and they will allow us to determine which cluster is the nearest to a
certain data point's cluster.

To this end, we need to parse our iris data set file (originally introduced in Chapter 1,
Gathering and Organizing Data), separate our records by cluster label, average the
features in each cluster, and then calculate the corresponding centroids. First, we will
define a type for our centroids:

type centroid []float64

Then, we can create a map that contains the centroid for each of our iris flowers
species using github.com/kniren/gota/dataframe:

// Pull in the CSV file.
irisFile, err := os.Open("iris.csv")

if err != nil {
 log.Fatal(err)
}
defer irisFile.Close()

// Create a dataframe from the CSV file.
irisDF := dataframe.ReadCSV(irisFile)

// Define the names of the three separate species contained in the CSV file.
speciesNames := []string{
 "Iris-setosa",
 "Iris-versicolor",
 "Iris-virginica",
}

// Create a map to hold our centroid information.
centroids := make(map[string]centroid)

// Filter the dataset into three separate dataframes,
// each corresponding to one of the Iris species.
for _, species := range speciesNames {

 // Filter the original dataset.
 filter := dataframe.F{
 Colname: "species",
 Comparator: "==",
 Comparando: species,
 }
 filtered := irisDF.Filter(filter)

 // Calculate the mean of features.
 summaryDF := filtered.Describe()

 // Put each dimension's mean into the corresponding centroid.
 var c centroid
 for _, feature := range summaryDF.Names() {

 // Skip the irrelevant columns.
 if feature == "column" || feature == "species" {
 continue
 }
 c = append(c, summaryDF.Col(feature).Float()[0])
 }

 // Add this centroid to our map.
 centroids[species] = c
}

// As a sanity check, output our centroids.
for _, species := range speciesNames {
 fmt.Printf("%s centroid: %v\n", species, centroids[species])
}

Compiling and running this gives us our centroids:

$ go build
$./myprogram
Iris-setosa centroid: [5.005999999999999 3.4180000000000006 1.464 0.2439999999999999]
Iris-versicolor centroid: [5.936 2.7700000000000005 4.26 1.3259999999999998]
Iris-virginica centroid: [6.587999999999998 2.9739999999999998 5.552 2.026]

Next, we need to actually calculate the silhouette coefficients for each data point. To
do this, let's modify the preceding code such that we have access to each filtered set
of data points outside of the for loop:

// Create a map to hold the filtered dataframe for each cluster.
clusters := make(map[string]dataframe.DataFrame)

// Filter the dataset into three separate dataframes,
// each corresponding to one of the Iris species.
for _, species := range speciesNames {

 ...

 // Add the filtered dataframe to the map of clusters.
 clusters[species] = filtered

 ...
}

Let's also create a convenience function to retrieve floats values from a row in a
dataframe.DataFrame:

// dfFloatRow retrieves a slice of float values from a DataFrame
// at the given index and for the given column names.
func dfFloatRow(df dataframe.DataFrame, names []string, idx int) []float64 {
 var row []float64
 for _, name := range names {
 row = append(row, df.Col(name).Float()[idx])
 }
 return row
}

We can now loop over our records calculating the a and b that we need for the
silhouette coefficients. We will also average the silhouette coefficients to get an
overall evaluation metric for our clusters, as shown in the following code:

// Convert our labels into a slice of strings and create a slice
// of float column names for convenience.
labels := irisDF.Col("species").Records()
floatColumns := []string{
 "sepal_length",
 "sepal_width",
 "petal_length",
 "petal_width",
}

// Loop over the records accumulating the average silhouette coefficient.
var silhouette float64

for idx, label := range labels {

 // a will store our accumulated value for a.
 var a float64

 // Loop over the data points in the same cluster.

 for i := 0; i < clusters[label].Nrow(); i++ {

 // Get the data point for comparison.
 current := dfFloatRow(irisDF, floatColumns, idx)
 other := dfFloatRow(clusters[label], floatColumns, i)

 // Add to a.
 a += floats.Distance(current, other, 2) / float64(clusters[label].Nrow())
 }

 // Determine the nearest other cluster.
 var otherCluster string
 var distanceToCluster float64
 for _, species := range speciesNames {

 // Skip the cluster containing the data point.
 if species == label {
 continue
 }

 // Calculate the distance to the cluster from the current cluster.
 distanceForThisCluster := floats.Distance(centroids[label], centroids[species], 2)

 // Replace the current cluster if relevant.
 if distanceToCluster == 0.0 || distanceForThisCluster < distanceToCluster {
 otherCluster = species
 distanceToCluster = distanceForThisCluster
 }
 }

 // b will store our accumulated value for b.
 var b float64

 // Loop over the data points in the nearest other cluster.
 for i := 0; i < clusters[otherCluster].Nrow(); i++ {

 // Get the data point for comparison.
 current := dfFloatRow(irisDF, floatColumns, idx)
 other := dfFloatRow(clusters[otherCluster], floatColumns, i)

 // Add to b.
 b += floats.Distance(current, other, 2) / float64(clusters[otherCluster].Nrow())
 }

 // Add to the average silhouette coefficient.
 if a > b {
 silhouette += ((b - a) / a) / float64(len(labels))
 }
 silhouette += ((b - a) / b) / float64(len(labels))
}

// Output the final average silhouette coeffcient to stdout.
fmt.Printf("\nAverage Silhouette Coefficient: %0.2f\n\n", silhouette)

Compiling and running this example evaluation yields the following:

$ go build
$./myprogram

Average Silhouette Coefficient: 0.51

How do we know if 0.51 is a good or bad average silhouette coefficient? Well,
remember that the silhouette coefficient is proportional to the difference between
mean intra-cluster distances and mean inter-cluster distances, and it is always going
to be somewhere between 0.0 and 1.0. Thus, higher values (those closer to 1.0)
imply closer packed clusters and are more distinct from other clusters.

Often, we might want to adjust our number of clusters and/or clustering technique to
optimize the silhouette score (make it larger, that is). Here, we are working with data
that has actually been hand-labeled, so 0.51 has to be a good score for this dataset.
For other datasets, it may be higher or lower depending on the existence of clusters
in the data and your choice of similarity metric.

The silhouette score is by no means the only way to evaluate our clusters internally.
We could actually just use the quantities a or b from the silhouette score to evaluate
the homogeneity of our clusters, or each clusters, dissimilarity with other clusters,
respectively. Also, we could use the mean distance between points in a cluster and
the centroid of the cluster to measure tightly packed clusters. Still further, we could
use a variety of other evaluation metrics that will not be covered here in detail, such
as the Calinski-Harabaz index (which is discussed further here: http://datamining.rutge
rs.edu/publication/internalmeasures.pdf).

http://datamining.rutgers.edu/publication/internalmeasures.pdf

External clustering evaluation
If we have a ground truth or gold standard for our clusters, then we can utilize a
variety of external clustering evaluation techniques. This ground truth or gold
standard means that we have access to, or can get (via manual human annotation), a
set of data points where the true or desired cluster labels have been annotated.

Often, we do not have access to this sort of clustering gold standard, and, thus, we
will not cover these sorts of evaluation techniques in detail here. However, if
interested or relevant, you can look into the Adjusted Rand index, Mutual
Information, Fowlkes-Mallows scores, completeness, and V-measures, which are
all relevant external clustering evaluation metrics (read more details about these
here: https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html).

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

k-means clustering
The first clustering technique that we will cover here, and probably the most well-
known clustering technique, is called k-means clustering, or just k-means. k-means
is an iterative method in which data points are clustered around cluster centroids that
are adjusted during each iteration. The technique is relatively easy to grasp, but there
are some related subtleties that are easy to miss. We will make sure to highlight these
as we explore the technique.

As k-means clustering is so easy to implement, there are many proof-of-concept
implementations of the algorithm in Go. You can find these by searching for k-
means on this link (https://golanglibs.com/top?q=kmeans). However, we will utilize a
implementation that is recent and fairly straightforward to use,
github.com/mash/gokmeans.

https://golanglibs.com/top?q=kmeans

Overview of k-means clustering
Let's say that we have a bunch of data points defined by two variables, x1 and x2.
These data points naturally exhibit some grouping into clusters, as shown in the
following figure:

To automatically cluster these points using k-means, we would first need to choose
how many clusters will result from the clustering. This is the parameter k, which
gives k-means its name. In this case, let's use k = 3.

We would then randomly choose the x1 and x2 locations of k centroids. These
random centroids will serve as our starting point for the algorithm. Such random
centroids are shown in the following figure via Xs:

To optimize these centroids and cluster our points, we then iteratively perform the
following:

1. Assign each data point to a cluster corresponding to the nearest centroid (as
measured by our choice distance metric, such as Euclidean distance).

2. Calculate the mean x1 and x2 locations within each cluster.
3. Update each centroid's location to the calculated x1 and x2 locations.

Repeat steps one to three until the assignment in step one no longer changes. This
process is illustrated in the following figure:

There is only so much that you can illustrate with a static figure, but hopefully this is
helpful. If you would like to visually step through the k-means process to better
understand the updates, you should check out http://stanford.edu/class/ee103/visualizations/
kmeans/kmeans.html, which includes an interactive animation of the k-means clustering
process.

http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

k-means assumptions and pitfalls
k-means may seem like a very simple algorithm, which it is. However, it does make
some underlying assumptions about your data, which are easy to overlook:

Spherical or spatially grouped clusters: k-means basically draws spherical or
spatially close areas in our feature space to find clusters. This means that for
non-spherical clusters (essentially, clusters that do not look like grouped blobs
in our features space), k-means is likely to fail. To make this idea more
concrete, non-spherical clusters, for which k-means will likely behave poorly,
might look like the following:

Similar size: k-means also assumes that your clusters are all of a similar size.
Small outlying clusters can lead the simple k-means algorithm going off course
to produce strange groupings.

Moreover, there are a couple of pitfalls that we can fall into when using k-means to
cluster our data:

The choice of k is up to us. This means that we could choose an illogical k, but
it also means that we could just continue increasing k until we have a cluster for
each of our points (which would be pretty good clustering because each point is
exactly the same as itself). To help guide your choice of k, you should utilize an
elbow graph approach. In this approach, you increase k while calculating your
evaluation metric. As you increase k, your evaluation metric should keep
getting better, but eventually there will be an inflection point that indicates
diminishing returns. The ideal k is at this elbow.
It is not guaranteed that k-means will always converge to the same clusters. As

you are starting from random centroids, your k-means algorithm could converge
to different local minimums on different runs. You should be aware of this and
run your k-means algorithm from a variety of initializations to ensure stability.

k-means clustering example
The dataset that we will be using to illustrate clustering techniques is about delivery
drivers. The dataset looks like this:

$ head fleet_data.csv
Driver_ID,Distance_Feature,Speeding_Feature
3423311935,71.24,28.0
3423313212,52.53,25.0
3423313724,64.54,27.0
3423311373,55.69,22.0
3423310999,54.58,25.0
3423313857,41.91,10.0
3423312432,58.64,20.0
3423311434,52.02,8.0
3423311328,31.25,34.0

The first column, Driver_ID, includes various anonymous identifications of particular
drivers. The second and third columns are attributes that we will utilize in our
clusters. The Distance_Feature column is a mean distance driven per data, and
Speeding_Feature is a mean percentage of time during which the driver is driving 5+
miles per hour faster than the speed limit.

The goal of the clustering will be to cluster the delivery drivers into groups based on
Distance_Feature and Speeding_Feature. Remember, this is an unsupervised learning
technique, and thus, we do not really know what clusters should or could be formed
in the data. The hope is that we will learn something about the drivers that we did not
know at the start of the exercise.

Profiling the data
Yes, you guessed it! We have a new dataset and we need to profile this dataset to
learn a little more about it. Let's first calculate summary statistics with
github.com/kniren/dataframe and create histograms of each feature using
gonum.org/v1/plot. We have already done this multiple times in Chapter 4, Regression
and Chapter 5, Classification, so we will not rehash the code here. Let's just look at
the results:

$ go build
$./myprogram
[7x4] DataFrame

 column Driver_ID Distance_Feature Speeding_Feature
 0: mean 3423312447.500000 76.041523 10.721000
 1: stddev 1154.844867 53.469563 13.708543
 2: min 3423310448.000000 15.520000 0.000000
 3: 25% 3423311447.000000 45.240000 4.000000
 4: 50% 3423312447.000000 53.330000 6.000000
 5: 75% 3423313447.000000 65.610000 9.000000
 6: max 3423314447.000000 244.790000 100.000000
 <string> <float> <float> <float>

Wow! Looks like most drivers speed about 10% of the time, which is kind of scary.
One driver even appears to speed 100% of the time. I hope I'm not on his route.

The histograms features are shown in the following graph:

It looks like there is an interesting structure in the Distance_Feature data. This will

actually factor into our clustering soon, but we can get another view of this structure
by creating a scatter plot of our feature space:

// Open the driver dataset file.
f, err := os.Open("fleet_data.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a dataframe from the CSV file.
driverDF := dataframe.ReadCSV(f)

// Extract the distance column.
yVals := driverDF.Col("Distance_Feature").Float()

// pts will hold the values for plotting
pts := make(plotter.XYs, driverDF.Nrow())

// Fill pts with data.
for i, floatVal := range driverDF.Col("Speeding_Feature").Float() {
 pts[i].X = floatVal
 pts[i].Y = yVals[i]
}

// Create the plot.
p, err := plot.New()
if err != nil {
 log.Fatal(err)
}
p.X.Label.Text = "Speeding"
p.Y.Label.Text = "Distance"
p.Add(plotter.NewGrid())

s, err := plotter.NewScatter(pts)
if err != nil {
 log.Fatal(err)
}
s.GlyphStyle.Color = color.RGBA{R: 255, B: 128, A: 255}
s.GlyphStyle.Radius = vg.Points(3)

// Save the plot to a PNG file.
p.Add(s)
if err := p.Save(4*vg.Inch, 4*vg.Inch, "fleet_data_scatter.png"); err != nil {
 log.Fatal(err)
}

Compiling and running this creates the following scatter plot:

Here, we can see a little bit more of the structure that we saw in the histograms.
There appears to be at least two clear clusters of data here. This intuition about our
data can serve as a mental check during the formal application of our clustering
techniques, and it can give us a starting point to experiment with values of k.

Generating clusters with k-means
Now let's get our hands dirty by actually applying k-means clustering to the delivery
driver data. To utilize github.com/mash/gokmeans, we first need to create a slice of
gokmeans.Node values, which will be input into the clustering:

// Open the driver dataset file.
f, err := os.Open("fleet_data.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader.
r := csv.NewReader(f)
r.FieldsPerRecord = 3

// Initialize a slice of gokmeans.Node's to
// hold our input data.
var data []gokmeans.Node

// Loop over the records creating our slice of
// gokmeans.Node's.
for {

 // Read in our record and check for errors.
 record, err := r.Read()
 if err == io.EOF {
 break
 }
 if err != nil {
 log.Fatal(err)
 }

 // Skip the header.
 if record[0] == "Driver_ID" {
 continue
 }

 // Initialize a point.
 var point []float64

 // Fill in our point.
 for i := 1; i < 3; i++ {

 // Parse the float value.
 val, err := strconv.ParseFloat(record[i], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Append this value to our point.
 point = append(point, val)
 }

 // Append our point to the data.
 data = append(data, gokmeans.Node{point[0], point[1]})
}

Then, generating our clusters is as easy as calling the gomeans.Train(...) function.
Specifically, we will call this function with k = 2 and a maximum of 50 iterations:

// Generate our clusters with k-means.
success, centroids := gokmeans.Train(data, 2, 50)
if !success {
 log.Fatal("Could not generate clusters")
}

// Output the centroids to stdout.
fmt.Println("The centroids for our clusters are:")
for _, centroid := range centroids {
 fmt.Println(centroid)
}

Running all of this together gives the following centroids for the generated clusters:

$ go build
$./myprogram
The centroids for our clusters are:
[50.04763437499999 8.82875]
[180.01707499999992 18.29]

Nice! We have generated our first clusters. Now, we need to move on to evaluating
the legitimacy of these clusters.

I have just output the centroids of the clusters here, because that is
really all we need to know the group points. If we want to know if a
data point is in the first or second cluster, we just need to calculate the
distance to those centroids. The closer of the centroids corresponds to
the group containing the data point.

Evaluating the generated clusters
The first way that we can evaluate the clusters that we just generated is visually.
Let's create another scatter plot. However, this time let's use different shapes for each
of the groups:

// Open the driver dataset file.
f, err := os.Open("fleet_data.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a dataframe from the CSV file.
driverDF := dataframe.ReadCSV(f)

// Extract the distance column.
yVals := driverDF.Col("Distance_Feature").Float()

// clusterOne and clusterTwo will hold the values for plotting.
var clusterOne [][]float64
var clusterTwo [][]float64

// Fill the clusters with data.
for i, xVal := range driverDF.Col("Speeding_Feature").Float() {
 distanceOne := floats.Distance([]float64{yVals[i], xVal}, []float64{50.05, 8.83}, 2)
 distanceTwo := floats.Distance([]float64{yVals[i], xVal}, []float64{180.02, 18.29}, 2)
 if distanceOne < distanceTwo {
 clusterOne = append(clusterOne, []float64{xVal, yVals[i]})
 continue
 }
 clusterTwo = append(clusterTwo, []float64{xVal, yVals[i]})
}

// pts* will hold the values for plotting
ptsOne := make(plotter.XYs, len(clusterOne))
ptsTwo := make(plotter.XYs, len(clusterTwo))

// Fill pts with data.
for i, point := range clusterOne {
 ptsOne[i].X = point[0]
 ptsOne[i].Y = point[1]
}

for i, point := range clusterTwo {
 ptsTwo[i].X = point[0]
 ptsTwo[i].Y = point[1]
}

// Create the plot.
p, err := plot.New()
if err != nil {
 log.Fatal(err)
}

p.X.Label.Text = "Speeding"
p.Y.Label.Text = "Distance"
p.Add(plotter.NewGrid())

sOne, err := plotter.NewScatter(ptsOne)
if err != nil {
 log.Fatal(err)
}
sOne.GlyphStyle.Radius = vg.Points(3)
sOne.GlyphStyle.Shape = draw.PyramidGlyph{}

sTwo, err := plotter.NewScatter(ptsTwo)
if err != nil {
 log.Fatal(err)
}
sTwo.GlyphStyle.Radius = vg.Points(3)

// Save the plot to a PNG file.
p.Add(sOne, sTwo)
if err := p.Save(4*vg.Inch, 4*vg.Inch, "fleet_data_clusters.png"); err != nil {
 log.Fatal(err)
}

This code generates the following scatterplot, which clearly shows our successful
clustering:

Qualitatively, we can see that there is one cluster of driver that drive short distances
primarily, and one cluster of drivers that drive long distances primarily. These
actually correspond to rural and city delivery drivers respectively (or short haul and
long haul drivers).

To more quantitatively evaluate our clusters, we can calculate the within-cluster
mean distance between points in a cluster and the cluster centroid. To help us in this
endeavor, let's create a function that will make things a little easier:

// withinClusterMean calculates the mean distance between

// points in a cluster and the centroid of the cluster.
func withinClusterMean(cluster [][]float64, centroid []float64) float64 {

 // meanDistance will hold our result.
 var meanDistance float64

 // Loop over the points in the cluster.
 for _, point := range cluster {
 meanDistance += floats.Distance(point, centroid, 2) / float64(len(cluster))
 }

 return meanDistance
}

Now, to evaluate our clusters, we simply need to call this function for each cluster:

// Output our within cluster metrics.
fmt.Printf("\nCluster 1 Metric: %0.2f\n", withinClusterMean(clusterOne, []float64{50.05, 8.83}))
fmt.Printf("\nCluster 2 Metric: %0.2f\n", withinClusterMean(clusterTwo, []float64{180.02, 18.29}))

Running this gives us the following metrics:

$ go build
$./myprogram

Cluster 1 Metric: 11.68

Cluster 2 Metric: 23.52

As we can see, cluster one (the pink cluster in the scatter plot) is about twice as
compact (tightly packed, that is) as cluster two. This is consistent without the plot
and gives us a little more quantitative information about the clusters.

Note, that here it was pretty clear that we were looking for two clusters.
However, in other cases, the number of clusters may not be clear
upfront, especially in cases where you have more features than you can
visualize. In these scenarios, it is important that you utilize a method,
such as the elbow method, to determine a proper k. More information
about this method can be found at https://datasciencelab.wordpress.com/2013
/12/27/finding-the-k-in-k-means-clustering/.

https://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/

Other clustering techniques
There are a host of other clustering techniques that are not discussed here. These
include DBSCAN and Hierarchical clustering. Unfortunately, the current
implementations in Go are limited for these other clustering options. DBSCAN is
implemented in https://github.com/sjwhitworth/golearn, but, to my knowledge, there
are no current implementations of other clustering techniques.

This creates a great opportunity for contributions to the community! Clustering
techniques are often not complicated and creating an implementation of another
clustering technique might be a great way to give back to the Go data science
community. Feel free to reach out to the author in Gophers Slack (@dwhitena) or other
data science gophers in #data-science on Gophers Slack if you want to discuss an
implementation, ask questions, or get help!

References
Distance metrics and evaluating clusters:

Evaluation of clustering overview: https://nlp.stanford.edu/IR-book/html/htmledition/ev
aluation-of-clustering-1.html
A comparison of various distance/similarity metrics: http://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0144059
Visualizing k-means clustering: https://www.naftaliharris.com/blog/visualizing-k-means
-clustering/
github.com/mash/gokmeans docs: https://godoc.org/github.com/mash/gokmeans

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144059
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://godoc.org/github.com/mash/gokmeans

Summary
In this chapter, we have introduced the general principles of clustering, learned how
to evaluate generated clusters, and learned how to use a Go implementation of k-
means clustering. You should now be in good shape to detect grouping structure in
your datasets.

Next, we will discuss the modeling of time series data, such as stock prices, sensor
data, and so on.

Time Series and Anomaly Detection
Most of the models that we have discussed up to this point predict a property about
something based on other properties related to that something. For example, we
predicted the species of a flower based on measurements of the flower. We also tried
to predict the progression of the disease diabetes in a patient based on medical
attributes about that patient.

The premise of time series modeling is different from these types of property
prediction problems. Simply put, time series modeling helps us predict the future
based on attributes about the past. For example, we may want to predict future stock
prices based on previous values of that stock price, or we may want to predict how
many users will be on our website at a certain time based on data about how many
users were on our website at previous times. This is sometimes called forecasting.

The data utilized in time series modeling is typically different from the data utilized
in classification, regression, or clustering. A time series model operates on one or
more time series, as one might expect. This series is a sequential set of properties,
attributes, or other numbers paired with their corresponding date and time or a
corresponding proxy for a date and time (measurement index or day number, for
example). For stock prices, this series would consist of a bunch of (date and time,
stock price) pairings.

This time series data is found everywhere in industry and in academia. It is also
becoming increasingly important as we explore and develop the Internet of Things
(IoT). Fitness trackers, smart devices such as refrigerators, thermostats, cameras,
drones, and many other new devices, are producing a staggering amount of time
series data.

Of course, you are not restricted to predicting the future with this type of data. There
are many other useful things that you can do with time series data including anomaly
detection, which will be covered later in this chapter. Anomaly detection attempts to
detect unexpected or out-of-the-ordinary events in a time series. These events might
correspond to catastrophic weather events, infrastructure failures, viral social media
behavior, and so on.

Representing time series data in Go
There are purpose-built systems to store and work with time series data. Some of
these are even written in Go, including Prometheus and InfluxDB. However, some of
the tooling that we have already utilized in the book is also suitable to handle time
series. Specifically, github.com/kniren/gota/dataframe, gonum.org/v1/gonum/floats, and
gonum.org/v1/gonum/mat can help us as we are working with time series data.

Take, for example, a dataset that includes a time series representing the number of
international air passengers during the years 1949-1960 (available for download at htt
ps://raw.github.com/vincentarelbundock/Rdatasets/master/csv/datasets/AirPassengers.csv):

$ head AirPassengers.csv
time,AirPassengers
1949.0,112
1949.08333333,118
1949.16666667,132
1949.25,129
1949.33333333,121
1949.41666667,135
1949.5,148
1949.58333333,148
1949.66666667,136

Here, the time column includes a series of times represented by a year along with a
decimal, and the AirPassengers column includes the number of international air
passengers at that time. In other words, this is a time series with a pairing of (time,
number of passengers).

This is just tabular data and we can represent it perfectly well using a dataframe or
matrix. Let's utilize a dataframe for simplicity, as shown in the following code:

// Open the CSV file.
passengersFile, err := os.Open("AirPassengers.csv")
if err != nil {
 log.Fatal(err)
}
defer passengersFile.Close()

// Create a dataframe from the CSV file.
passengersDF := dataframe.ReadCSV(passengersFile)

// As a sanity check, display the records to stdout.
// Gota will format the dataframe for pretty printing.
fmt.Println(passengersDF)

https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/datasets/AirPassengers.csv

This will produce the following output:

$ go build
$./myprogram
[144x2] DataFrame

 time AirPassengers
 0: 1949.000000 112
 1: 1949.083333 118
 2: 1949.166667 132
 3: 1949.250000 129
 4: 1949.333333 121
 5: 1949.416667 135
 6: 1949.500000 148
 7: 1949.583333 148
 8: 1949.666667 136
 9: 1949.750000 119

 <float> <int>

We could represent the series similarly with gonum.org/v1/gonum/mat and, when/if
needed, we can convert the dataframe to slices of floats for use with
gonum.org/v1/gonum/floats. If we wanted to plot the time series, for example, we could
convert the columns to floats and produce a plot with gonum.org/v1/plot, as shown in
the following code:

// Open the CSV file.
passengersFile, err := os.Open("AirPassengers.csv")
if err != nil {
 log.Fatal(err)
}
defer passengersFile.Close()

// Create a dataframe from the CSV file.
passengersDF := dataframe.ReadCSV(passengersFile)

// Extract the number of passengers column.
yVals := passengersDF.Col("AirPassengers").Float()

// pts will hold the values for plotting.
pts := make(plotter.XYs, passengersDF.Nrow())

// Fill pts with data.
for i, floatVal := range passengersDF.Col("time").Float() {
 pts[i].X = floatVal
 pts[i].Y = yVals[i]
}

// Create the plot.
p, err := plot.New()
if err != nil {
 log.Fatal(err)
}
p.X.Label.Text = "time"
p.Y.Label.Text = "passengers"
p.Add(plotter.NewGrid())

// Add the line plot points for the time series.
l, err := plotter.NewLine(pts)
if err != nil {
 log.Fatal(err)
}
l.LineStyle.Width = vg.Points(1)
l.LineStyle.Color = color.RGBA{B: 255, A: 255}

// Save the plot to a PNG file.
p.Add(l)
if err := p.Save(10*vg.Inch, 4*vg.Inch, "passengers_ts.png"); err != nil {
 log.Fatal(err)
}

Compiling and running this program produces the following plot of our time series:

As expected, the number of international air passengers increases over time as more
and more people begin to travel via airplanes. We can also see that there appear to be
bumps or spikes that are repeating over time. We will dive more into these features
shortly.

Understanding time series jargon
You are probably noticing by this time in the book that each set of machine learning
techniques has an associated set of jargon, and time series is no different.

Here is an explanation of some of this jargon that will be utilized throughout the rest
of the chapter:

Time, datetime, or timestamp: This property is the temporal element of each
pairing in our time series. This could be simply a time or it could be a
combination of date and time (sometimes referred to as datetime or timestamp).
It might also include time zone.
Observation, measurement, signal, or random variable: This is the property
that we are trying to forecast and/or otherwise analyze as a function of time.
Seasonality: A time series, such as the time series of air passenger data, may
exhibit changes that correspond to seasons (weeks, months, years, and so on).
Time series that behave in this manner are said to exhibit some seasonality.
Trends: Time series that gradually increase or decrease over time (separate
from seasonal effects) are said to exhibit a trend.
Stationary: A time series that exhibits the same patterns over time, without
trends or other gradual changes (such as changes in variance or covariance), is
said to be stationary.
Time period: The amount of time between successive observations in the time
series, or the difference between one timestamp and the previously occurring
timestamp in the series.
Auto-regressive model: This is a model that tries to model a time series
process by one or more delayed, or lagged, versions of the same process. For
example, an auto-regressive model of stock prices would try to model stock
prices by the value of the stock price at previous time intervals.
Moving average model: This is a model that tries to model a times series based
on the current and various past values of an imperfectly predictable term,
commonly referred to as error. For example, this imperfectly predictable term
may be some white noise in the time series.

Statistics related to time series
In addition to certain jargon associated with time series, there is an important set of
statistics related to time series that we will be relying on as we perform forecasting
and anomaly detection. These statistics are mainly related to how values in times
series are related to other values in the same time series.

The statistics will help us as we profile our data, which is an important part of any
time series modeling project, as it is with all of the other types of modeling that we
have covered. Gaining intuition about the behavior of your time series over time,
seasonality, and trends is crucial for ensuring that you apply appropriate models and
perform mental checks of your results.

Autocorrelation
Autocorrelation is a measure of how correlated a signal is with a delayed version of
itself. For example, one or more previous observation of a stock price may be
correlated (or change together) with the next observation of the stock price. If this
was the case, we would say that the stock price was influenced by itself according to
some lag or delay. We could then model the future stock price by a delayed version
of itself at the specific lags indicated as highly correlated.

To measure the autocorrelation of a variable xt with a delayed version of itself (or a
version with a lag) xs, we can utilize the autocorrelation function (ACF), defined
as follows:

Here, s could represent any lagged version of x. Thus, we can calculate the
autocorrelation between x and a version of x that has a lag of a single time period (xt-
1), between x and a version of x that has a lag of two time periods (xt-2), and so on.
Doing this gives us information about which delayed versions of x are most
correlated with x, and thus helps us determine which delayed versions of x might be
good candidates for use in modeling future versions of x.

Let's try calculating the first few autocorrelations of our airline passenger time series
with itself. To do this, we first need to create a function that will calculate an
autocorrelation in our time series for a specific time period lag. Here is an example
implementation of this function:

// acf calculates the autocorrelation for a series
// at the given lag.
func acf(x []float64, lag int) float64 {

 // Shift the series.
 xAdj := x[lag:len(x)]
 xLag := x[0 : len(x)-lag]

 // numerator will hold our accumulated numerator, and
 // denominator will hold our accumulated denominator.
 var numerator float64
 var denominator float64

 // Calculate the mean of our x values, which will be used

 // in each term of the autocorrelation.
 xBar := stat.Mean(x, nil)

 // Calculate the numerator.
 for idx, xVal := range xAdj {
 numerator += ((xVal - xBar) * (xLag[idx] - xBar))
 }

 // Calculate the denominator.
 for _, xVal := range x {
 denominator += math.Pow(xVal-xBar, 2)
 }

 return numerator / denominator
}

We will then loop over a few lags and utilize the acf() function to calculate the
various autocorrelations. This process is shown in the following code:

// Open the CSV file.
passengersFile, err := os.Open("AirPassengers.csv")
if err != nil {
 log.Fatal(err)
}
defer passengersFile.Close()

// Create a dataframe from the CSV file.
passengersDF := dataframe.ReadCSV(passengersFile)

// Get the time and passengers as a slice of floats.
passengers := passengersDF.Col("AirPassengers").Float()

// Loop over various values of lag in the series.
fmt.Println("Autocorrelation:")
for i := 1; i < 11; i++ {

 // Shift the series.
 adjusted := passengers[i:len(passengers)]
 lag := passengers[0 : len(passengers)-i]

 // Calculate the autocorrelation.
 ac := stat.Correlation(adjusted, lag, nil)
 fmt.Printf("Lag %d period: %0.2f\n", i, ac)
}

This produces the following results:

$ go build
$./myprogram
Autocorrelation:
Lag 1 period: 0.95
Lag 2 period: 0.88
Lag 3 period: 0.81
Lag 4 period: 0.75
Lag 5 period: 0.71
Lag 6 period: 0.68
Lag 7 period: 0.66
Lag 8 period: 0.66

Lag 9 period: 0.67
Lag 10 period: 0.70

As we can see, the autocorrelations with lags further back in the series tend to be
smaller (although, this is not the case for every lag). However, this information can
be a little bit hard to absorb in its numerical form. Let's plot these values as a
function of the lag to better visualize the correlations:

// Open the CSV file.
passengersFile, err := os.Open("AirPassengers.csv")
if err != nil {
 log.Fatal(err)
}
defer passengersFile.Close()

// Create a dataframe from the CSV file.
passengersDF := dataframe.ReadCSV(passengersFile)

// Get the time and passengers as a slice of floats.
passengers := passengersDF.Col("AirPassengers").Float()

// Create a new plot, to plot our autocorrelations.
p, err := plot.New()
if err != nil {
 log.Fatal(err)
}

p.Title.Text = "Autocorrelations for AirPassengers"
p.X.Label.Text = "Lag"
p.Y.Label.Text = "ACF"
p.Y.Min = 0
p.Y.Max = 1

w := vg.Points(3)

// Create the points for plotting.
numLags := 20
pts := make(plotter.Values, numLags)

// Loop over various values of lag in the series.
for i := 1; i <= numLags; i++ {

 // Calculate the autocorrelation.
 pts[i-1] = acf(passengers, i)
}

// Add the points to the plot.
bars, err := plotter.NewBarChart(pts, w)
if err != nil {
 log.Fatal(err)
}
bars.LineStyle.Width = vg.Length(0)
bars.Color = plotutil.Color(1)

// Save the plot to a PNG file.
p.Add(bars)
if err := p.Save(8*vg.Inch, 4*vg.Inch, "acf.png"); err != nil {
 log.Fatal(err)

}​

This code produces the following plot of the ACF:

Notice how the autocorrelations are decreasing generally, but they are staying rather
large (well above 0.5) even out to lags of 20 time periods. This is an indication that
our time series is not stationary. Indeed, if we look at the previous plot of our time
series, it is obviously trending upward. We will deal with this non-stationary
behavior later in the chapter, but for now, suffice it to say that the ACF plot is
indicating to us that the lagged versions of the number of air passengers are
correlated with their non-delayed counterparts.

More generally, the ACF will allow us to determine which type of time
series we are modeling. For a process that could be modeled well by an
auto-regressive model, we should see that the acf function decreases
somewhat quickly, but not immediately, as you move to further lags.
For a process that could be modeled well by a so-called moving
average model, we would see a significant ACF term at the first lag,
but then the ACF would die off after that first lag.

For more information on interpreting ACF plots, see https://coolstatsblog.com/2013/08/07/
how-to-use-the-autocorreation-function-acf/. This post gives some great details, some of
which we are not able to cover here.

https://coolstatsblog.com/2013/08/07/how-to-use-the-autocorreation-function-acf/

Partial autocorrelation
As you might expect from the name, partial autocorrelation is related to
autocorrelation, but there are some subtle differences. Partial means that this is a
conditional sort of correlation. In essence, partial autocorrelation measures the
correlation of a series with itself at a certain lag after subtracting off any
autocorrelations at intermediate lags. You could think of this as the leftover
autocorrelation after intermediate correlations have been removed.

The reason that we might want something like this is that we need more than just the
ACF to determine the order of our time series model, assuming that it can be
modeled by an auto-regressive model. Let's suppose that, using the ACF, we have
determined that we can model our series by an auto-regressive model, because the
ACF decays exponentially with the lags. How are we to know if we should model
this time series by a version of itself lagged by one time period, or both a version of
itself lagged by one time period and two time periods, and so on?

By subtracting out intermediate correlations, we are able to quickly determine any
leftover correlation that could be modeled using an auto-regressive model with more
terms. If the partial autocorrelation dies off after a first lag, we know that we should
be able to model our series based on a single lagged version of itself (lagged at one
time period). However, if the partial autocorrelation does not die off after a first lag,
we know that we will need to employ multiple lagged versions of the time series in
our auto-regressive model.

If we imagine linearly modeling a value in our time series (xt) by values at
successively larger lags in the series (xt-1, xt-2, and so on), our equation would look
as follows:

The various coefficients m1, m2, and so on, are the partial autocorrelations for a lag
of one time period, the partial autocorrelation for the lag at two time periods, and so
on, respectively. Thus, all we need to do to calculate the partial autocorrelation for a
certain lag is to estimate the linear regression formula that will give us the
corresponding coefficient. A function that performs this calculation is called the
partial autocorrelation function (PACF).

Using our favorite linear regression package, github.com/sajari/regression, we can
create a Go function that implements the PACF as follows:

// pacf calculates the partial autocorrelation for a series
// at the given lag.
func pacf(x []float64, lag int) float64 {

 // Create a regresssion.Regression value needed to train
 // a model using github.com/sajari/regression.
 var r regression.Regression
 r.SetObserved("x")

 // Define the current lag and all of the intermediate lags.
 for i := 0; i < lag; i++ {
 r.SetVar(i, "x"+strconv.Itoa(i))
 }

 // Shift the series.
 xAdj := x[lag:len(x)]

 // Loop over the series creating the data set
 // for the regression.
 for i, xVal := range xAdj {

 // Loop over the intermediate lags to build up
 // our independent variables.
 laggedVariables := make([]float64, lag)
 for idx := 1; idx <= lag; idx++ {

 // Get the lagged series variables.
 laggedVariables[idx-1] = x[lag+i-idx]
 }

 // Add these points to the regression value.
 r.Train(regression.DataPoint(xVal, laggedVariables))
 }

 // Fit the regression.
 r.Run()

 return r.Coeff(lag)
}

Then, we can use this pacf function to calculate a few values of partial
autocorrelation, corresponding to lags for which we previously calculated
autocorrelation. This is demonstrated as follows:

// Open the CSV file.
passengersFile, err := os.Open("AirPassengers.csv")
if err != nil {
 log.Fatal(err)
}
defer passengersFile.Close()

// Create a dataframe from the CSV file.
passengersDF := dataframe.ReadCSV(passengersFile)

// Get the time and passengers as a slice of floats.
passengers := passengersDF.Col("AirPassengers").Float()

// Loop over various values of lag in the series.
fmt.Println("Partial Autocorrelation:")
for i := 1; i < 11; i++ {

 // Calculate the partial autocorrelation.
 pac := pacf(passengers, i)
 fmt.Printf("Lag %d period: %0.2f\n", i, pac)
}

Compiling and running this gives the following values of Partial Autocorrelation in
our air passengers times series:

$ go build
$./myprogram
Partial Autocorrelation:
Lag 1 period: 0.96
Lag 2 period: -0.33
Lag 3 period: 0.20
Lag 4 period: 0.15
Lag 5 period: 0.26
Lag 6 period: -0.03
Lag 7 period: 0.20
Lag 8 period: 0.16
Lag 9 period: 0.57
Lag 10 period: 0.29

As you can see, the partial autocorrelation dies off quickly after about the second lag.
This indicates that there is not much remaining relationship-wise in the time series
after factoring in the relationships between the time series and its first and second
lags. The partial autocorrelation does not go to 0.0 exactly, but that is expected due
to some noise in the data.

To help us better visualize the PACF, let's create another plot. We can do this the
exact same way as we did with the ACF, just substituting the pacf() function for the
acf() function. The resulting plot is as follows:

Auto-regressive models for forecasting
The first category of models that we are going to use to try and forecast our time
series are called auto-regressive (AR) models. As already mentioned, we try to
model a data point in our time series based on one or more previous points in the
series. We are, thus, modeling the time series using the time series itself. This use of
the series itself is what distinguishes AR methods from the more general regression
methods discussed in Chapter 4, Regression.

Auto-regressive model overview
You will often see AR models referred to as AR(1), AR(2), and so on. These
numbers correspond to the order of the AR model or process you are using to model
the time series, and it is this order that you can determine by performing
autocorrelation and partial autocorrelation analysis.

An AR(1) model attempts to model an observation in your series based on the
observation in the same series at a one time period delay:

An AR(2) model would look as follows:

An AR(3) model would add another term and so on, all following this pattern.

These formulas might remind you of linear regression, and we will
actually use many of the same methods here that we used when
creating linear regression models. However, the unique aspects of time
series modeling should not be ignored here. It is important to have an
intuition of the time-related elements of your data (seasonality, trends,
autocorrelations, and so on) and how they influence the AR models.

The order of AR model that you use to model your time series can be determined
best by looking at a graph of the PACF. In the graph, you will see the PACF values
decay to and then hover around zero. Look at how many lags it takes for the PACF
to start hovering around zero, and then utilize an AR order corresponding to that
many lags.

Note that some packages to plot the PACF and ACF include horizontal
lines indicating the statistical significance of the various lagged terms.
I have not included these here, but if you want to quantitatively
determine the order for your AR models, you might consider
calculating these as further discussed here:
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm and
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4463.htm.

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4463.htm

Auto-regressive model assumptions and
pitfalls
The main assumptions of auto-regressive models are as follows:

Stationarity: AR models assume that your time series is stationary. We should
not see any trends in the data if we plan on using AR models.
Ergodicity: This fancy term basically means that the statistical properties of the
time series, like mean and variance, should not vary or drift over time.

Whatever time series that we are modeling with AR methods should meet these
assumptions. However, even when some data (like our air passenger data) that does
not meet these assumptions, we can play some differencing tricks to still take
advantage of AR models.

Auto-regressive model example
We will try to model our air passenger data using an auto-regressive model. Now, we
already know that we are breaking one of the assumptions of AR models in that our
data is not stationary. However, we can apply a common trick to make our series
stationary, called differencing.

Transforming to a stationary series
To make our time series stationary, we will create a proxy time series where the
observation at time period t is the observation at time period t from our original time
series minus the previous observation. Let's difference each observation in this
manner and then plot the results to see if it gets rid of the trends in our data. We are
also going to output this differenced time series to a new *.csv file, as shown in the
following code:

// as slices of floats.
passengerVals := passengersDF.Col("AirPassengers").Float()
timeVals := passengersDF.Col("time").Float()

// pts will hold the values for plotting.
pts := make(plotter.XYs, passengersDF.Nrow()-1)

// differenced will hold our differenced values
// that will be output to a new CSV file.
var differenced [][]string
differenced = append(differenced, []string{"time", "differenced_passengers"})

// Fill pts with data.
for i := 1; i < len(passengerVals); i++ {
 pts[i-1].X = timeVals[i]
 pts[i-1].Y = passengerVals[i] - passengerVals[i-1]
 differenced = append(differenced, []string{
 strconv.FormatFloat(timeVals[i], 'f', -1, 64),
 strconv.FormatFloat(passengerVals[i]-passengerVals[i-1], 'f', -1, 64),
 })
}

// Create the plot.
p, err := plot.New()
if err != nil {
 log.Fatal(err)
}
p.X.Label.Text = "time"
p.Y.Label.Text = "differenced passengers"
p.Add(plotter.NewGrid())

// Add the line plot points for the time series.
l, err := plotter.NewLine(pts)
if err != nil {
 log.Fatal(err)
}
l.LineStyle.Width = vg.Points(1)
l.LineStyle.Color = color.RGBA{B: 255, A: 255}

// Save the plot to a PNG file.
p.Add(l)
if err := p.Save(10*vg.Inch, 4*vg.Inch, "diff_passengers_ts.png"); err != nil {
 log.Fatal(err)
}

// Save the differenced data out to a new CSV.
f, err := os.Create("diff_series.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

w := csv.NewWriter(f)
w.WriteAll(differenced)

if err := w.Error(); err != nil {
 log.Fatal(err)
}

This results in the following plot:

Here, we can see that we have basically removed all signs of the upward trend that
was in the original time series. However, there still appears to be a problem related
to variance. The differenced time series appears to have an increasing variance about
the mean as time gets larger, which breaks our ergodicity assumption.

To deal with the increase in variance, we can further transform our time series using
a log or power transformation that penalizes the larger values later in the time series.
Let's add this log transform, replot the log of the differenced series, and then save the
resulting data to a file called log_diff_series.csv. The code to accomplish this is the
same as the previous code snippet, except we use math.Log() to transform each value,
so we will spare the details. The following is the resulting plot:

Awesome! Now we have what looks to be a stationary series that we can utilize in
our AR models. Note, we are looking at this qualitatively for the most part in this
example, but there are quantitative tests for stationarity (the Dickey–Fuller test, for
example).

We have transformed our data here with both a difference and a log
transformation. This allowed us to fit within the assumptions of the AR
model, but it also made our data and our eventual model a little less
interpretable. It's harder to think about the log of a differenced time
series than the time series itself. We had a justification for this trade-off
here, but the trade-off should be noted, and the hope is to avoid such
obfuscations where we can.

Analyzing the ACF and choosing an AR
order
Now that we have a stationary series that fits within the assumptions of our model,
let's revisit our ACF and PACF plots to see what has changed. We can utilize the
same code that we used to plot the ACF and PACF previously, but this time we will
use our transformed series.

Here are the resulting ACF plot:

Here are the resulting PACF plot:

The first thing we notice is that the ACF plot no longer has a slow decay from 1.0 as
the lags get larger and larger. The ACF plot decays and fluctuates around 0.0. We
will come back to the ACF in the next section.

Next, we can see that the PACF also decays down to 0.0 and fluctuates around 0.0
thereafter. To choose the order of our AR model, we want to examine where the
PACF plot appears to cross the zero line for the first time. In our case, this appears to
be after the second lag period, and thus, we might want to consider using an AR(2)
model to model this time series auto-regressively.

Fitting and evaluating an AR(2) model
We have already seen that PACF gives us the coefficients for various orders in our
AR model. Taking advantage of this, we can get the coefficients for our first and
second lag terms along with the intercept (or error term) in our model using a
slightly modified version of the pacf() function shown in the following code:

// autoregressive calculates an AR model for a series
// at a given order.
func autoregressive(x []float64, lag int) ([]float64, float64) {

 // Create a regresssion.Regression value needed to train
 // a model using github.com/sajari/regression.
 var r regression.Regression
 r.SetObserved("x")

 // Define the current lag and all of the intermediate lags.
 for i := 0; i < lag; i++ {
 r.SetVar(i, "x"+strconv.Itoa(i))
 }

 // Shift the series.
 xAdj := x[lag:len(x)]

 // Loop over the series creating the data set
 // for the regression.
 for i, xVal := range xAdj {

 // Loop over the intermediate lags to build up
 // our independent variables.
 laggedVariables := make([]float64, lag)
 for idx := 1; idx <= lag; idx++ {

 // Get the lagged series variables.
 laggedVariables[idx-1] = x[lag+i-idx]
 }

 // Add these points to the regression value.
 r.Train(regression.DataPoint(xVal, laggedVariables))
 }

 // Fit the regression.
 r.Run()

 // coeff hold the coefficients for our lags.
 var coeff []float64
 for i := 1; i <= lag; i++ {
 coeff = append(coeff, r.Coeff(i))
 }

 return coeff, r.Coeff(0)
}

We can then call this on our log differenced series to get our trained AR(2) model
coefficients:

// Open the CSV file.
passengersFile, err := os.Open("log_diff_series.csv")
if err != nil {
 log.Fatal(err)
}
defer passengersFile.Close()

// Create a dataframe from the CSV file.
passengersDF := dataframe.ReadCSV(passengersFile)

// Get the time and passengers as a slice of floats.
passengers := passengersDF.Col("log_differenced_passengers").Float()

// Calculate the coefficients for lag 1 and 2 and
// our error.
coeffs, intercept := autoregressive(passengers, 2)

// Output the AR(2) model to stdout.
fmt.Printf("\nlog(x(t)) - log(x(t-1)) = %0.6f + lag1*%0.6f + lag2*%0.6f\n\n", intercept, coeffs[0], coeffs[1])

Compiling and running this training gives us the following AR(2) formula for the log
of the differenced passenger counts:

$ go build
$./myprogram

log(x(t)) - log(x(t-1)) = 0.008159 + lag1*0.234953 + lag2*-0.173682

To evaluate this AR(2) model, we can calculate the Mean Absolute Error (MAE),
similar to how we calculated it for linear regression models. Specifically, we will
compute predicted passenger count values paired with our observed passenger count
values, and then we will calculate the error and accumulate the MAE.

First, let's calculate our transformed (log and differenced) predictions:

// Open the log differenced dataset file.
transFile, err := os.Open("log_diff_series.csv")
if err != nil {
 log.Fatal(err)
}
defer transFile.Close()

// Create a CSV reader reading from the opened file.
transReader := csv.NewReader(transFile)

// Read in all of the CSV records
transReader.FieldsPerRecord = 2
transData, err := transReader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// Loop over the data predicting the transformed
// observations.
var transPredictions []float64
for i, _ := range transData {

 // Skip the header and the first two observations
 // (because we need two lags to make a prediction).
 if i == 0 || i == 1 || i == 2 {
 continue
 }

 // Parse the first lag.
 lagOne, err := strconv.ParseFloat(transData[i-1][1], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the second lag.
 lagTwo, err := strconv.ParseFloat(transData[i-2][1], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Predict the transformed variable with our trained AR model.
 transPredictions = append(transPredictions, 0.008159+0.234953*lagOne-0.173682*lagTwo)
}

Now, in order to calculate our MAE, we need to transform these predictions back to
normal passenger counts (such that we can compare them directly to our original
time series). The reverse transform of our log and differenced data involves
calculating cumulative sums in the transformed series, adding them back to the base
series values, and then taking an exponential. This reverse transform, the
accumulation of the MAE, and the aggregation of points to plot our observations and
predictions is as follows:

// Open the original dataset file.
origFile, err := os.Open("AirPassengers.csv")
if err != nil {
 log.Fatal(err)
}
defer origFile.Close()

// Create a CSV reader reading from the opened file.
origReader := csv.NewReader(origFile)

// Read in all of the CSV records
origReader.FieldsPerRecord = 2
origData, err := origReader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// pts* will hold the values for plotting.
ptsObs := make(plotter.XYs, len(transPredictions))
ptsPred := make(plotter.XYs, len(transPredictions))

// Reverse the transformation and calculate the MAE.
var mAE float64
var cumSum float64
for i := 4; i <= len(origData)-1; i++ {

 // Parse the original observation.
 observed, err := strconv.ParseFloat(origData[i][1], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Parse the original date.
 date, err := strconv.ParseFloat(origData[i][0], 64)
 if err != nil {
 log.Fatal(err)
 }

 // Get the cumulative sum up to the index in
 // the transformed predictions.
 cumSum += transPredictions[i-4]

 // Calculate the reverse transformed prediction.
 predicted := math.Exp(math.Log(observed) + cumSum)

 // Accumulate the MAE.
 mAE += math.Abs(observed-predicted) / float64(len(transPredictions))

 // Fill in the points for plotting.
 ptsObs[i-4].X = date
 ptsPred[i-4].X = date
 ptsObs[i-4].Y = observed
 ptsPred[i-4].Y = predicted
}

Then, let's output the MAE to stand out and save a line plot of the observed and
predicted values:

// Output the MAE to standard out.
fmt.Printf("\nMAE = %0.2f\n\n", mAE)

// Create the plot.
p, err := plot.New()
if err != nil {
 log.Fatal(err)
}
p.X.Label.Text = "time"
p.Y.Label.Text = "passengers"
p.Add(plotter.NewGrid())

// Add the line plot points for the time series.
lObs, err := plotter.NewLine(ptsObs)
if err != nil {
 log.Fatal(err)
}
lObs.LineStyle.Width = vg.Points(1)

lPred, err := plotter.NewLine(ptsPred)
if err != nil {
 log.Fatal(err)

}
lPred.LineStyle.Width = vg.Points(1)
lPred.LineStyle.Dashes = []vg.Length{vg.Points(5), vg.Points(5)}

// Save the plot to a PNG file.
p.Add(lObs, lPred)
p.Legend.Add("Observed", lObs)
p.Legend.Add("Predicted", lPred)
if err := p.Save(10*vg.Inch, 4*vg.Inch, "passengers_ts.png"); err != nil {
 log.Fatal(err)
}

Compiling this and running it results in the following MAE:

$ go build
$./myprogram

MAE = 355.20

If you remember from our original visualization of this series, the passenger counts
range from just above zero to just above 600. Thus, an MAE of approximately 355 is
not super great. To get a more complete view of how our predictions and
observations line up, however, let's look at the plot generated by the preceding code:

As you can see, our model overpredicts the number of air passengers, especially as
time goes on. The model does exhibit some of the structure that is seen in the
original data and it produces a similar trend. Yet, it appears that we may need a
slightly more sophisticated model to more realistically represent this series.

No model is perfect and we have tried a relatively simple time series
model here. It's good that we tried to stick with a simple and
interpretable model, but our evaluation results would probably
motivate us to refactor our model in a real-world scenario. Refactoring
is good! It means that we learned something.

Auto-regressive moving averages and
other time series models
The model that we tried earlier was a relatively simple pure auto-regressive model.
However, we are not stuck with using auto-regression or pure auto-regression alone
in our time series models. As with other classes of machine learning models covered
in this book, there is a whole zoo of time series techniques, and we cannot cover
them all here. However, we did want to mention a few notable techniques that you
could explore as you follow up on this material.

Auto-regressive models are often combined with models called moving average
models. When these are combined, they are often referred to as auto-regressive
moving average (ARMA) or auto-regressive integrated moving average
(ARIMA) models. The moving average part of ARMA/ARIMA models allows you
to capture the effects of things like white noise or other error terms in your time
series, which would actually improve our AR(2) model for air passengers.

Unfortunately, at the time of writing this content, no out of the box package exists to
perform ARIMA in Go. As mentioned earlier, the auto-regressive part is relatively
easy, but the moving average fitting is slightly more complicated. This is another
great place to jump in with contributions!

There are also time series models that are outside of the realm of ARIMA models.
For example, the Holt-Winters method attempts to capture seasonality in time
series data via a forecast equation and three smoothing equations. There are
preliminary implementations of the Holt-Winters method in
github.com/datastream/holtwinters and github.com/dgryski/go-holtwinters. These likely
need to be further maintained and productionized, but they serve as a starting point.

Anomaly detection
As mentioned in the introduction to this chapter, we might not always be interested
in forecasting a time series. We might want to detect anomalous behavior in a time
series. For example, we might want to know when out of the ordinary bursts of
traffic come across our network, or we may want an alert when out of the ordinary
numbers of users are attempting certain things inside of our application. These
events could be tied to security concerns or may just be used to adjust our
infrastructure or application settings.

Thankfully, due to Go's history of usage in monitoring and infrastructure, there are a
variety of Go-based options to detect anomalies in time series data. This tooling has
been used in production to detect anomalous behavior while monitoring
infrastructure and applications and, although there are more tools than can be
mentioned here, I will highlight a couple.

First, the InfluxDB (https://www.influxdata.com/) and Prometheus (https://prometheus.io/)
ecosystems have a variety of options for anomaly detection. Both InfluxDB and
Prometheus offer open source, Go-based time series databases and related tooling.
They are useful to monitor infrastructure and applications, and they have widespread
use both in the Go community and outside of the Go community. For example, if
you are interested in using InfluxDB, you can use github.com/nathanielc/morgoth for
anomaly detection.

This package implements the Lossy Counting Algorithm (LCA). On the
Prometheus side, you could utilize a query-based approach as further discussed on htt
ps://prometheus.io/blog/2015/06/18/practical-anomaly-detection/.

There are a variety of standalone Go packages for anomaly detection as well,
including github.com/lytics/anomalyzer and github.com/sec51/goanomaly. More
specifically, github.com/lytics/anomalyzer implements a variety of tests to determine if
an observation in your series is anomalous, including tests based on the cumulative
distribution functions, bootstrap permutations, permuted rank-sums, relative
magnitudes, and more.

To detect anomalies with github.com/lytics/anomalyzer, we need to create some
configurations and an anomalyzer.Anomalyzer value. Once we have done this, detecting
an anomaly is as simple as calling the Push() method on the anomalyzer.Anomalyzer

https://www.influxdata.com/
https://prometheus.io/
https://prometheus.io/blog/2015/06/18/practical-anomaly-detection/

value, as shown in the following code:

// Initialize an AnomalyzerConf value with
// configurations such as which anomaly detection
// methods we want to use.
conf := &anomalyzer.AnomalyzerConf{
 Sensitivity: 0.1,
 UpperBound: 5,
 LowerBound: anomalyzer.NA, // ignore the lower bound
 ActiveSize: 1,
 NSeasons: 4,
 Methods: []string{"diff", "fence", "highrank", "lowrank", "magnitude"},
}

// Create a time series of periodic observations
// as a slice of floats. This could come from a
// database or file, as utilized in earlier examples.
ts := []float64{0.1, 0.2, 0.5, 0.12, 0.38, 0.9, 0.74}

// Create a new anomalyzer based on the existing
// time series values and configuration.
anom, err := anomalyzer.NewAnomalyzer(conf, ts)
if err != nil {
 log.Fatal(err)
}

// Supply a new observed value to the Anomalyzer.
// The Anomalyzer will analyze the value in reference
// to pre-existing values in the series and output
// a probability of the value being anomalous.
prob := anom.Push(15.2)
fmt.Printf("Probability of 15.2 being anomalous: %0.2f\n", prob)

prob = anom.Push(0.43)
fmt.Printf("Probability of 0.33 being anomalous: %0.2f\n", prob)

Compiling and running this anomaly detection yields the following:

$ go build
$./myprogram
Probability of 15.2 being anomalous: 0.98
Probability of 0.33 being anomalous: 0.80

References
Time series statistics (ACF and PACF):

How to use ACF: https://coolstatsblog.com/2013/08/07/how-to-use-the-autocorreation-fun
ction-acf/
Identifying the number of AR or MA terms in an ARIMA model: https://people.du
ke.edu/~rnau/411arim3.htm

Auto-regressive models:

A more mathematical introduction to AR models: https://onlinecourses.science.psu.e
du/stat501/node/358
github.com/sajari/regression docs: https://godoc.org/github.com/sajari/regression

ARMA/ARIMA models:

Introduction to ARIMA: https://people.duke.edu/~rnau/411arim.htm

Anomaly detection:

InfluxDB: https://www.influxdata.com/
Prometheus: https://prometheus.io/
github.com/lytics/anomalyzer docs: https://godoc.org/github.com/lytics/anomalyzer
github.com/sec51/goanomaly docs: https://godoc.org/github.com/sec51/goanomaly

https://coolstatsblog.com/2013/08/07/how-to-use-the-autocorreation-function-acf/
https://people.duke.edu/~rnau/411arim3.htm
https://onlinecourses.science.psu.edu/stat501/node/358
https://godoc.org/github.com/sajari/regression
https://people.duke.edu/~rnau/411arim.htm
https://www.influxdata.com/
https://prometheus.io/
https://godoc.org/github.com/lytics/anomalyzer
https://godoc.org/github.com/sec51/goanomaly

Summary
Well, that was timely! We now know what time series data is, how to represent it in
Go, how to make some forecasts, and how to detect anomalies in our time series
data. These skills will come in useful anytime you are working with data that is
changing with time, whether its data related to stock prices, or monitoring data
related to your infrastructure.

In the next chapter, we will level up our Go-based machine learning by looking at a
few advanced techniques, including neural networks and deep learning.

Neural Networks and Deep Learning
In this book, we have talked a lot about training, or teaching, machines to make
predictions. To this end, we have employed a variety of useful and interesting
algorithms including various types of regression, decisions trees, and nearest
neighbors. However, let's take a step back and think about what entity we might
want to mimic if we are trying to make accurate predictions and learn about data.

Well, the most obvious answer to this question is that we should mimic our own
brains. We as humans have a natural ability to recognize objects, predict quantities,
recognize frauds, and more, and these are all things that we would like machines to
do artificially. Granted, we are not perfect at these activities, but we are pretty good!

This type of thinking was what lead to the development of artificial neural
networks (also known as neural networks or just neural nets). These models
attempt to roughly mimic certain structures in our brains, such as neurons. They
have been widely successful across industries and are currently being applied to
solve a variety of interesting problems.

Recently, more specialized and complicated types of neural networks have been
attracting a lot of interest and attention. These neural networks fall under the
category of deep learning and generally have a deeper structure than what would be
considered regular neural networks. That is, they have many hidden layers of
structure and could be parameterized with tens of millions of parameters or weights.

We will attempt to introduce both Go-based neural networks and deep learning
models in this chapter. These topics are incredibly broad and there are entire books
on deep learning alone. Thus, we will only be touching the surface here. That being
said, this following content should provide you with a solid starting point to build
neural networks in Go.

Understanding neural net jargon
There are a huge variety of neural network flavors, and each of these flavors has its
own set of jargon. However, there is some common jargon that we should know
regardless of the type of neural network that we are utilizing. This jargon is
presented in the following points:

Nodes, perceptrons, or neurons: These interchangeable terms refer to the basic
building blocks of a neural network. Each node or neuron takes in input data
and performs an operation on this data. After performing the operation, the
node/neuron may or may not pass the results of the operation on to other
nodes/neurons.
Activation: The output or values associated with the operation of a node.
Activation function: The definition of the function that transforms the inputs to
a node into the output, or activation.
Weights or biases: These values define the relationships between input and
output data in the activation function.
Input layer: The input layer of a neural network includes a series of nodes that
take the initial input into the neural network model (a series of features or
attributes, for example).
Output layer: The output layer of a neural network includes a series of nodes
that take information passed inside the neural network and transform it into a
final output.
Hidden layers: These layers of a neural network exist between the input and
output layers and are thus hidden from outside inputs or outputs.
Feedforward or feed forward: This refers to a scenario in which data is fed
into the input layer of a neural network and transferred in a forward direction to
the output layer (without any cycles).
Backpropagation: This is a method for training neural network models that
involves feeding forward values through the network, calculating generated
errors, and then transferring changes based on these errors back into the
network.
Architecture: The overall structure of how neurons are connected together in
the neural network is called an architecture.

To solidify these concepts, consider the following schematic of a neural network:

This is a basic feedforward (that is, acyclic or recursive) neural network. It has two
hidden layers, accepts two inputs, and outputs two class values (or results).

Don't worry if all this jargon seems a little bit overwhelming right now. We will be
looking at a concrete example next that should solidify all of these pieces. Also, if
you get down in the weeds with the various examples in this chapter and get
confused with terminology, circle back here as a reminder.

Building a simple neural network
Many neural network packages and applications of neural networks treat the models
as black boxes. That is, people tend to utilize some framework that allows them to
quickly build a neural network using a bunch of default values and automation. They
are often able to produce some results, but this sort of convenience usually does not
build much intuition about how the models actually work. As a result, when the
models do not behave as expected, it's very hard to understand why they might be
making weird predictions or having trouble converging.

Before jumping into more complicated neural networks, let's build up some basic
intuition about neural networks such that we do not fall into this pattern. We are
going to build a simple neural network from scratch to learn about the basic
components of neural networks and how they operate together.

Note: that even though we are going to build our neural net from
scratch here (which you may also want to do in certain scenarios),
there are a variety of Go packages that help you build, train, and make
predictions with neural networks. These include
github.com/tleyden/neurgo, github.com/fxsjy/gonn, github.com/NOX73/go-
neural, github.com/milosgajdos83/gosom, github.com/made2591/go-perceptron-
go, and github.com/chewxy/gorgonia.
We are going to utilize neural networks for classification in this
chapter. However, neural nets can also be utilized to perform
regression. You can learn more about that topic here: https://heuristically.
wordpress.com/2011/11/17/using-neural-network-for-regression/.

https://heuristically.wordpress.com/2011/11/17/using-neural-network-for-regression/

Nodes in the network
The nodes, or neurons, of our neural network have a relatively simple functionality
in and of themselves. Each neuron will take in one or more values (x1, x2, and so on),
combine these values according to an activation function, and produce a single
output. The following is the output pictured:

How exactly should we combine the inputs to get the output? Well, we need a
method to combine the inputs that is adjustable (such that we can train the model),
and we have already seen that combining variables using coefficients and an
intercept is one trainable way to combine inputs. Just think back to Chapter 4,
Regression. In this spirit, we are going to combine the inputs linearly with some
coefficients (weights) and an intercept (the bias):

Here, w1, w2, and so on are our weights and b is the bias.

This combination of inputs is a good start, but it is linear at the end of the day, and
thus not able to model non-linear relationships between the input and output. To
introduce some non-linearity, we are going to apply an activation function to this
linear combination of inputs. The activation function that we will use here is similar
to the logistic function that was introduced in Chapter 5, Classification. In the context
of neural networks and in the following form, the logistic function is referred to as
the sigmoid function:

The sigmoid function is a good choice for use in our node because it introduces non-
linearity, but it also has a limited range (between 0 and 1), has a simply defined
derivative (which we will use during training of the network), and it can have a
probabilistic interpretation (as discussed further in Chapter 5, Classification).

The sigmoid function is by no means the only choice for an activation
function in a neural network. Other popular choices include the
hyperbolic tangent function, softmax, and rectified linear units. Choices
of activation functions along with their advantages and disadvantages
are further discussed at https://medium.com/towards-data-science/activation-fu
nctions-and-its-types-which-is-better-a9a5310cc8f.

Let's go ahead and define our activation function in Go along with its derivative.
These definitions are shown in the following code:

// sigmoid implements the sigmoid function
// for use in activation functions.
func sigmoid(x float64) float64 {
 return 1.0 / (1.0 + math.Exp(-x))
}

// sigmoidPrime implements the derivative
// of the sigmoid function for backpropagation.
func sigmoidPrime(x float64) float64 {
 return x * (1.0 - x)
}

https://medium.com/towards-data-science/activation-functions-and-its-types-which-is-better-a9a5310cc8f

Network architecture
The simple neural network that we are going to build will contain an input and
output layer (as does any neural network). The network will include a single hidden
layer between the input and output layer. This architecture is depicted as follows:

In particular, we are going to include four nodes in the input layer, three nodes in the
hidden layer, and three nodes in the output layer. The four nodes in the input layer
correspond to the number of attributes that we are going to feed into the network.
Think about these four inputs as something like the four measurements we used to
classify iris flowers in Chapter 5, Classification. The output layer will have three
nodes because we will be setting up our network to make classifications for the iris
flowers, which could be in one of three classes.

Now, regarding the hidden layer--why are we using one hidden layer with three
nodes? Well, one hidden layer is sufficient for a very large majority of simple tasks.
If you have a large amount of non-linearity in your data, many inputs, and/or large
amounts of training data, you may need to introduce more hidden layers (as further
discussed later in this chapter in relation to deep learning). The choice of three nodes
in the hidden layer can be tuned based on an evaluation metric and a little trial and
error. You can also search the numbers of nodes in the hidden layer to automate your
choice.

Keep in mind that the more nodes you introduce into the hidden layer,

the more perfectly your network can learn your training set. In other
words, you are putting yourself in danger of overfitting your model
such that it does not generalize. When adding this complication, it is
important to validate your model very carefully to ensure that it
generalizes.

Why do we expect this architecture to
work?
Let's pause for a moment and think about why setting up a series of nodes in the
preceding arrangement would allow us to predict something. As you can see, all we
are doing is combining inputs over and over to produce some result. How can we
expect this result to be useful in making binary classifications?

Well, what exactly do we mean when we define a binary classification problem, or
any classification or regression problem, for that matter? We are basically saying
that we expect there to be some rules or relationships that exist between a series of
inputs (our attributes) and an output (our labels or response). In essence, we are
saying that there exists some simple or complicated function that is able to transform
our attributes into the response or labels that we are after.

We could make a choice for a type of function that might model this transformation
of attributes to output, as we do in linear or logistic regression. However, we could
also set up a series of chained and adjustable functions that we could algorithmically
train to detect the relationships and rules between our inputs and output. This is what
we are doing with the neural network!

The nodes of the neural network are like sub-functions that are adjusted until they
mimic the rules and relationships between our supplied inputs and the output,
regardless of what those rules and relationships actually are (linear, non-linear,
dynamic, and so on). If underlying rules exist between the inputs and outputs, it is
likely that there exists some neural network that can mimic the rules.

Training our neural network
Okay, so now we have some good motivation for why this combination of nodes
might help us make predictions. How are we actually going to adjust all of the sub-
functions of our neural network nodes based on some input data? The answer is
called backpropagation.

Backpropagation is a method for training our neural network that involves doing the
following iteratively over a series of epochs (or exposure to our training dataset):

Feeding our training data forward through the neural network to calculate an
output
Calculating errors in the output
Using gradient descent (or other relevant method) to determine how we should
change our weights and biases based on the errors
Backpropagating these weight/bias changes into the network

We will implement this process later and go through some of the details. However,
certain things like gradient descent are covered in more detail in the Appendix,
Algorithms/Techniques Related to Machine Learning.

This backpropagation method of training a neural network is
ubiquitous in the modeling world, but there are tons of unique network
architectures and methods that we do not have space to cover here.
Neural nets are an active area of research in academia and industry.

First, let's define a struct neuralNetConfig that will contain all of the parameters that
define our network architecture and how we will go about our backpropagation
iterations. Let's also define a struct neuralNet that will contain all of the information
that defines a trained neural network. Later on, we will utilize trained neuralNet
values to make predictions. These definitions are shown in the following code:

// neuralNet contains all of the information
// that defines a trained neural network.
type neuralNet struct {
 config neuralNetConfig
 wHidden *mat.Dense
 bHidden *mat.Dense
 wOut *mat.Dense
 bOut *mat.Dense
}

// neuralNetConfig defines our neural network
// architecture and learning parameters.
type neuralNetConfig struct {
 inputNeurons int
 outputNeurons int
 hiddenNeurons int
 numEpochs int
 learningRate float64
}

Here, wHidden and bHidden are the weights and biases for the hidden layer of the
network and wOut and bOut are the weights and biases for the output layer of the
network, respectively. Note that we are using gonum.org/v1/gonum/mat matrices for all
the weights and biases, and we will use similar matrices to represent our inputs and
outputs. This will let us easily perform the operations related to the backpropagation
and generalize our training to any number of nodes in the input, hidden, and output
layers.

Next, let's define a function that initializes a new neural network based on a
neuralNetConfig value and a method that trains a neuralNet value based on a matrix of
inputs (x) and a matrix of labels (y):

// NewNetwork initializes a new neural network.
func newNetwork(config neuralNetConfig) *neuralNet {
 return &neuralNet{config: config}
}

// Train trains a neural network using backpropagation.
func (nn *neuralNet) train(x, y *mat.Dense) error {

 // To be filled in...
}

In the train() method, we need to complete our backpropagation method and place
the resulting trained weights and biases into the receiver. First, let's initialize the
weights and biases randomly in the train() method, as shown in the following code:

// Initialize biases/weights.
randSource := rand.NewSource(time.Now().UnixNano())
randGen := rand.New(randSource)

wHiddenRaw := make([]float64, nn.config.hiddenNeurons*nn.config.inputNeurons)
bHiddenRaw := make([]float64, nn.config.hiddenNeurons)
wOutRaw := make([]float64, nn.config.outputNeurons*nn.config.hiddenNeurons)
bOutRaw := make([]float64, nn.config.outputNeurons)

for _, param := range [][]float64{wHiddenRaw, bHiddenRaw, wOutRaw, bOutRaw} {
 for i := range param {
 param[i] = randGen.Float64()
 }
}

wHidden := mat.NewDense(nn.config.inputNeurons, nn.config.hiddenNeurons, wHiddenRaw)

bHidden := mat.NewDense(1, nn.config.hiddenNeurons, bHiddenRaw)
wOut := mat.NewDense(nn.config.hiddenNeurons, nn.config.outputNeurons, wOutRaw)
bOut := mat.NewDense(1, nn.config.outputNeurons, bOutRaw)

Then, we need to loop over each of our epochs completing the backpropagation of
the network. This again involves a feed forward stage in which outputs are calculated
and a backpropagating stage in which changes to the weights and biases are applied.
The backpropagation process will be discussed in more detail in the Appendix,
Algorithms/Techniques Related to Machine Learning, if you are interested in diving
a little deeper. For now, let's focus on the implementation. The loop over epochs
look like the following, with the various pieces of the backpropagation process
indicated by comments:

// Define the output of the neural network.
output := mat.NewDense(0, 0, nil)

// Loop over the number of epochs utilizing
// backpropagation to train our model.
for i := 0; i < nn.config.numEpochs; i++ {

 // Complete the feed forward process.

 ...

 // Complete the backpropagation.

 ...

 // Adjust the parameters.

 ...
}

In the feed forward section of this loop, the inputs are propagated forward through
our network of nodes:

// Complete the feed forward process.
hiddenLayerInput := mat.NewDense(0, 0, nil)
hiddenLayerInput.Mul(x, wHidden)
addBHidden := func(_, col int, v float64) float64 { return v + bHidden.At(0, col) }
hiddenLayerInput.Apply(addBHidden, hiddenLayerInput)

hiddenLayerActivations := mat.NewDense(0, 0, nil)
applySigmoid := func(_, _ int, v float64) float64 { return sigmoid(v) }
hiddenLayerActivations.Apply(applySigmoid, hiddenLayerInput)

outputLayerInput := mat.NewDense(0, 0, nil)
outputLayerInput.Mul(hiddenLayerActivations, wOut)
addBOut := func(_, col int, v float64) float64 { return v + bOut.At(0, col) }
outputLayerInput.Apply(addBOut, outputLayerInput)
output.Apply(applySigmoid, outputLayerInput)

Then, once we have an output from the feed forward process, we go backward

through the network calculating deltas (or changes) for the output and hidden layers,
as can be seen in the following code:

// Complete the backpropagation.
networkError := mat.NewDense(0, 0, nil)
networkError.Sub(y, output)

slopeOutputLayer := mat.NewDense(0, 0, nil)
applySigmoidPrime := func(_, _ int, v float64) float64 { return sigmoidPrime(v) }
slopeOutputLayer.Apply(applySigmoidPrime, output)
slopeHiddenLayer := mat.NewDense(0, 0, nil)
slopeHiddenLayer.Apply(applySigmoidPrime, hiddenLayerActivations)

dOutput := mat.NewDense(0, 0, nil)
dOutput.MulElem(networkError, slopeOutputLayer)
errorAtHiddenLayer := mat.NewDense(0, 0, nil)
errorAtHiddenLayer.Mul(dOutput, wOut.T())

dHiddenLayer := mat.NewDense(0, 0, nil)
dHiddenLayer.MulElem(errorAtHiddenLayer, slopeHiddenLayer)

The deltas are then utilized to update the weights and biases of our network. A
learning rate is also used to scale these changes, which can help the algorithm
converge. This final piece of the backprogation loop is implemented here:

// Adjust the parameters.
wOutAdj := mat.NewDense(0, 0, nil)
wOutAdj.Mul(hiddenLayerActivations.T(), dOutput)
wOutAdj.Scale(nn.config.learningRate, wOutAdj)
wOut.Add(wOut, wOutAdj)

bOutAdj, err := sumAlongAxis(0, dOutput)
if err != nil {
 return err
}
bOutAdj.Scale(nn.config.learningRate, bOutAdj)
bOut.Add(bOut, bOutAdj)

wHiddenAdj := mat.NewDense(0, 0, nil)
wHiddenAdj.Mul(x.T(), dHiddenLayer)
wHiddenAdj.Scale(nn.config.learningRate, wHiddenAdj)
wHidden.Add(wHidden, wHiddenAdj)

bHiddenAdj, err := sumAlongAxis(0, dHiddenLayer)
if err != nil {
 return err
}
bHiddenAdj.Scale(nn.config.learningRate, bHiddenAdj)
bHidden.Add(bHidden, bHiddenAdj)

Note, here we have utilized another helper function that allows us to sum matrices
along one dimension while keeping the other dimension intact. This sumAlongAxis()
function is shown in the following code for completeness:

// sumAlongAxis sums a matrix along a

// particular dimension, preserving the
// other dimension.
func sumAlongAxis(axis int, m *mat.Dense) (*mat.Dense, error) {

 numRows, numCols := m.Dims()

 var output *mat.Dense

 switch axis {
 case 0:
 data := make([]float64, numCols)
 for i := 0; i < numCols; i++ {
 col := mat.Col(nil, i, m)
 data[i] = floats.Sum(col)
 }
 output = mat.NewDense(1, numCols, data)
 case 1:
 data := make([]float64, numRows)
 for i := 0; i < numRows; i++ {
 row := mat.Row(nil, i, m)
 data[i] = floats.Sum(row)
 }
 output = mat.NewDense(numRows, 1, data)
 default:
 return nil, errors.New("invalid axis, must be 0 or 1")
 }

 return output, nil
}

The last thing that we will do in the train() method is add the trained weights and
biases to the receiver value and return:

// Define our trained neural network.
nn.wHidden = wHidden
nn.bHidden = bHidden
nn.wOut = wOut
nn.bOut = bOut

return nil

Awesome! That wasn't so bad. We have a method to train our neural network in
about 100 lines of Go code. To check whether this code runs and to get a sense about
what our weights and biases might look like, let's train a neural network on some
simple dummy data. We will perform a more realistic example with the network in
the next section, but for now, let's just sanity check ourselves with some dummy
data, as shown in the following code:

// Define our input attributes.
input := mat.NewDense(3, 4, []float64{
 1.0, 0.0, 1.0, 0.0,
 1.0, 0.0, 1.0, 1.0,
 0.0, 1.0, 0.0, 1.0,
})

// Define our labels.

labels := mat.NewDense(3, 1, []float64{1.0, 1.0, 0.0})

// Define our network architecture and
// learning parameters.
config := neuralNetConfig{
 inputNeurons: 4,
 outputNeurons: 1,
 hiddenNeurons: 3,
 numEpochs: 5000,
 learningRate: 0.3,
}

// Train the neural network.
network := newNetwork(config)
if err := network.train(input, labels); err != nil {
 log.Fatal(err)
}

// Output the weights that define our network!
f := mat.Formatted(network.wHidden, mat.Prefix(" "))
fmt.Printf("\nwHidden = % v\n\n", f)

f = mat.Formatted(network.bHidden, mat.Prefix(" "))
fmt.Printf("\nbHidden = % v\n\n", f)

f = mat.Formatted(network.wOut, mat.Prefix(" "))
fmt.Printf("\nwOut = % v\n\n", f)

f = mat.Formatted(network.bOut, mat.Prefix(" "))
fmt.Printf("\nbOut = % v\n\n", f)

Compiling and running this neural network training code results in the following
output weights and biases:

bOut$ go build
$./myprogram

wHidden = [2.105009524680073 2.022752980359344 2.5200192466310547]
 [-2.033896626042324 -1.8652059633980662 -1.5861504822640748]
 [1.821046795894909 2.436963623058306 1.717510016887383]
 [-0.7400175664445425 -0.5800261988090052 -0.9277709997772002]

bHidden = [0.06850421921273529 -0.40252869229501825 -0.03392255287230178]

wOut = [2.321901257946553]
 [3.343178681830189]
 [1.7581701319375231]

bOut = [-3.471613333924047]

These weights and biases fully define our trained neural network. That is, wHidden and
bHidden allow us to translate our inputs into values that are input to the output layer of
our network, and wOut and bOut allow us to translate those values into the final output
of our neural net.

Because of our use of random numbers, your program may return
slightly different results from those which are described earlier.
However, you should see a similar range of values.

Utilizing the simple neural network
Now that we have some neural network training functionality that appears to be
working, let's try to utilize this functionality in a more realistic modeling scenario. In
particular, let's bring back our favorite classification dataset, the iris flower dataset
(utilized in Chapter 5, Classification).

If you remember, when trying to classify iris flowers using this dataset, we are trying
to classify them into one of three species (setosa, virginica, or versicolor). As our
neural net is expecting matrices of float values, we need to encode the three species
into numerical columns. One way to do this is to create a column in our dataset for
each species. We will then set that column's values to either 1.0 or 0.0 depending on
whether the corresponding row's measurements correspond to that species (1.0) or to
another species (0.0).

We are also going to standardize our data for reasons similar to those that were
discussed in reference to logistic regression in Chapter 5, Classification. This makes
our dataset look slightly different than it did for previous examples, as you can see
here:

$ head train.csv
sepal_length,sepal_width,petal_length,petal_width,setosa,virginica,versicolor
0.305555555556,0.583333333333,0.118644067797,0.0416666666667,1.0,0.0,0.0
0.25,0.291666666667,0.491525423729,0.541666666667,0.0,0.0,1.0
0.194444444444,0.5,0.0338983050847,0.0416666666667,1.0,0.0,0.0
0.833333333333,0.375,0.898305084746,0.708333333333,0.0,1.0,0.0
0.555555555556,0.208333333333,0.661016949153,0.583333333333,0.0,0.0,1.0
0.416666666667,0.25,0.508474576271,0.458333333333,0.0,0.0,1.0
0.666666666667,0.416666666667,0.677966101695,0.666666666667,0.0,0.0,1.0
0.416666666667,0.291666666667,0.491525423729,0.458333333333,0.0,0.0,1.0
0.5,0.416666666667,0.661016949153,0.708333333333,0.0,1.0,0.0

We will use an 80/20 training and test split of our data to evaluate the model. The
training data will be stored in train.csv and the testing data will be stored in test.csv,
as shown here:

$ wc -l *.csv
 31 test.csv
 121 train.csv
 152 total

Training the neural network on real
data
To train our neural network on this iris data, we need to read in the training data and
create two matrices. The first matrix will hold all of the attributes (matrix inputs),
and the second matrix will hold all the labels (matrix labels). We are going to
construct these matrices as follows:

// Open the training dataset file.
f, err := os.Open("train.csv")
if err != nil {
 log.Fatal(err)
}
defer f.Close()

// Create a new CSV reader reading from the opened file.
reader := csv.NewReader(f)
reader.FieldsPerRecord = 7

// Read in all of the CSV records
rawCSVData, err := reader.ReadAll()
if err != nil {
 log.Fatal(err)
}

// inputsData and labelsData will hold all the
// float values that will eventually be
// used to form our matrices.
inputsData := make([]float64, 4*len(rawCSVData))
labelsData := make([]float64, 3*len(rawCSVData))

// inputsIndex will track the current index of
// inputs matrix values.
var inputsIndex int
var labelsIndex int

// Sequentially move the rows into a slice of floats.
for idx, record := range rawCSVData {

 // Skip the header row.
 if idx == 0 {
 continue
 }

 // Loop over the float columns.
 for i, val := range record {

 // Convert the value to a float.
 parsedVal, err := strconv.ParseFloat(val, 64)
 if err != nil {
 log.Fatal(err)
 }

 // Add to the labelsData if relevant.
 if i == 4 || i == 5 || i == 6 {
 labelsData[labelsIndex] = parsedVal
 labelsIndex++
 continue
 }

 // Add the float value to the slice of floats.
 inputsData[inputsIndex] = parsedVal
 inputsIndex++
 }
}

// Form the matrices.
inputs := mat.NewDense(len(rawCSVData), 4, inputsData)
labels := mat.NewDense(len(rawCSVData), 3, labelsData)

We can then initialize and train our neural network, similar to how we did with the
dummy data. The only difference is that we are going to use three output neurons
corresponding to our three output classes. The training process is as follows:

// Define our network architecture and
// learning parameters.
config := neuralNetConfig{
 inputNeurons: 4,
 outputNeurons: 3,
 hiddenNeurons: 3,
 numEpochs: 5000,
 learningRate: 0.3,
}

// Train the neural network.
network := newNetwork(config)
if err := network.train(inputs, labels); err != nil {
 log.Fatal(err)
}

Evaluating the neural network
To make predictions with the trained neural network, we will create a predict()
method for the neuralNet type. This predict method will take in new inputs and
complete and feed the new inputs forward through the network to produce predicted
outputs, as shown here:

// predict makes a prediction based on a trained
// neural network.
func (nn *neuralNet) predict(x *mat.Dense) (*mat.Dense, error) {

 // Check to make sure that our neuralNet value
 // represents a trained model.
 if nn.wHidden == nil || nn.wOut == nil || nn.bHidden == nil || nn.bOut == nil {
 return nil, errors.New("the supplied neural net weights and biases are empty")
 }

 // Define the output of the neural network.
 output := mat.NewDense(0, 0, nil)
github.com/tensorflow/tensorflow/tensorflow/go
 // Complete the feed forward process.
 hiddenLayerInput := mat.NewDense(0, 0, nil)
 hiddenLayerInput.Mul(x, nn.wHidden)
 addBHidden := func(_, col int, v float64) float64 { return v + nn.bHidden.At(0, col) }
 hiddenLayerInput.Apply(addBHidden, hiddenLayerInput)

 hiddenLayerActivations := mat.NewDense(0, 0, nil)
 applySigmoid := func(_, _ int, v float64) float64 { return sigmoid(v) }
 hiddenLayerActivations.Apply(applySigmoid, hiddenLayerInput)

 outputLayerInput := mat.NewDense(0, 0, nil)
 outputLayerInput.Mul(hiddenLayerActivations, nn.wOut)
 addBOut := func(_, col int, v float64) float64 { return v + nn.bOut.At(0, col) }
 outputLayerInput.Apply(addBOut, outputLayerInput)
 output.Apply(applySigmoid, outputLayerInput)

 return output, nil
}

We can then use this predict() method on the testing data to evaluate our trained
model. Specifically, we will read in the data in test.csv into two new matrices
testInputs and testLabels, similar to how we read in train.csv (as such, we will not
include the details here). testInputs can be supplied to the predict() method to get our
predictions and then we can compare our predictions and testLabels to calculate an
evaluation metric. In this case, we will calculate the accuracy of our model.

One detail that we will take care of as we calculate the accuracy is determining a
single output prediction from our model. The network actually produces one output

between 0.0 and 1.0 for each of the iris species. We will take the highest of these as
the predicted species.

The calculation of accuracy for our model is shown in the following code:

// Make the predictions using the trained model.
predictions, err := network.predict(testInputs)
if err != nil {
 log.Fatal(err)
}

// Calculate the accuracy of our model.
var truePosNeg int
numPreds, _ := predictions.Dims()
for i := 0; i < numPreds; i++ {

 // Get the label.
 labelRow := mat.Row(nil, i, testLabels)
 var species int
 for idx, label := range labelRow {
 if label == 1.0 {
 species = idx
 break
 }
 }

 // Accumulate the true positive/negative count.
 if predictions.At(i, species) == floats.Max(mat.Row(nil, i, predictions)) {
 truePosNeg++
 }
}

// Calculate the accuracy (subset accuracy).
accuracy := float64(truePosNeg) / float64(numPreds)

// Output the Accuracy value to standard out.
fmt.Printf("\nAccuracy = %0.2f\n\n", accuracy)

Compiling and running the evaluation yields something similar to the following:

$ go build
$./myprogram

Accuracy = 0.97

Yeah! That's pretty good. 97% accuracy in our predictions for the iris flower species
with our from-scratch neural network. As mentioned earlier, these single hidden
layer neural networks are pretty powerful when it comes to a majority of
classification tasks, and you can see that the underlying principles are not really that
complicated.

Introducing deep learning
Although simple neural networks, like the one utilized in the preceding section, are
extremely powerful for many scenarios, deep neural network architectures have been
applied across industries in recent years on various types of data. These more
complicated architectures have been used to beat champions at board/video games,
drive cars, generate art, transform images, and much more. It almost seems like you
can throw anything at these models and they will do something interesting, but they
seem to be particularly well-suited for computer vision, speech recognition, textual
inference, and other very complicated and hard-to-define tasks.

We are going to introduce deep learning here and run a deep learning model in Go.
However, the application and diversity of deep learning models is huge and growing
every day.

There are many books and tutorials on the subject, so if this brief introduction sparks
your interest, we recommend that you look into one of the following resources:

Hands-On Deep Learning with TensorFlow: https://www.packtpub.com/big-data-and-
business-intelligence/hands-deep-learning-tensorflow
Deep Learning by Example: https://www.packtpub.com/big-data-and-business-intelligen
ce/deep-learning-example
Deep Learning for Computer Vision: https://www.packtpub.com/big-data-and-business
-intelligence/deep-learning-computer-vision

These resources might not all mention or acknowledge Go but, as you will see in the
following example, Go is perfectly capable of applying these techniques and
interfacing with things like TensorFlow or H2O.

https://www.packtpub.com/big-data-and-business-intelligence/hands-deep-learning-tensorflow
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-example
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-computer-vision

What is a deep learning model?
The deep in deep learning refers to the successive combination and utilization of
various neural network structures to form an architecture that is large and
complicated. These large and complicated architectures generally require large
amounts of data to train, and the resulting structure is very hard to interpret.

To give an example of the scale and complexity of modern deep learning models,
take Google's LeNet (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szeg
edy_Going_Deeper_With_2015_CVPR_paper.pdf) as an example. This model, which can
be utilized for object recognition, is depicted here (image courtesy of https://adeshpand
e3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-
About.html):

This structure is hard to digest in and of itself. However, it is made even more
impressive when you realize that each of the blocks in this diagram can be a
complicated, neural network primitive in and of itself (as shown in the legend).

Generally, deep learning models are constructed by chaining together and, in some
cases, rechaining together, one or more of the following structures:

A fully connected neural network architecture: This building block might be
something similar to what we built previously in this chapter for iris flower
detection. It includes a number of neural network nodes arranged in fully
connected layers. That is, the layers flow from one to the other and all the nodes
are connected from one layer to the next.
A convolutional neural network (ConvNet or CNN): This is a neural network
that implements at least one convolutional layer. A convolutional layer

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

contains neurons parameterized by a set of weights (also called a convolutional
kernel or filter) that is only partially connected to the input data. Most
ConvNets include a hierarchical combination of these convolutional layers
allows a ConvNet to respond to low level features in the input data.
A recurrent neural network and/or Long Short-Term Memory (LSTM)
cells: These components attempt to factor in something like memory into the
model. Recurrent neural nets make their output dependent on a sequence of
inputs rather than assuming that every input is independent. LSTM cells are
related to recurrent neural networks but also try to factor in a longer term sort of
memory.

Although we will utilize image data to illustrate deep learning in this
chapter, deep learning models using recurrent neural nets and LSTMs
are particularly well-adapted at solving text-based and other NLP
problems. The memory that is built into these networks allows them to
understand what words might come next in a sentence, for example. If
you are interested in running a deep learning model that is based on
text data, we recommend looking at this example that uses the
github.com/chewxy/gorgonia package:
https://github.com/chewxy/gorgonia/tree/master/examples/charRNN.
Deep learning models are powerful! Especially for tasks like computer
vision. However, you should also keep in mind that complicated
combinations of these neural net components are also extremely hard
to interpret. That is, determining why the model made a certain
prediction can be near impossible. This can be a problem when you
need to maintain compliance in certain industries and jurisdictions,
and it also might inhibit debugging or maintenance of your
applications. That being said, there are some major efforts to improve
the interpretability of deep learning models. Notable among these
efforts is the LIME project:
https://github.com/marcotcr/lime.

https://github.com/chewxy/gorgonia/tree/master/examples/charRNN
https://github.com/marcotcr/lime

Deep learning with Go
There are a variety of options when you are looking to build or utilize deep learning
models from Go. This, as with deep learning itself, is an ever changing landscape.
However, the options for building, training and utilizing deep learning models in Go
are generally as follows:

Use a Go package: There are Go packages that allow you to use Go as your
main interface to build and train deep learning models. The most features and
developed of these packages is github.com/chewxy/gorgonia.
github.com/chewxy/gorgonia treats Go as a first-class citizen and is written in Go,
even if it does make significant usage of cgo to interface with numerical
libraries.
Use an API or Go client for a non-Go DL framework: You can interface
with popular deep learning services and frameworks from Go including
TensorFlow, MachineBox, H2O, and the various cloud providers or third-party
API offerings (such as IBM Watson). TensorFlow and Machine Box actually
have Go bindings or SDKs, which are continually improving. For the other
services, you may need to interact via REST or even call binaries using exec.
Use cgo: Of course, Go can talk to and integrate with C/C++ libraries for deep
learning, including the TensorFlow libraries and various libraries from Intel.
However, this is a difficult road, and it is only recommended when absolutely
necessary.

As TensorFlow is by far the most popular framework for deep learning (at the
moment), we will briefly explore the second category listed here. However, the
Tensorflow Go bindings are under active development and some functionality is
quite crude at the moment. The TensorFlow team recommends that if you are going
to use a TensorFlow model in Go, you first train and export this model using Python.
That pre-trained model can then be utilized from Go, as we will demonstrate in the
next section.

There are a number of members of the community working very hard to make Go
more of a first-class citizen for TensorFlow. As such, it is likely that the rough edges
of the TensorFlow bindings will be smoothed over the coming year. To keep updated
on this front, make sure and join the #data-science channel on Gophers Slack (https://i
nvite.slack.golangbridge.org/). This is a frequent topic of conversation there and would
be a great place to ask questions and get involved.

https://invite.slack.golangbridge.org/

Even though we will explore a quick TensorFlow example here, we
highly recommend that you should look into github.com/chewxy/gorgonia,
especially if you are considering doing more custom or extensive
modeling in Go. This package is super powerful and is used in
production.

Setting up TensorFlow for use with Go
The TensorFlow team has provided some good docs to install TensorFlow and get it
ready for usage with Go. These docs can be found at https://www.tensorflow.org/install/in
stall_go. There are a couple of preliminary steps, but once you have the TensorFlow C
libraries installed, you can get the following Go package:

$ go get github.com/tensorflow/tensorflow/tensorflow/go

Everything should be good to go if you were able to get
github.com/tensorflow/tensorflow/tensorflow/go without error, but you can make sure
that you are ready to use TensorFlow by executing the following tests:

$ go test github.com/tensorflow/tensorflow/tensorflow/go
ok github.com/tensorflow/tensorflow/tensorflow/go 0.045s

https://www.tensorflow.org/install/install_go

Retrieving and calling a pretrained
TensorFlow model
The model that we are going to use is a Google model for object recognition in
images called Inception. The model can be retrieved as follows:

$ mkdir model
$ cd model
$ wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
--2017-09-09 18:29:03-- https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
Resolving storage.googleapis.com (storage.googleapis.com)... 172.217.6.112, 2607:f8b0:4009:812::2010
Connecting to storage.googleapis.com (storage.googleapis.com)|172.217.6.112|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 49937555 (48M) [application/zip]
Saving to: ‘inception5h.zip’

inception5h.zip 100%[===>] 47.62M 19.0MB/s in 2.5s

2017-09-09 18:29:06 (19.0 MB/s) - ‘inception5h.zip’ saved [49937555/49937555]

$ unzip inception5h.zip
Archive: inception5h.zip
 inflating: imagenet_comp_graph_label_strings.txt
 inflating: tensorflow_inception_graph.pb
 inflating: LICENSE

After unzipping the compressed model, you should see a *.pb file. This is a protobuf
file that represents a frozen state of the model. Think back to our simple neural
network. The network was fully defined by a series of weights and biases. Although
more complicated, this model can be defined in a similar way and these definitions
are stored in this protobuf file.

To call this model, we will use some example code from the TensorFlow Go
bindings docs--https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go. This code
loads the model and uses the model to detect and label the contents of a *.jpg image.

As the code is included in the TensorFlow docs, I will spare the details and just
highlight a couple of snippets. To load the model, we perform the following:

// Load the serialized GraphDef from a file.
modelfile, labelsfile, err := modelFiles(*modeldir)
if err != nil {
 log.Fatal(err)
}
model, err := ioutil.ReadFile(modelfile)
if err != nil {

https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go

 log.Fatal(err)
}

Then we load the graph definition of the deep learning model and create a new
TensorFlow session with the graph, as shown in the following code:

// Construct an in-memory graph from the serialized form.
graph := tf.NewGraph()
if err := graph.Import(model, ""); err != nil {
 log.Fatal(err)
}

// Create a session for inference over graph.
session, err := tf.NewSession(graph, nil)
if err != nil {
 log.Fatal(err)
}
defer session.Close()

Finally, we can make an inference using the model as follows:

// Run inference on *imageFile.
// For multiple images, session.Run() can be called in a loop (and
// concurrently). Alternatively, images can be batched since the model
// accepts batches of image data as input.
tensor, err := makeTensorFromImage(*imagefile)
if err != nil {
 log.Fatal(err)
}
output, err := session.Run(
 map[tf.Output]*tf.Tensor{
 graph.Operation("input").Output(0): tensor,
 },
 []tf.Output{
 graph.Operation("output").Output(0),
 },
 nil)
if err != nil {
 log.Fatal(err)
}

// output[0].Value() is a vector containing probabilities of
// labels for each image in the "batch". The batch size was 1.
// Find the most probable label index.
probabilities := output[0].Value().([][]float32)[0]
printBestLabel(probabilities, labelsfile)

Object detection using TensorFlow
from Go
The Go program for object detection, as specified in the TensorFlow GoDocs, can be
called as follows:

$./myprogram -dir=<path/to/the/model/dir> -image=<path/to/a/jpg/image>

When the program is called, it will utilize the pretrained and loaded model to infer
the contents of the specified image. It will then output the most likely contents of
that image along with its calculated probability.

To illustrate this, let's try performing the object detection on the following image of
an airplane, saved as airplane.jpg:

Running the TensorFlow model from Go gives the following results:

$ go build
$./myprogram -dir=model -image=airplane.jpg
2017-09-09 20:17:30.655757: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:17:30.655807: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:17:30.655814: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:17:30.655818: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:17:30.655822: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
BEST MATCH: (86% likely) airliner

After some suggestions about speeding up CPU computations, we get a result:

airliner. Wow! That's pretty cool. We just performed object recognition with
TensorFlow right from our Go program!

Let try another one. This time, we will use pug.jpg, which looks like the following:

Running our program again with this image gives the following:

$./myprogram -dir=model -image=pug.jpg
2017-09-09 20:20:32.323855: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:20:32.323896: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:20:32.323902: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:20:32.323906: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:20:32.323911: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
BEST MATCH: (84% likely) pug

Success! Not only did the model detect that there was a dog in the picture, it
correctly identified that there was a pug dog in the picture.

Let try just one more. As this is a Go book, we cannot resist trying gopher.jpg, which
looks like the following (huge thanks to Renee French, the artist behind the Go
gopher):

Running the model gives the following result:

$./myprogram -dir=model -image=gopher.jpg
2017-09-09 20:25:57.967753: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:25:57.967801: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:25:57.967808: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:25:57.967812: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-09 20:25:57.967817: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
BEST MATCH: (12% likely) safety pin

Well, I guess we can't win them all. Looks like we need to refactor our model to be
able to recognize Go gophers. More specifically, we should probably add a bunch of
Go gophers to our training dataset, because a Go gopher is definitely not a safety
pin!

References
Basic neural networks:

A quick introduction to neural networks: https://ujjwalkarn.me/2016/08/09/quick-intro
-neural-networks/
A friendly introduction to deep learning and neural networks: https://youtu.be/BR9
h47Jtqyw
github.com/tleyden/neurgo docs: https://godoc.org/github.com/tleyden/neurgo
github.com/fxsjy/gonn/gonn docs: https://godoc.org/github.com/fxsjy/gonn/gonn

More detailed deep learning resources:

Hands-On Deep Learning with TensorFlow - https://www.packtpub.com/big-data-and
-business-intelligence/hands-deep-learning-tensorflow
Deep Learning by Example - https://www.packtpub.com/big-data-and-business-intellige
nce/deep-learning-example
Deep Learning for Computer Vision - https://www.packtpub.com/big-data-and-busines
s-intelligence/deep-learning-computer-vision

Deep learning with Go:

TensorFlow Go bindings docs: https://godoc.org/github.com/tensorflow/tensorflow/tens
orflow/go
github.com/chewxy/gorgonia docs: https://godoc.org/github.com/chewxy/gorgonia
MachineBox Go SDK docs: https://godoc.org/github.com/machinebox/sdk-go
Calling pretrained models using cgo example: https://github.com/gopherdata/dlinfer

https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
https://youtu.be/BR9h47Jtqyw
https://godoc.org/github.com/tleyden/neurgo
https://godoc.org/github.com/fxsjy/gonn/gonn
https://www.packtpub.com/big-data-and-business-intelligence/hands-deep-learning-tensorflow
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-example
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-computer-vision
https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go
https://godoc.org/github.com/chewxy/gorgonia
https://godoc.org/github.com/machinebox/sdk-go
https://github.com/gopherdata/dlinfer

Summary
Congratulations! We have gone from parsing data with Go to calling deep learning
models from Go. You now know the basics of neural networks and can implement
them and utilize them in your Go programs. In the next chapter, we will discuss how
to get these models and applications off of your laptops and run them at production
scale in data pipelines.

Deploying and Distributing Analyses
and Models
We have implemented all sorts of models in Go, including regressions,
classifications, clustering, and more. You have also learned about some of the
process around developing a machine learning model. Our models have successfully
predicted disease progression, flower species, and objects within images. Yet, we are
still missing an important piece of the machine learning puzzle: deployment,
maintenance, and scaling.

If our models just stay on our laptops, they are not doing any good or creating value
within a company. We need to know how to take our machine learning workflows
and integrate them into the systems that are already deployed in our organization,
and we need to know how to scale, update, and maintain these workflows over time.

The fact that our machine learning workflows are, by their very nature, multi-stage
workflows might make this deployment and maintenance a little bit of a challenge.
We need to train, test, and utilize our models and, in some cases, we need to
preprocess and/or postprocess our data. We may also need to chain certain models
together. How can we deploy and connect all of these stages while maintaining the
simplicity and integrity of our applications? For example, how can we update a
training dataset over time while still knowing which training dataset produced which
models, and which of those models produced which results? How can we easily scale
our predictions as the demand for those predictions scales up and down? Finally,
how can we integrate our machine learning workflows with other applications in our
infrastructure or with pieces of the infrastructure itself (databases, queues, and so
on)?

We will tackle all of these questions in this chapter. As it turns out, Go and
infrastructure tooling written in Go provide an excellent platform to deploy and
manage machine learning workflows. We will use a completely Go-based approach
from bottom to top and illustrate how each of those pieces helps us do data science at
scale!

Running models reliably on remote
machines
Whether your company uses on--premise infrastructure or cloud infrastructure, you
will need to run your machine learning models somewhere other than your laptop at
some point. These models might need to be ready to serve fraud predictions, or they
may need to process user-uploaded images in real time. You cannot have the model
sitting on your laptop and successfully serve this information.

However, as we get our data processing and machine learning applications off of our
laptops, we should ensure the following:

1. We should not complicate our applications just for the sake of deployment and
scaling. We should keep our applications simple, which will help us maintain
them and ensure integrity over time.

2. We should ensure that our applications behave like they did on our local
machine, where we developed them.

If we deploy our machine learning workflows and they do no perform or behave like
they did during development, they will not be able to produce their anticipated value.
We should be able to understand how our models will perform locally and assume
that they will perform the same way in production. This becomes increasingly hard
to accomplish as you add unnecessary complexity to your applications during
deployment.

One way to keep your deployments simple, portable, and reproducible is with
Docker (https://www.docker.com/), and we will utilize it here to deploy our machine
learning applications.

Docker is itself written in Go, making it the first Go-based
infrastructure tool that we will make use of in our machine learning
deployment stack.

https://www.docker.com/

A brief introduction to Docker and
Docker jargon
Docker and the whole container ecosystem has its own set of jargon, which can be
confusing, especially for those with experience in things like virtual machines.
Before we continue, let's solidify this jargon as follows:

A Docker image is a collection of data layers that together define a filesystem,
libraries, environmental variables, and so on that will be seen by your
application running inside a software container. Think of the image as a
package that includes your application, other related libraries or packages, and
other portions of an environment that your applications, need to run. A Docker
image does not include a full operating system.
A Dockerfile is a file in which you define the various layers of your Docker
image.
The Docker engine helps you build, manage, and run Docker images.
The process of building a Docker image for your application is commonly
referred to as Docker-izing your application.
A container or software container is a running instance of a Docker image.
Essentially, this running container includes all of the layers of your Docker
image plus a read/write layer allowing your application to run, input/output
data, and so on.
A Docker registry is a place where you keep Docker images. This registry
could be local or it could be running on a remote machine. It also could be a
hosted registry service such as Docker Hub or Quay, Amazon Web Service
(AWS), Amazon EC2 Container Registry (ECR), and so on.

Note: A Docker image is not the same as a virtual machine. A Docker
image includes your application, a filesystem, and various libraries
and packages, but it does not actually include a guest operation system.
Moreover, it does not take up a set amount of memory, disk, and CPU
on the host machine when running. Docker containers share the
resources of the underlying kernel on which the Docker engine is
running.

We hope that all of this jargon is solidified in the examples that follow this section,
but as with other subjects in this book, you can dive into Docker and software

containers deeper. We will include some links in this chapter's references to more
Docker resources.

In the following examples, we will assume that you are able to build and run Docker
images locally. To install Docker, you can follow the detailed instructions at https://w
ww.docker.com/community-edition#/download.

https://www.docker.com/community-edition#/download

Docker-izing a machine learning
application
The machine learning workflow that we will be deploying and scaling in this chapter
will be the linear regression workflow to predict diabetes disease progression that we
developed in Chapter 4, Regression. In our deployment, we will consider three
different pieces of the workflow:

The training and exporting of a single regression model (modeling disease
progression with body mass index)
The training and exporting of a multiple regression model (modeling disease
progression with body mass index and the blood measurement LTG)
An inference of disease progression based on one of the trained models and
input attributes

Later in the chapter, it will become clear why we might want to split the workflow
into these pieces. For now, let's focus on getting these pieces of the workflow
Docker-ized (building Docker images that can run these portions of our workflow,
that is).

Docker-izing the model training and
export
We are going to utilize essentially the same code for model training as that from Chap
ter 4, Regression. However, we are going to make a few tweaks to the code to make it
more user-friendly and able to interface with other portions of our workflow. We
would not consider these complications to the actual modeling code. Rather, these
are things that you would probably do to any application that you are getting ready to
utilize more generally.

First, we are going to add some command line flags to our application that will allow
us to specify the input directory where our training dataset will be located, and an
output directory where we are going to export a persisted representation of our
model. You can implement these command line arguments as follows:

// Declare the input and output directory flags.
inDirPtr := flag.String("inDir", "", "The directory containing the training data")
outDirPtr := flag.String("outDir", "", "The output directory")

// Parse the command line flags.
flag.Parse()

Then we will create a couple of struct types that will allow us to export the
coefficient and intercept of our model to a JSON file. This exported JSON file is
essentially a persisted version of our trained model, because the coefficients and
intercept fully parameterize our model. These structs are defined here:

// ModelInfo includes the information about the
// model that is output from the training.
type ModelInfo struct {
 Intercept float64 `json:"intercept"`
 Coefficients []CoefficientInfo `json:"coefficients"`
}

// CoefficientInfo include information about a
// particular model coefficient.
type CoefficientInfo struct {
 Name string `json:"name"`
 Coefficient float64 `json:"coefficient"`
}

Other than that, our training code is the same as it was from Chapter 4, Regression.
We will still use github.com/sajari/regression to train our model. We will just export

the model to the JSON file. The training and exporting of the single regression
model is included in the following snippet:

// Train/fit the single regression model
// with github.com/sajari/regression
// like in Chapter 5, Regression.

// Fill in the model information.
modelInfo := ModelInfo{
 Intercept: r.Coeff(0),
 Coefficients: []CoefficientInfo{
 CoefficientInfo{
 Name: "bmi",
 Coefficient: r.Coeff(1),
 },
 },
}

// Marshal the model information.
outputData, err := json.MarshalIndent(modelInfo, "", " ")
if err != nil {
 log.Fatal(err)
}

// Save the marshalled output to a file, with
// certain permissions (http://permissions-calculator.org/decode/0644/).
if err := ioutil.WriteFile(filepath.Join(*outDirPtr, "model.json"), outputData, 0644); err != nil {e model to the JSON fil
 log.Fatal(err)
}

Then, for the multiple regression model, the process looks like the following:

// Train/fit the multiple regression model
// with github.com/sajari/regression
// like in Chapter 5, Regression.

// Fill in the model information.
modelInfo := ModelInfo{
 Intercept: r.Coeff(0),
 Coefficients: []CoefficientInfo{
 CoefficientInfo{
 Name: "bmi",
 Coefficient: r.Coeff(1),
 },
 CoefficientInfo{
 Name: "ltg",
 Coefficient: r.Coeff(2),
 },
 },
}

// Marshal the model information.
outputData, err := json.MarshalIndent(modelInfo, "", " ")
if err != nil {
 log.Fatal(err)
}

// Save the marshalled output to a file.
if err := ioutil.WriteFile(filepath.Join(*outDirPtr, "model.json"), outputData, 0644); err != nil {

 log.Fatal(err)
}

To Docker-ize these training processes, we need to create a Dockerfile for each of
the single regression training program and the multiple regression training program.
It turns out, however, that we can use essentially the same Dockerfile for each of
these. This Dockerfile, which should be placed in the same directory as our program,
looks like this:

FROM alpine
ADD goregtrain /

Pretty simple, right? Let's explore the purpose of these two lines. Remember how a
Docker image is a series of layers that specify the environment in which your
application will run? Well, this Dockerfile builds up two of those layers with two
Dockerfile commands, FROM and ADD.

FROM alpine specifies that we want our Docker image filesystem, applications, and
libraries to be based on the official Alpine Linux Docker image available on Docker
Hub. The reason that we are using alpine as a base image is that it is a very small
Docker image (making it very portable) and it includes a few Linux shell niceties.

ADD goregtrain / specifies that we want to add a goregtrain file to the / directory in the
Docker image. This goregtrain file is actually the Go binary that we are going to
build from our Go code. Thus, all the Dockerfile is saying is that we want to run our
Go binary in Alpine Linux.

Unless you are using cgo and depend on a bunch of external C
libraries, always build your Go binary before building your Docker
image and copy this statically linked Go binary into the Docker image.
This will speed up your Docker builds and make your Docker images
extremely small, which means that you will be able to port them easily
to any system and start them super quick.

Now, we need to build our Go binary before we build our Docker image, because we
are copying that Go binary into the image. To do this, we will use a Makefile that
looks like the following:

all: compile docker push clean

compile:
 GOOS=linux GOARCH=amd64 CGO_ENABLED=0 go build -o goregtrain

docker:
 sudo docker build --force-rm=true -t dwhitena/goregtrain:single .

push:
 sudo docker push dwhitena/goregtrain:single

clean:
 rm goregtrain

As you can see:

make compile will compile our Go binary for the target architecture and name it
goregtrain.
make docker will use the Docker engine (via the docker CLI) to build an image
based on our Dockerfile, and it will tag our image, dwhitena/goregtrain:single.
The dwhitena portion of the tag specifies the Docker Hub username under which
we will store our image (in this case, dwhitena), goregtrain specifies the name of
the image, and :single specifies a tagged version of this image.
Once the image is built, make push will push the newly built Docker image to a
registry. In this case, it will push it to Docker Hub under the username of
dwhitena (of course, you could push to any other private or public registry).
Finally, make clean will clean up our binary.

As mentioned, this Dockerfile and Makefile are the same for both the single and
multiple regression models. However, we will utilize different Docker image tags to
differentiate the two models. We will utilize dwhitena/goregtrain:single for the single
regression model and dwhitena/goregtrain:multi for the multiple regression model.

In these examples and in the rest of the chapter, you can follow along
locally using either the public Docker images under dwhitena on Docker
Hub, which would not require you to modify the examples printed here.
Just note that you will not be able to build and push your own image to
dwhitena on Docker Hub, as you are not dwhitena. Alternatively, you
could replace dwhitena everywhere in the examples with your own
Docker Hub username. This would allow you to build, push, and utilize
your own images.

To build, push, and clean up after building the Docker image for either the single or
multiple regression models, we can just run make, as shown in the following code,
which is itself written in Go:

$ make
GOOS=linux GOARCH=amd64 CGO_ENABLED=0 go build -o goregtrain
sudo docker build --force-rm=true -t dwhitena/goregtrain:multi .
[sudo] password for dwhitena:
Sending build context to Docker daemon 2.449MB
Step 1/2 : FROM alpine

 ---> 7328f6f8b418
Step 2/2 : ADD goregtrain /
 ---> 9c13594ad7de
Removing intermediate container 6e717232c6d1
Successfully built 9c13594ad7de
Successfully tagged dwhitena/goregtrain:multi
sudo docker push dwhitena/goregtrain:multi
The push refers to a repository [docker.io/dwhitena/goregtrain]
375642156c06: Pushed
5bef08742407: Layer already exists
multi: digest: sha256:f35277a46ed840922a0d7e94c3c57632fc947f6ab004deed66d3eb80a331e40f size: 738
rm goregtrain

You can see in the preceding output that the Docker engine built the two layers of
our image, tagged the image, and pushed the image up to Docker Hub. We can now
see the Docker image in our local registry via the following:

$ sudo docker images | grep "goregtrain"
dwhitena/goregtrain multi 9c13594ad7de About a minute ago 6.41MB

We can also see it on Docker Hub (https://hub.docker.com/r/dwhitena/goregtrain/) as
illustrated here:

We will see how to run and utilize this Docker image shortly, but let's first build
another Docker image that will generate predictions based on our JSON-persisted
models.

https://hub.docker.com/r/dwhitena/goregtrain/

Docker-izing model predictions
As with the training of our model, we are going to utilize command line arguments
to specify the input directories and output directories utilized by our prediction
program. This time we will have two input directories; one for the persisted model
and one for a directory that will contain attributes from which we are to make
predictions. Our program will, thus, do the following:

1. Read in the model from the model input directory.

2. Walk over files in the attributes input directory.
3. For each file in the attributes input directory (containing attributes with no

corresponding prediction of disease progression), utilize our loaded model to
make a prediction of disease progression.

4. Output the disease progression to an output file in the directory specified as a
command line argument.

Think of this process as follows. We have trained our model on historical data to
predict disease progression and we want doctors or clinics to utilize this prediction in
some way for new patients. They send us those patients attributes (body mass index
(BMI) or body mass index and long term growth (LTG)) and we make predictions
based on these input attributes.

We will assume that the input attributes come to our program in the form of JSON
files (which could also be thought of as a JSON message off a queue or a JSON API
response) that look like the following:

{
 "independent_variables": [
 {
 "name": "bmi",
 "value": 0.0616962065187
 },
 {
 "name": "ltg",
 "value": 0.0199084208763
 }
]

}

As such, let's create the following struct types in our prediction program to decode
the input attributes and marshal the output prediction:

// PredictionData includes the data necessary to make
// a prediction and encodes the output prediction.
type PredictionData struct {
 Prediction float64 `json:"predicted_diabetes_progression"`
 IndependentVars []IndependentVar `json:"independent_variables"`
}

// IndependentVar include information about and a
// value for an independent variable.
type IndependentVar struct {
 Name string `json:"name"`
 Value float64 `json:"value"`
}

Let's also create a function that will allow us to make a prediction based on a
ModelInfo value that we read in from the model input directory (our persisted model,
that is). This prediction function is shown in the following code:

// Predict makes a prediction based on input JSON.
func Predict(modelInfo *ModelInfo, predictionData *PredictionData) error {

 // Initialize the prediction value
 // to the intercept.
 prediction := modelInfo.Intercept

 // Create a map of independent variable coefficients.
 coeffs := make(map[string]float64)
 varNames := make([]string, len(modelInfo.Coefficients))
 for idx, coeff := range modelInfo.Coefficients {
 coeffs[coeff.Name] = coeff.Coefficient
 varNames[idx] = coeff.Name
 }

 // Create a map of the independent variable values.
 varVals := make(map[string]float64)
 for _, indVar := range predictionData.IndependentVars {
 varVals[indVar.Name] = indVar.Value
 }

 // Loop over the independent variables.
 for _, varName := range varNames {

 // Get the coefficient.
 coeff, ok := coeffs[varName]
 if !ok {
 return fmt.Errorf("Could not find model coefficient %s", varName)
 }

 // Get the variable value.
 val, ok := varVals[varName]
 if !ok {
 return fmt.Errorf("Expected a value for variable %s", varName)

 }

 // Add to the prediction.
 prediction = prediction + coeff*val
 }

 // Add the prediction to the prediction data.
 predictionData.Prediction = prediction

 return nil
}

This prediction function, along with the types, will then allow us to walk over any
attribute JSON files in a specified input directory and output disease predictions for
each of those files. This process is implemented in the following code:

// Declare the input and output directory flags.
inModelDirPtr := flag.String("inModelDir", "", "The directory containing the model.")
inVarDirPtr := flag.String("inVarDir", "", "The directory containing the input attributes.")
outDirPtr := flag.String("outDir", "", "The output directory")

// Parse the command line flags.
flag.Parse()

// Load the model file.
f, err := ioutil.ReadFile(filepath.Join(*inModelDirPtr, "model.json"))
if err != nil {
 log.Fatal(err)
}

// Unmarshal the model information.
var modelInfo ModelInfo
if err := json.Unmarshal(f, &modelInfo); err != nil {
 log.Fatal(err)
}

// Walk over files in the input.
if err := filepath.Walk(*inVarDirPtr, func(path string, info os.FileInfo, err error) error {

 // Skip any directories.
 if info.IsDir() {
 return nil
 }

 // Open any files.
 f, err := ioutil.ReadFile(filepath.Join(*inVarDirPtr, info.Name()))
 if err != nil {
 return err
 }

 // Unmarshal the independent variables.
 var predictionData PredictionData
 if err := json.Unmarshal(f, &predictionData); err != nil {
 return err
 }

 // Make the prediction.
 if err := Predict(&modelInfo, &predictionData); err != nil {
 return err

 }

 // Marshal the prediction data.
 outputData, err := json.MarshalIndent(predictionData, "", " ")
 if err != nil {
 log.Fatal(err)
 }

 // Save the marshalled output to a file.
 if err := ioutil.WriteFile(filepath.Join(*outDirPtr, info.Name()), outputData, 0644); err != nil {
 log.Fatal(err)
 }

 return nil
}); err != nil {
 log.Fatal(err)
}

We will use the same Dockerfile and Makefile that we used in the preceding section to
Docker-ize this prediction program. The only difference is that we will name the Go
binary goregpredict and we will tag the Docker image dwhitena/goregpredict. Building
the Docker image with make should return a similar output to that in the preceding
section:

$ cat Makefile
all: compile docker push clean

compile:
 GOOS=linux GOARCH=amd64 CGO_ENABLED=0 go build -o goregpredict

docker:
 sudo docker build --force-rm=true -t dwhitena/goregpredict .

push:
 sudo docker push dwhitena/goregpredict

clean:
 rm goregpredict
$ cat Dockerfile
FROM alpine
ADD goregpredict /
$ make
GOOS=linux GOARCH=amd64 CGO_ENABLED=0 go build -o goregpredict
sudo docker build --force-rm=true -t dwhitena/goregpredict .
[sudo] password for dwhitena:
Sending build context to Docker daemon 2.38MB
Step 1/2 : FROM alpine
 ---> 7328f6f8b418
Step 2/2 : ADD goregpredict /
 ---> a2d9a63f4926
Removing intermediate container c1610b425835
Successfully built a2d9a63f4926
Successfully tagged dwhitena/goregpredict:latest
sudo docker push dwhitena/goregpredict
The push refers to a repository [docker.io/dwhitena/goregpredict]
77f12cb6c6d4: Pushed
5bef08742407: Layer already exists
latest: digest: sha256:9a8a754c434bf2250b2f6102bb72d56fdf723f305aebcbf5bff7e5de707dd384 size: 738

3a05f65b1d1d: Layer already exists
5bef08742407: Layer already exists
ult: digest: sha256:153adaa9b4b9a1f2bf02466201163c60230ae85164d9d22261f455979a94aed4 size: 738
rm goregpredict

Testing the Docker images locally
Before pushing our Docker-ized modeling processes to any servers, it's wise to test
them locally to ensure that we are seeing the behavior that we expect. Then, once we
are satisfied with that behavior, we can rest assured that these Docker images will
run exactly the same on any other host that is running Docker. This assurance makes
the use of Docker images a significant contributor to maintaining reproducibility
with our deploys.

Let's suppose that we have our training data and some input attribute files in the
following directories:

$ ls
attributes model training
$ ls model
$ ls attributes
1.json 2.json 3.json
$ ls training
diabetes.csv

We can run our Docker images as software containers locally using the docker run
command. We will also utilize the -v flag that will let us mount local directories
inside of a running container, allowing us to read and write files to and from our
local filesystem.

First, let's run our single regression model training inside of the Docker container as
follows:

$ sudo docker run -v $PWD/training:/tmp/training -v $PWD/model:/tmp/model dwhitena/goregtrain:single /goregtrain -inDir=/tmp/training -outDir=/tmp/model

Regression Formula:
Predicted = 152.13 + bmi*949.44

Now, if we look at what is in our model directory, we will see the newly trained
model coefficients and intercept in model.json, which was output from our program
running in the Docker image. This is illustrated in the following code:

$ ls model
model.json
$ cat model/model.json
{
 "intercept": 152.13348416289818,
 "coefficients": [
 {
 "name": "bmi",

 "coefficient": 949.4352603839862
 }
]
}

Excellent! We trained our model using the Docker container. Now let's utilize this
model to make predictions. Specifically, let's run our goregpredict Docker image
using the trained model to make predictions for the three attribute files in attributes.
In the following code, you will see that the attribute files do not have corresponding
predictions before running the Docker image, but they do after running the Docker
image:

$ cat attributes/1.json
{
 "independent_variables": [
 {
 "name": "bmi",
 "value": 0.0616962065187
 },
 {
 "name": "ltg",
 "value": 0.0199084208763
 }
]
}
$ sudo docker run -v $PWD/attributes:/tmp/attributes -v $PWD/model:/tmp/model dwhitena/goregpredict /goregpredict -inModelDir=/tmp/model -inVarDir=/tmp/attributes -outDir=/tmp/attributes
$ cat attributes/1.json
{
 "predicted_diabetes_progression": 210.7100380636843,
 "independent_variables": [
 {
 "name": "bmi",
 "value": 0.0616962065187
 },
 {
 "name": "ltg",
 "value": 0.0199084208763
 }
]
}

Running the Docker images on remote
machines
You might be thinking, what's the big deal, you get the same functionality with
Docker that we could get by just building and running your Go program. Well, that's
true locally, but the magic of Docker happens when we want to run our same
functionality in an environment other than our laptop.

We can take those Docker images and run them in the exact same way on any host
that is running Docker, and they will produce the same exact behavior. This is true
for any Docker image. You don't have to install any of the dependencies that might
be layered inside of the Docker image. All you need is Docker.

Guess what? Our Docker images are just about 3 MB in size! This means that they
will download to any host super fast and start up and run super fast. You don't have
to worry about lugging around multiple gigabyte-sized virtual machines and
manually specifying resources.

Building a scalable and reproducible
machine learning pipeline
Docker sets up quite a bit of the way towards having our machine learning
workflows deployed in our company's infrastructure. However, there are still a few
missing pieces, as outlined here:

How do we string the various stages of our workflow together? In this simple
example, we have a training stage and a prediction stage. In other pipelines, you
might also have data preprocessing, data splitting, data combining,
visualization, evaluation, and so on.
How to get the right data to the right stages of our workflow, especially as we
receive new data and/or our data changes? It's not sustainable to manually copy
new attributes over to a folder that is co-located with our prediction image
every time we need to make new predictions, and we cannot log in to a server
every time we need to update our training set.
How will we be able to track and reproduce the various runs of our workflow
for maintenance, continued development, or debugging? If we are making
predictions over time and updating our model and/or training set over time, we
need to understand which models produced which results to maintain
reproducibility (and to meet compliance, in some cases).
How can we scale our processing over multiple machines and, in some cases,
over multiple shared resources? We likely need to run our processing on some
shared set of resources in our company. It would be nice for us to be able to
scale our processing over these resources as we need more computation power
and/or as other applications are scheduled on these resources.

Thankfully, there are a couple more open source tools (both written in Go) that solve
these issues for us. Not only that, they let us use the Docker images that we already
built as the main units of data processing. These tools are Kubernetes (k8s) and
Pachyderm.

You have already been exposed to Pachyderm in Chapter 1, Gathering and
Organizing Data. In that chapter, we utilized Pachyderm to illustrate the idea of data
versioning and, as you might be guessing, Pachyderm will help us solve some of the
issues around managing data, tracking, and reproducibility. Pachyderm will also
solve all of the remaining issues that we need to address around scalability and

pipelining because Pachyderm provides both data management/versioning
capabilities and data pipelining capabilities.

Kubernetes is a container orchestration engine, which is amazing at scheduling
containerized workloads (like our Docker images) across a cluster of shared
resources. It is wildly popular right now, and Pachyderm utilizes Kubernetes under
the hood to manage containerized data processing pipelines.

Setting up a Pachyderm and
Kubernetes cluster
Pachyderm, which runs on Kubernetes, can be deployed almost anywhere because
Kubernetes can be deployed anywhere. You can deploy Pachyderm on any of the
popular cloud providers, on premise, or even on your own laptop. All you need to do
to deploy a Pachyderm cluster is the following:

1. Have a running Kubernetes cluster.
2. Have access to an object store of your choice (for example, S3, Glasglow

Coma Scale (GCS), or Minio). This object store will serve as the storage
backing for the Pachyderm cluster where all the versioning and processed data
is stored.

3. Deploy Pachyderm on the Kubernetes cluster using the Pachyderm CLI pachctl.

Detailed instructions to deploy Pachyderm on any cloud provider or
on-premise can be found at http://pachyderm.readthedocs.io/en/latest/deploym
ent/deploy_intro.html. Alternatively, you can easily experiment with and
develop against a local Pachyderm cluster using minikube, as further
detailed at http://pachyderm.readthedocs.io/en/latest/getting_started/local_install
ation.html.

Following one set of those instructions should get you to a state where you have a
Kubernetes cluster running in the following state (which can be checked using
Kubernetes CLI tool called kubectl):

$ kubectl get all
NAME READY STATUS RESTARTS AGE
po/etcd-2142892294-38ptw 1/1 Running 0 2m
po/pachd-776177201-04l6w 1/1 Running 0 2m

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/etcd 10.0.0.141 <nodes> 2379:32379/TCP 2m
svc/kubernetes 10.0.0.1 <none> 443/TCP 3m
svc/pachd 10.0.0.178 <nodes> 650:30650/TCP,651:30651/TCP,652:30652/TCP 2m

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/etcd 1 1 1 1 2m
deploy/pachd 1 1 1 1 2m

NAME DESIRED CURRENT READY AGE
rs/etcd-2142892294 1 1 1 2m
rs/pachd-776177201 1 1 1 2m

http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html
http://pachyderm.readthedocs.io/en/latest/getting_started/local_installation.html

Here, you can see that the Pachyderm daemon (or server), pachd, is running in the
Kubernetes cluster as a pod, which is simply a group of one or more containers. Our
pipeline stages will also run as Kubernetes pods, but you won't have to worry too
much about that as Pachyderm will take care of the details.

The ports and IPs listed in the above output may vary depending on
your deployment and various configurations. However, a healthy
Pachyderm cluster should look very similar.

If your Pachyderm cluster is running and you followed one of the Pachyderm deploy
guides, you should also have the pachctl CLI tool installed. When pachctl is
successfully connected to the Pachyderm cluster, you can run the following as a
further sanity check (where the version number may change based on the Pachyderm
version you are running):

$ pachctl version
COMPONENT VERSION
pachctl 1.6.0
pachd 1.6.0

If you have any trouble getting Pachyderm deployed or have any
trouble building or running pipelines, the Pachyderm community has a
great public Pachyderm Slack channel. You can join by visiting http://sla
ck.pachyderm.io/. The community is active there every day, and any
questions you have will be welcome.

http://slack.pachyderm.io/

Building a Pachyderm machine
learning pipeline
As you have already seen, our example machine learning pipeline has two stages.
The model stage of our pipeline will train a model and export a persisted version of
this model to a file. The prediction stage of our pipeline will utilize the trained model
to make predictions for input attribute files. Overall, this pipeline will look like the
following in Pachyderm:

Each of the cylinders in the preceding figure represents a Pachyderm data repository
of versioned data. You were already exposed to these data repositories in Chapter 1,
Gathering and Organizing Data. Each of the boxes represents a containerized data
pipeline stage. The basic units of data processing in Pachyderm are Docker images.
Thus, we can utilize the Docker images that we created in preceding sections in this
data pipeline.

By stringing together versioned collections of data (again, think about these as a sort
of Git for data), processing these collections of data with containers, and saving
results to other versioned collections of data, Pachyderm pipelines have some pretty
interesting and useful implications.

First, we can go back at any point in time to see the state of any portion of our data at
that point in time. This might help us as we further develop our model if we are
wanting to develop a certain state of our data. It might also help us to collaboratively

develop as a team by tracking the team's data over time. Not all changes to data are
good, and we need the ability to revert after bad or corrupt data is committed into the
system.

Next, all of our pipeline results are linked to the exact Docker images and exact
states of other data that produced these results. The Pachyderm team calls this
provenance. It is the ability to understand what pieces of processing and which
pieces of data contributed to a particular result. For example, with this pipeline, we
are able to determine the exact version of our persisted model that produced a
particular result, along with the exact Docker image that produced that model and the
exact state of the training data that was input to that exact Docker image. We are,
thus, able to exactly reproduce an entire run of any pipeline, debug strange model
behavior, and attribute results to the corresponding input data.

Finally, because Pachyderm knows which portions of your data repositories are new
or different, our data pipeline can process data incrementally and can be triggered
automatically. Let's say that we have already committed one million attribute files
into the attributes data repository, and then we commit ten more attribute files. We
don't have to reprocess the first million to update our results. Pachyderm knows that
we only need to process the ten new files and will send these to the prediction stage
to be processed. Moreover, Pachyderm will (by default) automatically trigger this
update because it knows that the update is needed to keep the results in sync with the
input.

Incremental processing and automatic triggers are some of the default
behaviors of Pachyderm pipelines, but they are not the only things you
can do with Pachyderm. In fact, we will only scratch the surface here of
what is possible with Pachyderm. You can do distributed map/reduce
style operations, distributed image processing, periodic processing of
database tables, and much, much more. Thus, the techniques here
should be transferable to a variety of domains.

Creating and filling the input
repositories
To create the Pachyderm pipeline on our deployed Pachyderm cluster, we first need
to create the input repositories for the pipeline. Remember, our pipeline has the
training and attributes data repositories that drive the rest of the pipeline. As we put
data into these, Pachyderm will trigger the downstream portions of the pipeline and
calculate the results.

We saw in Chapter 1, Gathering and Organizing Data, how we can create data
repositories in Pachyderm and commit data into these repositories using pachctl, but
let's try to do this directly from a Go program here. In this particular example, there
is not any real advantage to doing this, due to the fact that we already have our
training and test data in files and we can easily commit those files into Pachyderm by
name.

However, imagine a more realistic scenario. We might want our data pipeline to be
integrated with some other Go services that we have already written at our company.
One of these services might process incoming patient medical attributes from doctors
or clinics, and we want to feed these attributes to our data pipeline, such that the data
pipeline can make the corresponding predictions of disease progression.

In such a scenario, we would ideally like to pass the attributes directly into
Pachyderm from our service instead of manually copying all that data. This is where
the Pachyderm Go client, github.com/pachyderm/pachyderm/src/client, can come in very
handy. Using the Pachyderm Go client, we can create our input repositories as
follows (after connecting to the Pachyderm cluster):

// Connect to Pachyderm using the IP of our
// Kubernetes cluster. Here we will use localhost
// to mimic the scenario when you have k8s running
// locally and/or you are forwarding the Pachyderm
// port to your localhost.. By default
// Pachyderm will be exposed on port 30650.
c, err := client.NewFromAddress("0.0.0.0:30650")
if err != nil {
 log.Fatal(err)
}
defer c.Close()

// Create a data repository called "training."
if err := c.CreateRepo("training"); err != nil {

 log.Fatal(err)
}

// Create a data repository called "attributes."
if err := c.CreateRepo("attributes"); err != nil {
 log.Fatal(err)
}

// Now, we will list all the current data repositories
// on the Pachyderm cluster as a sanity check. We
// should now have two data repositories.
repos, err := c.ListRepo(nil)
if err != nil {
 log.Fatal(err)
}

// Check that the number of repos is what we expect.
if len(repos) != 2 {
 log.Fatal("Unexpected number of data repositories")
}

// Check that the name of the repo is what we expect.
if repos[0].Repo.Name != "attributes" || repos[1].Repo.Name != "training" {
 log.Fatal("Unexpected data repository name")
}

Compiling this and running it creates the repos as expected, which can be confirmed
as follows:

$ go build
$./myprogram
$ pachctl list-repo
NAME CREATED SIZE
attributes 3 seconds ago 0B
training 3 seconds ago 0B

For simplicity, the above code just creates and checks the repo once. If
you ran the code again, you would get an error because the repo was
already created. To improve on this, you could check if the repo exists
and then create it if it does not exist. You can also check that the repo
exists by name.

Now, let's go ahead and put an attributes file in the attributes repository and the
diabetes.csv training data set into the training repository. This is also very easily done
directly in Go, via the Pachyderm client:

// Connect to Pachyderm.
c, err := client.NewFromAddress("0.0.0.0:30650")
if err != nil {
 log.Fatal(err)
}
defer c.Close()

// Start a commit in our "attributes" data repo on the "master" branch.
commit, err := c.StartCommit("attributes", "master")

if err != nil {
 log.Fatal(err)
}

// Open one of the attributes JSON files.
f, err := os.Open("1.json")
if err != nil {
 log.Fatal(err)
}

// Put a file containing the attributes into the data repository.
if _, err := c.PutFile("attributes", commit.ID, "1.json", f); err != nil {
 log.Fatal(err)
}

// Finish the commit.
if err := c.FinishCommit("attributes", commit.ID); err != nil {
 log.Fatal(err)
}

// Start a commit in our "training" data repo on the "master" branch.
commit, err = c.StartCommit("training", "master")
if err != nil {
 log.Fatal(err)
}

// Open up the training data set.
f, err = os.Open("diabetes.csv")
if err != nil {
 log.Fatal(err)
}

// Put a file containing the training data set into the data repository.
if _, err := c.PutFile("training", commit.ID, "diabetes.csv", f); err != nil {
 log.Fatal(err)
}

// Finish the commit.
if err := c.FinishCommit("training", commit.ID); err != nil {
 log.Fatal(err)
}

Running this does indeed commit the data into Pachyderm in the proper data
repositories, as can be seen here:

$ go build
$./myprogram
$ pachctl list-repo
NAME CREATED SIZE
training 13 minutes ago 73.74KiB
attributes 13 minutes ago 210B
$ pachctl list-file training master
NAME TYPE SIZE
diabetes.csv file 73.74KiB
$ pachctl list-file attributes master
NAME TYPE SIZE
1.json file 210B

It is important to finish the commits that we started above. If you leave

an orphaned commit hanging you might block other commits of data.
Thus, you might consider deferring the finish of the commit, just to be
safe.

Good! Now we have data in the proper input data repositories on our remote
Pachyderm cluster. Next, we can actually process this data and produce results.

Creating and running the processing
stages
Processing stages are created declaratively via a pipeline specification in
Pachyderm. If you have worked with Kubernetes before, this type of interaction
should be familiar. Basically, we declare to Pachyderm what processing we want to
take place, and Pachyderm handles all the details to make sure that this processing
happens as declared.

Let's first create the model stage of our pipeline using a JSON pipeline specification
that is stored in train.json. This JSON specification is as follows:

{
 "pipeline": {
 "name": "model"
 },
 "transform": {
 "image": "dwhitena/goregtrain:single",
 "cmd": [
 "/goregtrain",
 "-inDir=/pfs/training",
 "-outDir=/pfs/out"
]
 },
 "parallelism_spec": {
 "constant": "1"
 },
 "input": {
 "atom": {
 "repo": "training",
 "glob": "/"
 }
 }
}

This might look somewhat complicated, but there are really only a few things
happening here. Let's dissect the specification to learn about the different pieces:

1. First, we are telling Pachyderm to name our pipeline model.

2. Next, we are telling Pachyderm that we want this model pipeline to process data

using our dwhitena/goregtrain:single, and we want the pipeline to run our
goregtrain binary in the container when processing the data.

3. Finally, the specification tells Pachyderm that we intend to process the training
data repository as input.

To understand some of the other details of the specification, we need to first discuss
what will happen when we create the pipeline on our Pachyderm cluster using the
specification. When this happens, Pachyderm will use Kubernetes to schedule one or
more worker pods on the Kubernetes cluster. These worker pods will then wait,
ready to process any data supplied to them by the Pachyderm daemon. When there is
data that needs to be processed in the input repository, training, the Pachyderm
daemon will trigger a job in which these workers will process the data. Pachyderm
will automatically mount the input data in the container at /pfs/<input repo name>
(/pfs/training in this case). Data the container writes out to /pfs/out will be
automatically versioned in an output data repository with the same name as the
pipeline (model in this case).

The parallelism_spec portion of the specification lets us tell Pachyderm how many
workers it should spin up to process the input data. Here we will just spin up a single
worker and process the data serially. Later in the chapter, we will discuss
parallelizing our pipeline and the associated data sharding, which is controlled by the
glob pattern in the input section of the specification.

Enough talk though! Let's actually create this model pipeline stage on our Pachyderm
cluster and get to processing some data. The pipeline can easily be created as
follows:

$ pachctl create-pipeline -f model.json

When we do this, we can see the worker(s) that Pachyderm creates on the
Kubernetes cluster using kubectl as shown in the following code:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
etcd-2142892294-38ptw 1/1 Running 0 2h
pachd-776177201-04l6w 1/1 Running 0 2h
pipeline-model-v1-p0lnf 2/2 Running 0 1m

We will also see that Pachyderm has automatically triggered a job to perform our
model training. Remember, this happens because Pachyderm knows that there is data
in the input repository, training, that has not been processed. You can see the
triggered job along with its results as follows:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
14f052ae-878d-44c9-a1f9-ab0cf6d45227 model/a2c7b7dfb44a40e79318c2de30c7a0c8 3 minutes ago Less than a second 0 1 + 0 / 1 73.74KiB 160B success
$ pachctl list-repo
NAME CREATED SIZE
model 3 minutes ago 160B
training About an hour ago 73.74KiB
attributes About an hour ago 210B
$ pachctl list-file model master
NAME TYPE SIZE k8s
model.json file 160B
$ pachctl get-file model master model.json
{
 "intercept": 152.13348416289818,
 "coefficients": [
 {
 "name": "bmi",
 "coefficient": 949.4352603839862
 }
]
}

Great! We can see that our model training produced the results that we expected.
However, Pachyderm was smart enough to trigger the pipeline, and it will update
this model whenever we modify the training dataset.

The prediction pipeline can be created in a similar manner. Its pipeline specification,
pipeline.json, is shown here:

{
 "pipeline": {
 "name": "prediction"
 },
 "transform": {
 "image": "dwhitena/goregpredict",
 "cmd": [
 "/goregpredict",
 "-inModelDir=/pfs/model",
 "-inVarDir=/pfs/attributes",
 "-outDir=/pfs/out"
]
 },
 "parallelism_spec": {
 "constant": "1"
 },
 "input": {
 "cross": [
 {
 "atom": {
 "repo": "attributes",
 "glob": "/*"
 }
 },
 {
 "atom": {
 "repo": "model",
 "glob": "/"

 }
 }
]
 }
}

The major difference in this pipeline specification is that we have two input
repositories rather than one. These two input repositories are the attributes
repository that we previously created and the model repository that contains the output
of the model pipeline. These are combined using a cross primitive. cross ensures that
all relevant pairs of our model and attribute files are processed.

If you are interested, you can find out more about the other ways to
combine data in Pachyderm in the Pachyderm docs; go to http://pachyder
m.readthedocs.io/en/latest/.

Creating this pipeline and examining the results (corresponding to 1.json) can be
accomplished as follows:

$ pachctl create-pipeline -f prediction.json
$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
03f36398-89db-4de4-ad3d-7346d56883c0 prediction/5ce47c9e788d4893ae00c7ee6b1e8431 About a minute ago Less than a second 0 1 + 0 / 1 370B 266B success
14f052ae-878d-44c9-a1f9-ab0cf6d45227 model/a2c7b7dfb44a40e79318c2de30c7a0c8 19 minutes ago Less than a second 0 1 + 0 / 1 73.74KiB 160B success
$ pachctl list-repo
NAME CREATED SIZE
prediction About a minute ago 266B
model 19 minutes ago 160B
training About an hour ago 73.74KiB
attributes About an hour ago 210B
$ pachctl list-file prediction master
NAME TYPE SIZE
1.json file 266B
$ pachctl get-file prediction master 1.json
{
 "predicted_diabetes_progression": 210.7100380636843,
 "independent_variables": [
 {
 "name": "bmi",
 "value": 0.0616962065187
 },
 {
 "name": "ltg",
 "value": 0.0199084208763
 }
]
}

You can see that another data repository, prediction, was created to version the
output of the prediction pipeline. In this manner, Pachyderm gradually builds up
links between input data repositories, data processing stages, and output data
repositories, such that it always knows what data and processing components are

http://pachyderm.readthedocs.io/en/latest/

linked.

The full machine learning pipeline is now deployed and we have run each stage of
the pipeline once. However, the pipeline is ready and waiting to process more data.
All we have to do is put data at the top of the pipeline and Pachyderm will
automatically trigger any downstream processing that needs to take place to update
our results. Let's illustrate this by committing two more files into the attributes
repository, as follows:

$ ls
2.json 3.json
$ pachctl put-file attributes master -c -r -f .
$ pachctl list-file attributes master
NAME TYPE SIZE
1.json file 210B
2.json file 211B
3.json file 211B

This will automatically trigger another prediction job to update our results. The new
job can be seen in the following code:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
be71b034-9333-4f75-b443-98d7bc5b48ab prediction/bb2fd223df664e70ad14b14491109c0f About a minute ago Less than a second 0 2 + 1 / 3 742B 536B success
03f36398-89db-4de4-ad3d-7346d56883c0 prediction/5ce47c9e788d4893ae00c7ee6b1e8431 8 minutes ago Less than a second 0 1 + 0 / 1 370B 266B success
14f052ae-878d-44c9-a1f9-ab0cf6d45227 model/a2c7b7dfb44a40e79318c2de30c7a0c8 26 minutes ago Less than a second 0 1 + 0 / 1 73.74KiB 160B success

Also, we can see that the prediction repository has two new results from running our
prediction code again on the two new input files:

$ pachctl list-file prediction master
NAME TYPE SIZE
1.json file 266B
2.json file 268B
3.json file 268B

Note that Pachyderm did not reprocess 1.json here even though it is
shown with the latest results. Under the hood, Pachyderm knows that
there was already a result corresponding to 1.json in attributes, so
there is no need to reprocess it.

Updating pipelines and examining
provenance
Over time, we are likely going to want to update our machine learning models. The
data that they are processing may have changed over time or maybe we have just
developed a different or better model. In any event, it is likely that we are going to
need to update our pipeline.

Let's assume that our pipeline is in the state described in the previous section, where
we have created the full pipeline, the training process has run once, and we have
processed two commits into the attributes repository. Now, let's update the model
pipeline to train our multiple regression

Now, let's update the model pipeline to train our multiple regression models instead
of our single regression model. This is actually really easy. We just need to change
"image": "dwhitena/goregtrain:single" in our model.json pipeline specification to
"image": "dwhitena/goregtrain:multi" and then update the pipeline as follows:

$ pachctl update-pipeline -f model.json --reprocess

When we give Pachyderm this new specification, Pachyderm will automatically
update the worker pods such that they are running the containers with the multiple
regression model. Also, because we supplied the --reprocess flag, Pachyderm will
trigger one or more new jobs to reprocess any input commits with the new image
that was previously processed with the old image. We can see these reprocessing
jobs as follows:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
03667301-980b-484b-afbe-7ea30da695f5 prediction/ef32a74b04ee4edda7bc2a2b469f3e03 2 minutes ago Less than a second 0 3 + 0 / 3 1.355KiB 803B success
5587e13c-4854-4f3a-bc4c-ae88c65c007f model/f54ca1a0142542579c1543e41f5e9403 2 minutes ago Less than a second 0 1 + 0 / 1 73.74KiB 252B success
be71b034-9333-4f75-b443-98d7bc5b48ab prediction/bb2fd223df664e70ad14b14491109c0f 16 minutes ago Less than a second 0 2 + 1 / 3 742B 536B success
03f36398-89db-4de4-ad3d-7346d56883c0 prediction/5ce47c9e788d4893ae00c7ee6b1e8431 23 minutes ago Less than a second 0 1 + 0 / 1 370B 266B success
14f052ae-878d-44c9-a1f9-ab0cf6d45227 model/a2c7b7dfb44a40e79318c2de30c7a0c8 41 minutes ago Less than a second 0 1 + 0 / 1 73.74KiB 160B success

Looking at this output, we can notice something interesting and very useful. When
our model stage trained our new multiple regression model and output this model as
model.json, Pachyderm saw that the results of our prediction pipeline were now out of
sync with the latest model. As such, Pachyderm automatically triggered another job
to update our previous results using the new multiple regression models.

This workflow is super useful to manage both deployed models and during the
development of models, because you do not need to manually shuffle around a bunch
of model versions and related data. Everything happens automatically. However, a
natural question arises from this update. How are we to know which models
produced which results?

Well, this is where Pachyderm's data versioning combined with the pipelining really
shines. We can look at any prediction result and inspect that commit to determine the
commit's provenance. This is illustrated here:

$ pachctl inspect-commit prediction ef32a74b04ee4edda7bc2a2b469f3e03
Commit: prediction/ef32a74b04ee4edda7bc2a2b469f3e03
Parent: bb2fd223df664e70ad14b14491109c0f
Started: 8 minutes ago
Finished: 8 minutes ago
Size: 803B
Provenance: training/e0f9357455234d8bb68540af1e8dde81 attributes/2e5fef211f14498ab34c0520727296bb model/f54ca1a0142542579c1543e41f5e9403

In this case, we can see that prediction ef32a74b04ee4edda7bc2a2b469f3e03 resulted from
model f54ca1a0142542579c1543e41f5e9403, which can be retrieved here:

$ pachctl get-file model f54ca1a0142542579c1543e41f5e9403 model.json
{
 "intercept": 152.13348416289583,
 "coefficients": [
 {
 "name": "bmi",
 "coefficient": 675.069774431606
 },
 {
 "name": "ltg",
 "coefficient": 614.9505047824742
 }
]
}

However, if we look at a previous prediction, we will see that it resulted from a
different model:

$ pachctl inspect-commit prediction bb2fd223df664e70ad14b14491109c0f
Commit: prediction/bb2fd223df664e70ad14b14491109c0f
Parent: 5ce47c9e788d4893ae00c7ee6b1e8431
Started: 25 minutes ago
Finished: 25 minutes ago
Size: 802B
Provenance: model/a2c7b7dfb44a40e79318c2de30c7a0c8 training/e0f9357455234d8bb68540af1e8dde81 attributes/2e5fef211f14498ab34c0520727296bb
$ pachctl get-file model a2c7b7dfb44a40e79318c2de30c7a0c8 model.json
{
 "intercept": 152.13348416289818,
 "coefficients": [
 {
 "name": "bmi",
 "coefficient": 949.4352603839862

 }
]
}

We can always trace back the provenance of any piece of data in our pipeline, no
matter how many jobs are run and how many times we update our pipeline. This is
very important in creating sustainable machine learning workflows that can be
maintained over time, improved upon, and updated without major headaches.

Scaling pipeline stages
Each pipeline specification in Pachyderm can have a corresponding parallelism_spec
field. This field, along with the glob patterns in your inputs, lets you parallelize your
pipeline stages over their input data. Each pipeline stage is individually scalable
independent of all the other pipeline stages.

The parallelism_spec field in the pipeline specification lets you control how many
workers Pachyderm will spin up to process data in that pipeline stage. For example,
the following parallelism_spec would tell Pachyderm to spin up 10 workers for a
pipeline:

 "parallelism_spec": {
 "constant": "10"
 },

The glob patterns in your inputs tell Pachyderm how it can share your input data over
the workers declared by the parallelism_spec. For example, a glob pattern of /* would
tell Pachyderm that it can split up your input data into datums consisting of any files
of directories at the root of your repository. A glob pattern of /*/* would tell
Pachyderm that it can split up your data into datums consisting of files or directories
at a level deep into your repository directory structure. If you are new to glob
patterns, check out this description with some examples: https://en.wikipedia.org/wiki/Gl
ob_(programming).

In the case of our example pipeline, we could imagine that we need to scale the
prediction stage of our pipeline because we are seeing a huge influx of attributes that
need corresponding predictions. If this was the case, we could change
parallelism_spec in our prediction.json pipeline specification to "constant": "10". As
soon as we update the pipeline with the new specification, Pachyderm will spin up
10 new workers for the prediction pipeline, as follows:

$ pachctl update-pipeline -f prediction.json
 $ kubectl get pods
 NAME READY STATUS RESTARTS AGE
 etcd-2142892294-38ptw 1/1 Running 0 3h
 pachd-776177201-04l6w 1/1 Running 0 3h
 pipeline-model-v2-168k5 2/2 Running 0 29m
 pipeline-prediction-v2-0p6zs 0/2 Init:0/1 0 6s
 pipeline-prediction-v2-3fbsc 0/2 Init:0/1 0 6s
 pipeline-prediction-v2-c3m4f 0/2 Init:0/1 0 6s
 pipeline-prediction-v2-d11b9 0/2 Init:0/1 0 6s
 pipeline-prediction-v2-hjdll 0/2 Init:0/1 0 6s

https://en.wikipedia.org/wiki/Glob_(programming)

 pipeline-prediction-v2-hnk64 0/2 Init:0/1 0 6s
 pipeline-prediction-v2-q29f1 0/2 Init:0/1 0 6s
 pipeline-prediction-v2-qlhm4 0/2 Init:0/1 0 6s
 pipeline-prediction-v2-qrnf9 0/2 Init:0/1 0 6s
 pipeline-prediction-v2-rdt81 0/2 Init:0/1 0 6s
 $ kubectl get pods
 NAME READY STATUS RESTARTS AGE
 etcd-2142892294-38ptw 1/1 Running 0 3h
 pachd-776177201-04l6w 1/1 Running 0 3h
 pipeline-model-v2-168k5 2/2 Running 0 30m
 pipeline-prediction-v2-0p6zs 2/2 Running 0 26s
 pipeline-prediction-v2-3fbsc 2/2 Running 0 26s
 pipeline-prediction-v2-c3m4f 2/2 Running 0 26s
 pipeline-prediction-v2-d11b9 2/2 Running 0 26s
 pipeline-prediction-v2-hjdll 2/2 Running 0 26s
 pipeline-prediction-v2-hnk64 2/2 Running 0 26s
 pipeline-prediction-v2-q29f1 2/2 Running 0 26s
 pipeline-prediction-v2-qlhm4 2/2 Running 0 26s
 pipeline-prediction-v2-qrnf9 2/2 Running 0 26s
 pipeline-prediction-v2-rdt81 2/2 Running 0 26s

Now, any new commits of attributes into the attributes repo will be processed in
parallel by the 10 workers. For example, if we committed 100 more attribute files
into attributes, Pachyderm would send 1/10 of those files to each of the 10 workers
to process in parallel. All of the results would still be seen the same way in the
prediction repo.

Of course, setting a constant number of workers is not the only way you can do
scaling with Pachyderm and Kubernetes. Pachyderm will let you scale down workers
as well by setting a scale down threshold for idle workers. In addition, Pachyderm
auto-scaling of workers can be combined with auto-scaling of Kubernetes cluster
resources to deal with bursts of data and batch processing. Still, further, Pachyderm
will allow you to specify the resources needed for pipelines and, using this resource
specification, you can offload machine learning workloads to accelerators (GPUs, for
example).

References
Docker:

Introduction to Docker: https://training.docker.com/introduction-to-docker
Building minimal Docker images for Go apps: https://blog.codeship.com/building-mi
nimal-docker-containers-for-go-applications/

Pachyderm:

Public Slack channel: http://slack.pachyderm.io/
Getting started guide: http://pachyderm.readthedocs.io/en/latest/getting_started/getting_st
arted.html
Go client docs: https://godoc.org/github.com/pachyderm/pachyderm/src/client ​
Machine learning with Pachyderm: http://pachyderm.readthedocs.io/en/latest/cookbook
/ml.html
Machine learning examples: http://pachyderm.readthedocs.io/en/latest/examples/readme.
html#machine-learning
Distributed processing with Pachyderm: http://pachyderm.readthedocs.io/en/latest/fund
amentals/distributed_computing.html
Common Pachyderm deployments: http://pachyderm.readthedocs.io/en/latest/deployme
nt/deploy_intro.html
Auto-scaling Pachyderm clusters: http://pachyderm.readthedocs.io/en/latest/managing_
pachyderm/autoscaling.html

https://training.docker.com/introduction-to-docker
https://blog.codeship.com/building-minimal-docker-containers-for-go-applications/
http://slack.pachyderm.io/
http://pachyderm.readthedocs.io/en/latest/getting_started/getting_started.html
https://godoc.org/github.com/pachyderm/pachyderm/src/client
https://godoc.org/github.com/pachyderm/pachyderm/src/client
http://pachyderm.readthedocs.io/en/latest/cookbook/ml.html
http://pachyderm.readthedocs.io/en/latest/examples/readme.html#machine-learning
http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html
http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html
http://pachyderm.readthedocs.io/en/latest/managing_pachyderm/autoscaling.html

Summary
From merely gathering CSV data to a fully deployed, distributed machine learning
pipeline, we did it! We can now build machine learning models with Go and deploy
these models with confidence on a cluster of machines. These patterns should allow
you to build and deploy a whole variety of intelligent applications, and I can't wait to
hear about what you create! Please stay in touch.

Algorithms/Techniques Related to
Machine Learning
There are a few algorithms and techniques, related to the machine learning examples
in this book, that we were not able to go into much detail about in the preceding
chapters. We will address that here.

Gradient descent
In multiple examples (including those in Chapter 4, Regression and Chapter 5,
Classification), we took advantage of an optimization technique called gradient
descent. There are multiple variants of the gradient descent method, and, in general,
you will see them pretty much everywhere in the machine learning world. Most
prominently, they are utilized in the determination of optimal coefficients for
algorithms such as linear or logistic regression, and thus, they often also play a role
in more complicated techniques at least partially based on linear/logistic regression
(such as neural networks).

The general idea of gradient descent methods is to determine a direction and
magnitude of change in some parameters that will move you in the right direction to
optimize some measure (such as error). Think about standing on some landscape. To
move toward lower elevations, you need to take steps in the downward direction.
This is basically what gradient descent is doing algorithmically when it is optimizing
parameters.

Let's gain some more intuition about this process by looking at so-called Stochastic
Gradient Descent (SGD), which is an incremental kind of gradient descent. If you
remember, we actually utilized SGD in our implementation of logistic regression in
Chapter 5, Classification. In that example, we implemented the training or fitting of
our logistic regression parameters as follows:

// logisticRegression fits a logistic regression model
// for the given data.
func logisticRegression(features *mat64.Dense, labels []float64, numSteps int, learningRate float64) []float64 {

 // Initialize random weights.
 _, numWeights := features.Dims()
 weights := make([]float64, numWeights)

 s := rand.NewSource(time.Now().UnixNano())
 r := rand.New(s)

 for idx, _ := range weights {
 weights[idx] = r.Float64()
 }

 // Iteratively optimize the weights.
 for i := 0; i < numSteps; i++ {

 // Initialize a variable to accumulate error for this iteration.
 var sumError float64

 // Make predictions for each label and accumulate error.
 for idx, label := range labels {

 // Get the features corresponding to this label.
 featureRow := mat64.Row(nil, idx, features)

 // Calculate the error for this iteration's weights.
 pred := logistic(featureRow[0]*weights[0] + featureRow[1]*weights[1])
 predError := label - pred
 sumError += math.Pow(predError, 2)

 // Update the feature weights.
 for j := 0; j < len(featureRow); j++ {
 weights[j] += learningRate * predError * pred * (1 - pred) * featureRow[j]
 }
 }
 }

 return weights
}

The loop under the // Iteratively optimize the weights comment implements SGD to
optimize the logistic regression parameters. Let's pick apart this loop to determine
what exactly is happening.

First, we calculate the output of our model with the current weights and the
difference between our prediction and the ideal value (the actual observation, that
is):

// Calculate the error for this iteration's weights.
pred := logistic(featureRow[0]*weights[0] + featureRow[1]*weights[1])
predError := label - pred
sumError += math.Pow(predError, 2)

Then, according to SGD, we are going to calculate an update to our parameters (in
this case weights) according to the following:

The gradient is the mathematical gradient of the cost function in your problem.

More detailed mathematical information about this quantity can be
found here:
http://mathworld.wolfram.com/Gradient.html

The update can then be applied to the parameters as follows:

http://mathworld.wolfram.com/Gradient.html

In the case of our logistic regression model, this works out to have the following
form:

// Update the feature weights.
for j := 0; j < len(featureRow); j++ {
 weights[j] += learningRate * predError * pred * (1 - pred) * featureRow[j]
}

This type of SGD is pretty widely used in machine learning. However, in some
cases, this kind of gradient descent can lead to overfitting or getting stuck in local
minimums/maximums (rather than finding the global optimum).

To address some of these issues, you can utilize a variant of gradient descent called
batch gradient descent. In batch gradient descent, you calculate each of the
parameter updates based on gradients in all of the training dataset, as opposed to a
gradient for a particular observation or row of the dataset. This helps you prevent
overfitting, but it can also be rather slow and have memory issues because you need
to calculate gradient with respect to a whole dataset for each parameter. Mini-batch
gradient descent, which is another variant, attempts to maintain some of the benefits
of batch gradient descent while being more computationally tractable. In mini-batch
gradient descent, the gradients are calculated on subsets of the training dataset rather
than the whole training dataset.

In the case of logistic regression, you may see the use of gradient
ascent or descent, where gradient ascent is the same thing as gradient
descent except that it is applied to the negative of the cost function. The
logistic cost function gives you both of these options as long as you are
consistent. This is further discussed at https://stats.stackexchange.com/questi
ons/261573/using-gradient-ascent-instead-of-gradient-descent-for-logistic-regressi
on.
Gradient descent methods are also already implemented by the gonum
team in gonum.org/v1/gonum/optimize. See these docs for more
information:
https://godoc.org/gonum.org/v1/gonum/optimize#GradientDescent

https://stats.stackexchange.com/questions/261573/using-gradient-ascent-instead-of-gradient-descent-for-logistic-regression
https://godoc.org/gonum.org/v1/gonum/optimize#GradientDescent

Entropy, information gain, and related
methods
In Chapter 5, Classification, we explored decision tree methods in which models
consisted of a tree of if/then statements. These if/then portions of the decision tree
split the prediction logic based on one of the features of the training set. In an
example where we were trying to classify medical patients into unhealthy or healthy
categories, a decision tree might first split based on a gender feature, then based on
an age feature, then based on a weight feature, and so on, eventually landing on
healthy or unhealthy.

How does the algorithm choose which features to use first in the decision tree? In the
preceding example, we could split on gender first, or weight first, and any other
feature first. We need a way to arrange our splits in an optimal way, such that our
model makes the best predictions that it can make.

Many decision tree model implementations, including the one we used in Chapter 5,
Classification, use a quantity called entropy and an analysis of information gain to
build up decision trees. To illustrate this process, let's consider an example. Assume
that you have the following data about numbers of healthy people versus various
characteristics of those people:

Healthy Unhealthy

Vegan Diet 5 2

Vegetarian Diet 4 1

Meat Eating Diet 3 4

Healthy Unhealthy

Age 40+ 3 5

Age < 40 9 2

Here, we have two features in our data, Diet and Age, and we would like to build a
decision tree to predict if people are healthy or not based on Diet and Age. To do
this, we need to decide whether we should split our decision tree first on Age or first
on Diet. Notice that we also have a total of 12 healthy people and 7 unhealthy people
represented in the data.

To begin, we will calculate the overall or total entropy of the classes in our data. This
is defined as follows:

Here, p1, p2, and so on, are the probabilities of a first category, a second category,
and so on. In our particular case (because we have 12 healthy people and 7 unhealthy
people), our total entropy is as follows:

This 0.95 measure represents the homogeneity of our health data. It goes between 0
and 1, with high values corresponding to less homogeneous data.

To determine whether we should split our tree first on Age or first on Diet, we will
calculate which of these features gives us the most information gain. Simply put, we
will find the feature that gives us the most homogeneity after splitting on that
feature, as measured by the preceding entropy. This decrease in entropy is called
information gain.

The information gain for a certain feature in our example is defined as follows:

Here, E(Health, Feature) is a second measure of entropy with respect to the given
feature (Age or Diet). For Diet, this second measure would be calculated as follows:

The quantities p40+ and p<40 are the probabilities of having an age of 40+ or <40
(8/19 and 11/19, respectively). The quantities E(Health,40+) and E(Health,<40) are

the health entropies (as defined in the preceding formula) but only using the counts
corresponding to those Age 40+ and Age <40, respectively.

For our example data, the information gain for the Age feature comes out to 0.152
and the information gain for the Diet feature comes out to 0.079. Thus, we would
choose to split our decision tree on the Age feature first because it increases the
overall homogeneity of our data the most.

You can find out more about building decision trees based on entropy
at http://www.saedsayad.com/decision_tree.htm, and you can see an example
implementation in Go at https://github.com/sjwhitworth/golearn/blob/master/tr
ees/entropy.go.

http://www.saedsayad.com/decision_tree.htm
https://github.com/sjwhitworth/golearn/blob/master/trees/entropy.go

Backpropagation
Chapter 8, Neural Networks and Deep Learning, included an example of a neural
network built from scratch in Go. This neural network included an implementation
of the backpropagation method to train neural networks, which can be found in
almost any neural network code. We discussed some details in that chapter.
However, this method is utilized so often that we wanted to go through it step by
step here.

To train a neural network with backpropagation, we do the following for each of a
series of epochs:

1. Feed the training data through the neural network to produce output.
2. Calculate an error between the expected output and the predicted output.
3. Based on the error, calculate updates for the neural network weights and biases.
4. Propagate these updates back into the network.

As a reminder, our implementation of this procedure for a network with a single
hidden layer looked like the following (where wHidden and wOut are our hidden layer
and output layer weights and bHidden and bOut are our hidden layer and output layer
biases):

105 // Define the output of the neural network.
106 output := mat.NewDense(0, 0, nil)
107
108 // Loop over the number of epochs utilizing
109 // backpropagation to train our model.
110 for i := 0; i < nn.config.numEpochs; i++ {
111
112 // Complete the feed forward process.
113 hiddenLayerInput := mat.NewDense(0, 0, nil)
114 hiddenLayerInput.Mul(x, wHidden)
115 addBHidden := func(_, col int, v float64) float64 { return v + bHidden.At(0, col) }
116 hiddenLayerInput.Apply(addBHidden, hiddenLayerInput)
117
118 hiddenLayerActivations := mat.NewDense(0, 0, nil)
119 applySigmoid := func(_, _ int, v float64) float64 { return sigmoid(v) }
120 hiddenLayerActivations.Apply(applySigmoid, hiddenLayerInput)
121
122 outputLayerInput := mat.NewDense(0, 0, nil)
123 outputLayerInput.Mul(hiddenLayerActivations, wOut)
124 addBOut := func(_, col int, v float64) float64 { return v + bOut.At(0, col) }
125 outputLayerInput.Apply(addBOut, outputLayerInput)
126 output.Apply(applySigmoid, outputLayerInput)
127
128 // Complete the backpropagation.

129 networkError := mat.NewDense(0, 0, nil)
130 networkError.Sub(y, output)
131
132 slopeOutputLayer := mat.NewDense(0, 0, nil)
133 applySigmoidPrime := func(_, _ int, v float64) float64 { return sigmoidPrime(v) }
134 slopeOutputLayer.Apply(applySigmoidPrime, output)
135 slopeHiddenLayer := mat.NewDense(0, 0, nil)
136 slopeHiddenLayer.Apply(applySigmoidPrime, hiddenLayerActivations)
137
138 dOutput := mat.NewDense(0, 0, nil)
139 dOutput.MulElem(networkError, slopeOutputLayer)
140 errorAtHiddenLayer := mat.NewDense(0, 0, nil)
141 errorAtHiddenLayer.Mul(dOutput, wOut.T())
142
143 dHiddenLayer := mat.NewDense(0, 0, nil)
144 dHiddenLayer.MulElem(errorAtHiddenLayer, slopeHiddenLayer)
145
146 // Adjust the parameters.
147 wOutAdj := mat.NewDense(0, 0, nil)
148 wOutAdj.Mul(hiddenLayerActivations.T(), dOutput)
149 wOutAdj.Scale(nn.config.learningRate, wOutAdj)
150 wOut.Add(wOut, wOutAdj)
151
152 bOutAdj, err := sumAlongAxis(0, dOutput)
153 if err != nil {
154 return err
155 }
156 bOutAdj.Scale(nn.config.learningRate, bOutAdj)
157 bOut.Add(bOut, bOutAdj)
158
159 wHiddenAdj := mat.NewDense(0, 0, nil)
160 wHiddenAdj.Mul(x.T(), dHiddenLayer)
161 wHiddenAdj.Scale(nn.config.learningRate, wHiddenAdj)
162 wHidden.Add(wHidden, wHiddenAdj)
163
164 bHiddenAdj, err := sumAlongAxis(0, dHiddenLayer)
165 if err != nil {
166 return err
167 }
168 bHiddenAdj.Scale(nn.config.learningRate, bHiddenAdj)
169 bHidden.Add(bHidden, bHiddenAdj)
170 }

Let's pick this implementation apart in detail to understand exactly what's happening.

The feed forward process that produces our output does the following:

1. Multiplies the input data by the hidden layer weights, adds the hidden layer
biases, and applies the sigmoid activation function to calculate the output of the
hidden layer, hiddenLayerActivations (lines 112 to 120 in the preceding snippet).

2. Multiples the hiddenLayerActivations by the output layer weights, then adds the
output layer biases, and applies the sigmoid activation function to calculate the
output (lines 122 to 126).

Notice that in the feed forward process, we are starting with the input data at the

input layer and working our way forward through the hidden layer until we reach the
output.

After the feed forward process, we need to calculate optimal updates to our weights
and biases. As you might expect after going through the gradient descent portion of
this Appendix, gradient descent is a perfect fit to find these weights and biases. Lines
129 through 144 in the preceding snippet implement SGD.

Finally, we need to apply these updates backward through the network in lines 147
through 169. This is the backward propagation of updates that gives backpropagation
its name. There isn't anything too special about this process, we just perform the
following:

1. Apply the calculated updates to the output weights and biases (lines 147 to
157).

2. Apply the calculated updates to the hidden layer weights and biases (lines 159
to 169).

Notice how we start at the output and work our way back to the input applying the
changes.

You can find a very detailed discussion of backpropagation, including
mathematical proofs, here:
​http://neuralnetworksanddeeplearning.com/chap2.html
Backpropagation started to be widely utilized after a 1986 paper by
David Rumelhart, Geoffrey Hinton, and Ronald Williams. Although the
method is utilized across the industry in neural networks, Geoffrey
Hinton recently came out to say that he is deeply suspicious of
backpropagation and suggests that we need to work hard to find an
alternative.

http://neuralnetworksanddeeplearning.com/chap2.html

	Cover
	Copyright
	About the Author
	Table of Contents
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	1 Gathering and Organizing Data
	Handling data - Gopher style
	Best practices for gathering and organizing data with Go
	CSV files
	Reading in CSV data from a file
	Handling unexpected fields
	Handling unexpected types
	Manipulating CSV data with data frames

	JSON
	Parsing JSON
	JSON output

	SQL-like databases
	Connecting to an SQL database
	Querying the database
	Modifying the database

	Caching
	Caching data in memory
	Caching data locally on disk

	Data versioning
	Pachyderm jargon
	Deploying/installing Pachyderm
	Creating data repositories for data versioning
	Putting data into data repositories
	Getting data out of versioned data repositories

	References
	Summary

	2 Matrices, Probability, and Statistics
	Matrices and vectors
	Vectors
	Vector operations
	Matrices
	Matrix operations

	Statistics
	Distributions
	Statistical measures
	Measures of central tendency
	Measures of spread or dispersion

	Visualizing distributions
	Histograms
	Box plots

	Probability
	Random variables
	Probability measures
	Independent and conditional probability
	Hypothesis testing
	Test statistics
	Calculating p-values

	References
	Summary

	3 Evaluation and Validation
	Evaluation
	Continuous metrics
	Categorical metrics
	Individual evaluation metrics for categorical variables
	Confusion matrices, AUC, and ROC

	Validation
	Training and test sets
	Holdout set
	Cross validation

	References
	Summary

	4 Regression
	Understanding regression model jargon
	Linear regression
	Overview of linear regression
	Linear regression assumptions and pitfalls
	Linear regression example
	Profiling the data
	Choosing our independent variable
	Creating our training and test sets
	Training our model
	Evaluating the trained model

	Multiple linear regression
	Nonlinear and other types of regression
	References
	Summary

	5 Classification
	Understanding classification model jargon
	Logistic regression
	Overview of logistic regression
	Logistic regression assumptions and pitfalls
	Logistic regression example
	Cleaning and profiling the data
	Creating our training and test sets
	Training and testing the logistic regression model

	k-nearest neighbors
	Overview of kNN
	kNN assumptions and pitfalls
	kNN example

	Decision trees and random forests
	Overview of decision trees and random forests
	Decision tree and random forest assumptions and pitfalls
	Decision tree example
	Random forest example

	Naive bayes
	Overview of naive bayes and its big assumption
	Naive bayes example

	References
	Summary

	6 Clustering
	Understanding clustering model jargon
	Measuring Distance or Similarity
	Evaluating clustering techniques
	Internal clustering evaluation
	External clustering evaluation

	k-means clustering
	Overview of k-means clustering
	k-means assumptions and pitfalls
	k-means clustering example
	Profiling the data
	Generating clusters with k-means
	Evaluating the generated clusters

	Other clustering techniques
	References
	Summary

	7 Time Series and Anomaly Detection
	Representing time series data in Go
	Understanding time series jargon
	Statistics related to time series
	Autocorrelation
	Partial autocorrelation

	Auto-regressive models for forecasting
	Auto-regressive model overview
	Auto-regressive model assumptions and pitfalls
	Auto-regressive model example
	Transforming to a stationary series
	Analyzing the ACF and choosing an AR order
	Fitting and evaluating an AR(2) model

	Auto-regressive moving averages and other time series models
	Anomaly detection
	References
	Summary

	8 Neural Networks and Deep Learning
	Understanding neural net jargon
	Building a simple neural network
	Nodes in the network
	Network architecture
	Why do we expect this architecture to work?
	Training our neural network

	Utilizing the simple neural network
	Training the neural network on real data
	Evaluating the neural network

	Introducing deep learning
	What is a deep learning model?
	Deep learning with Go
	Setting up TensorFlow for use with Go
	Retrieving and calling a pretrained TensorFlow model
	Object detection using TensorFlow from Go

	References
	Summary

	9 Deploying and Distributing Analyses and Models
	Running models reliably on remote machines
	A brief introduction to Docker and Docker jargon
	Docker-izing a machine learning application
	Docker-izing the model training and export
	Docker-izing model predictions
	Testing the Docker images locally
	Running the Docker images on remote machines

	Building a scalable and reproducible machine learning pipeline
	Setting up a Pachyderm and Kubernetes cluster
	Building a Pachyderm machine learning pipeline
	Creating and filling the input repositories
	Creating and running the processing stages

	Updating pipelines and examining provenance
	Scaling pipeline stages

	References
	Summary

	10 Algorithms/Techniques Related to Machine Learning
	Gradient descent
	Entropy, information gain, and related methods
	Backpropagation

