

Go: Building Web
Applications

Build real-world, production-ready solutions by
harnessing the powerful features of Go

A course in three modules

BIRMINGHAM - MUMBAI

Go: Building Web Applications

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: August 2016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78712-349-6

www.packtpub.com

Credits

Authors
Nathan Kozyra

Mat Ryer

Reviewers
Karthik Nayak

Tyler Bunnell

Michael Hamrah

Nimish Parmar

Jeremy R. Budnack

János Fehér

Aleksandar S. Sokolovski

Michele Della Torre

Content Development Editor
Arun Nadar

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

[i]

Preface
Since the late 1980s and early 1990s, there has been a slow flood of powerful new
languages and paradigms—Perl, Python, Ruby, PHP, and JavaScript—have taken an
expanding user base by storm and has become one of the most popular languages
(up there with stalwarts such as C, C++, and Java). Multithreading, memory caching,
and APIs have allowed multiple processes, dissonant languages, applications, and
even separate operating systems to work in congress.

And while this is great, there's a niche that until very recently was largely unserved:
powerful, compiled, cross-platform languages with concurrency support that are
geared towards systems programmers.

So when Google announced Go in 2009, which included some of the best minds
in language design (and programming in general)—Rob Pike and Ken Thompson
of Bell Labs fame and Robert Griesemer, who worked on Google's JavaScript
implementation V8—to design a modern, concurrent language with development
ease at the forefront..

For Go programming bright future, the team focused on some sore spots in the
alternatives, which are as follows:

• Dynamically typed languages have—in recent years—become incredibly
popular. Go eschews the explicit, "cumbersome" type systems of Java or
C++. Go uses type inference, which saves development time, but is still also
strongly typed.

• Concurrency, parallelism, pointers/memory access, and garbage collection
are unwieldy in the aforementioned languages. Go lets these concepts be as
easy or as complicated as you want or need them to be.

• As a newer language, Go has a focus on multicore design that was a
necessary afterthought in languages such as C++.

Preface

[ii]

• Go's compiler is super-fast; it's so fast that there are implementations of it
that treat Go code as interpreted.

• Although Google designed Go to be a systems language, it's versatile enough
to be used in a myriad of ways. Certainly, the focus on advanced, cheap
concurrency makes it ideal for network and systems programming.

• Go is loose with syntax, but strict with usage. By this we mean that Go will
let you get a little lazy with some lexer tokens, but you still have to produce
fundamentally tight code. As Go provides a formatting tool that attempts
to clarify your code, you can also spend less time on readability concerns as
you're coding

What this learning path covers
Module 1, Learning Go Web Development, starts off with introducing and setting up Go
before you move on to produce responsive servers that react to certain web endpoint.
You will then implement database connections to acquire data and then present it to
our users using different template packages. Later on, you will learn about sessions
and cookies to retain information before delving with the basics of microservices. By
the end of this module, we will be covering the testing, debugging, and the security
aspect.

Module 2, Go Programming Blueprints, has a project-based approach where you will
be building chat application, adding authentication, and adding your own profile
pictures in different ways. You will learn how Go makes it easy to build powerful
command-line tools to find domain names before building a highly scalable Twitter
polling and vote counting engine powered by NSQ and MongoDB. Later on it covers
the functionalities of RESTful Data Web Service API and Google Places API before
you move on to build a simple but powerful filesystem backup tool for our code
projects.

Module 3, Mastering Concurrency in Go, introduces you to Concurrency in Go where
you will be understanding the Concurrency model and developing a strategy for
designing applications. You will learn to create basic and complex communication
channels between our goroutines to manage data not only across single or
multithreaded systems but also distributed systems. Later on you will be tackling
a real-world problem, that is, being able to develop a high performance web server
that can handle a very large volume of live, active traffic. You will then learn how to
scale your application and make it capable of being expanded in scope, design, and/
or capacity. It will then focus on when and where to implement concurrent patterns,
utilize parallelism, and ensure data consistency. At the end of this module, we will
be logging and testing concurrency before we finally look at the best practices on
how to implement complicated and advanced techniques offered by Go.

Preface

[iii]

What you need for this learning path
For this course, any modern computers running a standard Linux flavor, OS X or
Windows should be enough to get started. You can find a full list of requirements at
https://golang.org/dl/. Later on, you'll also need to have the following software
installed:

• MySQL (http://dev.mysql.com/downloads/)

• Couchbase (http://www.couchbase.com/download)

Your choice of IDE is a matter of personal preference.

Who this learning path is for
This course is intended for developers who are new to Go but have previous
experience of building web applications and APIs. It is also targeted towards systems
or network programmer with some knowledge of Go and concurrency, but would
like to know about the implementation of concurrent systems written in Go

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

https://golang.org/dl/

Preface

[iv]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the course in the Search box.

5. Select the course for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course's webpage at the Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows

• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.
com/PacktPublishing/repository-name. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata

Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Preface

[v]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

i

Module 1: Learning Go Web Development

Chapter 1: Introducing and Setting Up Go 3
Installing Go 4
Structuring a project 6
Importing packages 8
Introducing the net package 10
Hello, Web 10
Summary 12

Chapter 2: Serving and Routing 13
Serving files directly 13
Basic routing 14
Using more complex routing with Gorilla 15
Redirecting requests 18
Serving basic errors 19
Summary 22

Chapter 3: Connecting to Data 23
Connecting to a database 24
Using GUID for prettier URLs 30
Handling 404s 31
Summary 32

Chapter 4: Using Templates 33
Introducing templates, context, and visibility 34
HTML templates and text templates 35
Displaying variables and security 37
Using logic and control structures 39
Summary 44

Chapter 5: Frontend Integration with RESTful APIs 45
Setting up the basic API endpoint 46
RESTful architecture and best practices 47
Creating our first API endpoint 48

ii

Table of Contents

Implementing security 49
Creating data with POST 51
Modifying data with PUT 55
Summary 60

Chapter 6: Sessions and Cookies 61
Setting cookies 61
Capturing user information 62
Initiating a server-side session 67
Summary 74

Chapter 7: Microservices and Communication 77
Introducing the microservice approach 78
Pros and cons of utilizing microservices 79
Understanding the heart of microservices 79
Communicating between microservices 80
Putting a message on the wire 80
Reading from another service 84
Summary 85

Chapter 8: Logging and Testing 87
Introducing logging in Go 88
Logging to IO 88
Formatting your output 90
Using panics and fatal errors 91
Introducing testing in Go 92
Summary 96

Chapter 9: Security 97
HTTPS everywhere – implementing TLS 98
Preventing SQL injection 100
Protecting against XSS 102
Preventing cross-site request forgery (CSRF) 104
Securing cookies 105
Using the secure middleware 106
Summary 107

Chapter 10: Caching, Proxies and Improved Performance 109
Identifying bottlenecks 110
Implementing reverse proxies 111
Implementing caching strategies 113
Implementing HTTP/2 117
Summary 118

iii

Table of Contents

Module 2: Go Programming Blueprints

Chapter 1: Chat Application with Web Sockets 121
A simple web server 122
Modeling a chat room and clients on the server 127
Building an HTML and JavaScript chat client 135
Tracing code to get a look under the hood 140
Summary 151

Chapter 2: Adding Authentication 153
Handlers all the way down 154
Making a pretty social sign-in page 156
Endpoints with dynamic paths 159
OAuth2 161
Tell the authentication providers about your app 162
Implementing external logging in 163
Summary 174

Chapter 3: Three Ways to Implement Profile Pictures 177
Avatars from the authentication server 178
Implementing Gravatar 184
Uploading an avatar picture 193
Combining all three implementations 208
Summary 210

Chapter 4: Command-line Tools to Find Domain Names 211
Pipe design for command-line tools 212
Five simple programs 212
Composing all five programs 231
Summary 235

Chapter 5: Building Distributed Systems and Working
with Flexible Data 237

System design 238
Installing the environment 240
Votes from Twitter 244
Counting votes 260
Running our solution 266
Summary 267

iv

Table of Contents

Chapter 6: Exposing Data and Functionality through a RESTful
Data Web Service API 269

RESTful API design 270
Sharing data between handlers 271
Wrapping handler functions 273
Responding 276
Understanding the request 278
A simple main function to serve our API 280
Handling endpoints 283
A web client that consumes the API 290
Running the solution 298
Summary 299

Chapter 7: Random Recommendations Web Service 301
Project overview 302
Representing data in code 305
Generating random recommendations 309
Summary 323

Chapter 8: Filesystem Backup 325
Solution design 326
Backup package 327
The user command-line tool 335
The daemon backup tool 341
Testing our solution 347
Summary 348

Module 3: Mastering Concurrency in Go

Chapter 1: An Introduction to Concurrency in Go 353
Introducing goroutines 353
Implementing the defer control mechanism 357
Understanding goroutines versus coroutines 365
Implementing channels 366
Closures and goroutines 377
Building a web spider using goroutines and channels 379
Summary 384

Chapter 2: Understanding the Concurrency Model 385
Understanding the working of goroutines 385
Synchronous versus asynchronous goroutines 386
Visualizing concurrency 388

v

Table of Contents

RSS in action 393
A little bit about CSP 401
Go and the actor model 404
Object orientation 404
Using concurrency 406
Managing threads 406
Using sync and mutexes to lock data 407
Summary 409

Chapter 3: Developing a Concurrent Strategy 411
Applying efficiency in complex concurrency 411
Identifying race conditions with race detection 412
Synchronizing our concurrent operations 422
The project – multiuser appointment calendar 423
A multiuser Appointments Calendar 429
A note on style 437
A note on immutability 438
Summary 439

Chapter 4: Data Integrity in an Application 441
Getting deeper with mutexes and sync 441
The cost of goroutines 444
Working with files 445
Getting low – implementing C 447
Distributed Go 455
Some common consistency models 457
Using memcached 462
Summary 465

Chapter 5: Locks, Blocks, and Better Channels 467
Understanding blocking methods in Go 468
Cleaning up goroutines 484
Creating channels of channels 485
Pprof – yet another awesome tool 487
Handling deadlocks and errors 494
Summary 495

Chapter 6: C10K – A Non-blocking Web Server in Go 497
Attacking the C10K problem 498
Building our C10K web server 503
Serving pages 510
Multithreading and leveraging multiple cores 518
Exploring our web server 518
Summary 524

vi

Table of Contents

Chapter 7: Performance and Scalability 525
High performance in Go 526
Using the App Engine 535
Distributed Go 536
Some helpful libraries 545
Memory preservation 546
Summary 547

Chapter 8: Concurrent Application Architecture 549
Designing our concurrent application 550
Identifying our requirements 551
Using NoSQL as a data store in Go 552
Monitoring filesystem changes 565
Managing logfiles 566
Handling configuration files 567
Detecting file changes 568
Backing up our files 575
Designing our web interface 577
Reverting a file's history – command line 582
Checking the health of our server 585
Summary 586

Chapter 9: Logging and Testing Concurrency in Go 587
Handling errors and logging 588
Using the log4go package for robust logging 598
Using the runtime package for granular stack traces 609
Summary 613

Chapter 10: Advanced Concurrency and Best Practices 615
Going beyond the basics with channels 616
Building workers 616
Implementing nil channel blocks 622
Implementing more granular control over goroutines with tomb 625
Timing out with channels 628
Building a load balancer with concurrent patterns 630
Choosing unidirectional and bidirectional channels 636
Using an indeterminate channel type 637
Using Go with unit testing 639
Using Google App Engine 641
Utilizing best practices 641
Summary 644

Bibliography 645

Module 1

Learning Go Web Development

Build frontend-to-backend web applications using the best practices of a powerful, fast,
and easy-to-deploy server language

[3]

Introducing and Setting Up Go
When starting with Go, one of the most common things you'll hear being said is that
it's a systems language.

Indeed, one of the earlier descriptions of Go, by the Go team itself, was that the
language was built to be a modern systems language. It was constructed to combine
the speed and power of languages, such as C with the syntactical elegance and thrift
of modern interpreted languages, such as Python. You can see that goal realized
when you look at just a few snippets of Go code.

From the Go FAQ on why Go was created:

"Go was born out of frustration with existing languages and environments for
systems programming."

Perhaps the largest part of present-day Systems programming is designing backend
servers. Obviously, the Web comprises a huge, but not exclusive, percentage of that
world.

Go hasn't been considered a web language until recently. Unsurprisingly, it took a few
years of developers dabbling, experimenting, and finally embracing the language to
start taking it to new avenues.

While Go is web-ready out of the box, it lacks a lot of the critical frameworks
and tools people so often take for granted with web development now. As the
community around Go grew, the scaffolding began to manifest in a lot of new
and exciting ways. Combined with existing ancillary tools, Go is now a wholly
viable option for end-to-end web development. But back to that primary question:
Why Go? To be fair, it's not right for every web project, but any application that can
benefit from high-performance, secure web-serving out of the box with the added
benefits of a beautiful concurrency model would make for a good candidate.

Introducing and Setting Up Go

[4]

In this book, we're going to explore those aspects and others to outline what can
make Go the right language for your web architecture and applications.

We're not going to deal with a lot of the low-level aspects of the Go language.
For example, we assume you're familiar with variable and constant declaration.
We assume you understand control structures.

In this chapter we will cover the following topics:

• Installing Go

• Structuring a project

• Importing packages

• Introducing the net package

• Hello, Web

Installing Go
The most critical first step is, of course, making sure that Go is available and ready to
start our first web server.

While one of Go's biggest selling points is its cross-platform support
(both building and using locally while targeting other operating
systems), your life will be much easier on a Nix compatible platform.

If you're on Windows, don't fear. Natively, you may run into
incompatible packages, firewall issues when running using go run
command and some other quirks, but 95% of the Go ecosystem will be
available to you. You can also, very easily, run a virtual machine, and in
fact that is a great way to simulate a potential production environment.

In-depth installation instructions are available at https://golang.org/doc/
install, but we'll talk about a few quirky points here before moving on.

For OS X and Windows, Go is provided as a part of a binary installation package.
For any Linux platform with a package manager, things can be pretty easy.

To install via common Linux package managers:

Ubuntu: sudo apt-get golang

CentOS: sudo yum install golang

Chapter 1

[5]

On both OS X and Linux, you'll need to add a couple of lines to your path—
the GOPATH and PATH. First, you'll want to find the location of your Go binary's
installation. This varies from distribution to distribution. Once you've found that,
you can configure the PATH and GOPATH, as follows:

export PATH=$PATH:/usr/local/go/bin

export GOPATH="/usr/share/go"

While the path to be used is not defined rigidly, some convention has coalesced
around starting at a subdirectory directly under your user's home directory, such as
$HOME/go or ~Home/go. As long as this location is set perpetually and doesn't change,
you won't run into issues with conflicts or missing packages.

You can test the impact of these changes by running the go env command. If you see
any issues with this, it means that your directories are not correct.

Note that this may not prevent Go from running—depending on whether the GOBIN
directory is properly set—but will prevent you from installing packages globally
across your system.

To test the installation, you can grab any Go package by a go get command and
create a Go file somewhere. As a quick example, first get a package at random, we'll
use a package from the Gorilla framework, as we'll use this quite a bit throughout
this book.

go get github.com/gorilla/mux

If this runs without any issue, Go is finding your GOPATH correctly. To make sure
that Go is able to access your downloaded packages, draw up a very quick package
that will attempt to utilize Gorilla's mux package and run it to verify whether the
packages are found.

package main

import (
 "fmt"
 "github.com/gorilla/mux"
 "net/http"
)

func TestHandler(w http.ResponseWriter, r *http.Request) {

}

Introducing and Setting Up Go

[6]

func main() {
 router := mux.NewRouter()
 router.HandleFunc("/test", TestHandler)
 http.Handle("/", router)
 fmt.Println("Everything is set up!")
}

Run go run test.go in the command line. It won't do much, but it will deliver the
good news as shown in the following screenshot:

Structuring a project
When you're first getting started and mostly playing around, there's no real problem
with setting your application lazily.

For example, to get started as quickly as possible, you can create a simple hello.go
file anywhere you like and compile without issue.

But when you get into environments that require multiple or distinct packages
(more on that shortly) or have more explicit cross-platform requirements, it makes
sense to design your project in a way that will facilitate the use of the go build tool.

The value of setting up your code in this manner lies in the way that the go build tool
works. If you have local (to your project) packages, the build tool will look in the src
directory first and then your GOPATH. When you're building for other platforms, go
build will utilize the local bin folder to organize the binaries.

When building packages that are intended for mass use, you may also find that
either starting your application under your GOPATH directory and then symbolically
linking it to another directory, or doing the opposite, will allow you to develop
without the need to subsequently go get your own code.

Code conventions
As with any language, being a part of the Go community means perpetual
consideration of the way others create their code. Particularly if you're going to work
in open source repositories, you'll want to generate your code the way that others do,
in order to reduce the amount of friction when people get or include your code.

Chapter 1

[7]

One incredibly helpful piece of tooling that the Go team has included is go fmt. fmt
here, of course, means format and that's exactly what this tool does, it automatically
formats your code according to the designed conventions.

By enforcing style conventions, the Go team has helped to mitigate one of the most
common and pervasive debates that exist among a lot of other languages.

While the language communities tend to drive coding conventions, there are always
little idiosyncrasies in the way individuals write programs. Let's use one of the most
common examples around—where to put the opening bracket.

Some programmers like it on the same line as the statement:

for (int i = 0; i < 100; i++) {
 // do something
}

While others prefer it on the subsequent line:

for (int i = 0; i < 100; i++)
{
 // do something
}

These types of minor differences spark major, near-religious debates. The Gofmt tool
helps alleviate this by allowing you to yield to Go's directive.

Now, Go bypasses this obvious source of contention at the compiler, by formatting
your code similar to the latter example discussed earlier. The compiler will complain
and all you'll get is a fatal error. But the other style choices have some flexibility,
which are enforced when you use the tool to format.

Here, for example, is a piece of code in Go before go fmt:

func Double(n int) int {

 if (n == 0) {
 return 0
 } else {
 return n * 2
 }
}

Arbitrary whitespace can be the bane of a team's existence when it comes to sharing
and reading code, particularly when every team member is not on the same IDE.

Introducing and Setting Up Go

[8]

By running go fmt, we clean this up, thereby translating our whitespace according
to Go's conventions:

func Double(n int) int {
 if n == 0 {
 return 0
 } else {
 return n * 2
 }
}

Long story short: always run go fmt before shipping or pushing your code.

Importing packages
Beyond the absolute and the most trivial application—one that cannot even produce
a Hello World output—you must have some imported package in a Go application.

To say Hello World, for example, we'd need some sort of a way to generate an
output. Unlike in many other languages, even the core language library is accessible
by a namespaced package. In Go, namespaces are handled by a repository endpoint
URL, which is github.com/nkozyra/gotest, which can be opened directly on
Github (or any other public location) for the review.

Handling private repositories
The go get tool easily handles packages hosted at the repositories, such as Github,
Bitbucket, and Google Code (as well as a few others). You can also host your
own projects, ideally a git project, elsewhere, although it might introduce some
dependencies and sources for errors, which you'd probably like to avoid.

But what about the private repos? While go get is a wonderful tool, you'll find
yourself looking at an error without some additional configuration, SSH agent
forwarding, and so on.

You can work around this in a couple of ways, but one very simple method is to
clone the repository locally, using your version control software directly.

Chapter 1

[9]

Dealing with versioning
You may have paused when you read about the way namespaces are defined
and imported in a Go application. What happens if you're using version 1 of
the application but would like to bring in version 2? In most cases, this has to
be explicitly defined in the path of the import. For example:

import (
 "github.com/foo/foo-v1"
)

versus:

import (
 "github.com/foo/foo-v2"
)

As you might imagine, this can be a particularly sticky aspect of the way Go handles
the remote packages.

Unlike a lot of other package managers, go get is decentralized—that is, nobody
maintains a canonical reference library of packages and versions. This can sometimes
be a sore spot for new developers.

For the most part, packages are always imported via the go get command, which
reads the master branch of the remote repository. This means that maintaining
multiple versions of a package at the same endpoint is, for the most part, impossible.

It's the utilization of the URL endpoints as namespaces that allows the decentralization,
but it's also what provides a lack of internal support for versioning.

Your best bet as a developer is to treat every package as the most up-to-date version
when you perform a go get command. If you need a newer version, you can always
follow whatever pattern the author has decided on, such as the preceding example.

As a creator of your own packages, make sure that you also adhere to this
philosophy. Keeping your master branch HEAD as the most up-to-date will make
sure your that the code fits with the conventions of other Go authors.

Introducing and Setting Up Go

[10]

Introducing the net package
At the heart of all network communications in Go is the aptly-named net package,
which contains subpackages not only for the very relevant HTTP operations, but also
for other TCP/UDP servers, DNS, and IP tools.

In short, everything you need to create a robust server environment.

Of course, what we care about for the purpose of this book lies primarily in the
net/http package, but we'll look at a few other functions that utilize the rest of
the package, such as a TCP connection, as well as WebSockets.

Let's quickly take a look at just performing that Hello World (or Web, in this case)
example we have been talking about.

Hello, Web
The following application serves as a static file at the location /static, and a dynamic
response at the location /dynamic:

package main

import (
 "fmt"
 "net/http"
 "time"
)

const (
 Port = ":8080"
)

func serveDynamic(w http.ResponseWriter, r *http.Request) {
 response := "The time is now " + time.Now().String()
 fmt.Fprintln(w,response)
}

Just as fmt.Println will produce desired content at the console level, Fprintln
allows you to direct output to any writer. We'll talk a bit more about the writers in
Chapter 2, Serving and Routing, but they represent a fundamental, flexible interface
that is utilized in many Go applications, not just for the Web:

func serveStatic(w http.ResponseWriter, r *http.Request) {
 http.ServeFile(w, r, "static.html")
}

Chapter 1

[11]

Our serveStatic method just serves one file, but it's trivial to allow it to serve any
file directly and use Go as an old-school web server that serves only static content:

func main() {
 http.HandleFunc("/static",serveStatic)
 http.HandleFunc("/",serveDynamic)
 http.ListenAndServe(Port,nil)
}

Feel free to choose the available port of your choice—higher ports will make it easier
to bypass the built-in security functionality, particularly in Nix systems.

If we take the preceding example and visit the respective URLs—in this case the root
at / and a static page at /static, we should see the intended output as shown:

At the root, / , the output is as follows:

At /static, the output is as follows:

As you can see, producing a very simple output for the Web is, well, very simple in
Go. The built-in package allows us to create a basic, yet inordinately fast site in Go
with just a few lines of code using native packages.

This may not be very exciting, but before we can run, we must walk. Producing the
preceding output introduces a few key concepts.

First, we've seen how net/http directs requests using a URI or URL endpoint to
helper functions, which must implement the http.ResponseWriter and http.
Request methods. If they do not implement it, we get a very clear error on that end.

Introducing and Setting Up Go

[12]

The following is an example that attempts to implement it in this manner:

func serveError() {
 fmt.Println("There's no way I'll work!")
}

func main() {
 http.HandleFunc("/static", serveStatic)
 http.HandleFunc("/", serveDynamic)
 http.HandleFunc("/error",serveError)
 http.ListenAndServe(Port, nil)
}

The following screenshot shows the resulting error you'll get from Go:

You can see that serveError does not include the required parameters and thus
results in a compilation error.

Summary
This chapter serves as an introduction to the most basic concepts of Go and
producing for the Web in Go, but these points are critical foundational elements
for being productive in the language and in the community.

We've looked at coding conventions and package design and organization, and
we've produced our first program—the all-too-familiar Hello, World application—
and accessed it via our localhost.

Obviously, we're a long way from a real, mature application for the Web, but the
building blocks are essential to getting there.

In Chapter 2, Serving and Routing, we'll look at how to direct different requests to
different application logic using the built-in routing functionality in Go's net/http
package, as well as a couple of third party router packages.

[13]

Serving and Routing
The cornerstone of the Web as a commercial entity—the piece on which marketing
and branding has relied on nearly exclusively—is the URL. While we're not yet
looking at the top-level domain handling, we need to take up the reins of our URL
and its paths (or endpoints).

In this chapter, we'll do just this by introducing multiple routes and corresponding
handlers. First, we'll do this with a simple flat file serving and then we'll introduce
complex mixers to do the routing with more flexibility by implementing a library
that utilizes regular expressions in its routes.

By the end of this chapter, you should be able to create a site on localhost that can be
accessed by any number of paths and return content relative to the requested path.

In this chapter, we will cover the following topics:

• Serving files directly

• Basic routing

• Using more complex routing with Gorilla

• Redirecting requests

• Serving basic errors

Serving files directly
In the preceding chapter, we utilized the fmt.Fprintln function to output some
generic Hello, World messaging in the browser.

This obviously has limited utility. In the earliest days of the Web and web servers,
the entirety of the Web was served by directing requests to corresponding static files.
In other words, if a user requested home.html, the web server would look for a file
called home.html and return it to the user.

Serving and Routing

[14]

This might seem quaint today, as a vast majority of the Web is now served in some
dynamic fashion, with content often being determined via database IDs, which
allows for pages to be generated and regenerated without someone modifying the
individual files.

Let's take a look at the simplest way in which we can serve files in a way similar to
those olden days of the Web as shown:

package main

import (
 "net/http"
)

const (
 PORT = ":8080"
)

func main() {

 http.ListenAndServe(PORT,
 http.FileServer(http.Dir("/var/www")))
}

Pretty simple, huh? Any requests made to the site will attempt to find a corresponding
file in our local /var/www directory. But while this has a more practical use compared
to the example in Chapter 1, Introducing and Setting Up Go, it's still pretty limited. Let's
take a look at expanding our options a bit.

Basic routing
In Chapter 1, Introducing and Setting Up, we produced a very basic URL endpoint that
allowed static file serving.

The following are the simple routes we produced for that example:

func main() {
 http.HandleFunc("/static",serveStatic)
 http.HandleFunc("/",serveDynamic)
 http.ListenAndServe(Port,nil)
}

In review, you can see two endpoints, /static and /, which either serve a single
static file or generate output to the http.ResponseWriter.

Chapter 2

[15]

We can have any number of routers sitting side by side. However, consider a
scenario where we have a basic website with about, contact, and staff pages,
with each residing in /var/www/about/index.html, /var/www/contact.html,
and /var/www/staff/home.html. While it's an intentionally obtuse example,
it demonstrates the limitations of Go's built-in and unmodified routing system.
We cannot route all requests to the same directory locally, we need something
that provides more malleable URLs.

Using more complex routing with Gorilla
In the previous session, we looked at basic routing but that can only take us so
far, we have to explicitly define our endpoints and then assign them to handlers.
What happens if we have a wildcard or a variable in our URL? This is an absolutely
essential part of the Web and any serious web server.

To invoke a very simple example, consider hosting a blog with unique identifiers for
each blog entry. This could be a numeric ID representing a database ID entry or a
text-based globally unique identifier, such as my-first-block-entry.

In the preceding example, we want to route a URL like /pages/1 to
a filename called 1.html. Alternately, in a database-based scenario,
we'd want to use /pages/1 or /pages/hello-world to map to a
database entry with a GUID of 1 or hello-world, respectively. To do
this we either need to include an exhaustive list of possible endpoints,
which is extremely wasteful, or implement wildcards, ideally through
regular expressions.

In either case, we'd like to be able to utilize the value from the URL directly
within our application. This is simple with URL parameters from GET or POST.
We can extract those simply, but they aren't particularly elegant in terms of
clean, hierarchical or descriptive URLs that are often necessary for search engine
optimization purposes.

The built-in net/http routing system is, perhaps by design, relatively simple. To get
anything more complicated out of the values in any given request, we either need to
extend the routing capabilities or use a package that has done this.

In the few years that Go has been publicly available and the community has been
growing, a number of web frameworks have popped up. We'll talk about these in a
little more depth as we continue the book, but one in particular is well-received and
very useful: the Gorilla web toolkit.

Serving and Routing

[16]

As the name implies, Gorilla is less of a framework and more of a set of very useful
tools that are generally bundled in frameworks. Specifically, Gorilla contains:

• gorilla/context: This is a package for creating a globally-accessible
variable from the request. It's useful for sharing a value from the URL
without repeating the code to access it across your application.

• gorilla/rpc: This implements RPC-JSON, which is a system for remote
code services and communication without implementing specific protocols.
This relies on the JSON format to define the intentions of any request.

• gorilla/schema: This is a package that allows simple packing of form
variables into a struct, which is an otherwise cumbersome process.

• gorilla/securecookie: This, unsurprisingly, implements authenticated
and encrypted cookies for your application.

• gorilla/sessions: Similar to cookies, this provides unique, long-term, and
repeatable data stores by utilizing a file-based and/or cookie-based session
system.

• gorilla/mux: This is intended to create flexible routes that allow regular
expressions to dictate available variables for routers.

• The last package is the one we're most interested in here, and it comes with
a related package called gorilla/reverse, which essentially allows you
to reverse the process of creating regular expression-based muxes. We will
cover that topic in detail in the later section.

You can grab individual Gorilla packages by their GitHub
location with a go get. For example, to get the mux package,
going to github.com/gorilla/mux will suffice and bring
the package into your GOPATH. For the locations of the other
packages (they're fairly self-explanatory), visit http://www.
gorillatoolkit.org/

Let's dive-in and take a look at how to create a route that's flexible and uses a regular
expression to pass a parameter to our handler:

package main

import (
 "github.com/gorilla/mux"
 "net/http"
)

const (
 PORT = ":8080"
)

github.com/gorilla/mux
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/

Chapter 2

[17]

This should look familiar to our last code with the exception of the Gorilla package
import:

func pageHandler(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 pageID := vars["id"]
 fileName := "files/" + pageID + ".html"
 http.ServeFile(w,r,fileName)
}

Here, we've created a route handler to accept the response. The thing to be noted
here is the use of mux.Vars, which is a method that will look for query string
variables from the http.Request and parse them into a map. The values will then
be accessible by referencing the result by key, in this case id, which we'll cover in the
next section.

func main() {
 rtr := mux.NewRouter()
 rtr.HandleFunc("/pages/{id:[0-9]+}",pageHandler)
 http.Handle("/",rtr)
 http.ListenAndServe(PORT,nil)
}

Here, we can see a (very basic) regular expression in the handler. We're assigning
any number of digits after /pages/ to a parameter named id in {id:[0-9]+}; this is
the value we pluck out in pageHandler.

A simpler version that shows how this can be used to delineate separate pages can be
seen by adding a couple of dummy endpoints:

func main() {
 rtr := mux.NewRouter()
 rtr.HandleFunc("/pages/{id:[0-9]+}", pageHandler)
 rtr.HandleFunc("/homepage", pageHandler)
 rtr.HandleFunc("/contact", pageHandler)
 http.Handle("/", rtr)
 http.ListenAndServe(PORT, nil)
}

When we visit a URL that matches this pattern, our pageHandler attempts to find
the page in the files/ subdirectory and returns that file directly.

Serving and Routing

[18]

A response to /pages/1 would look like this:

At this point, you might already be asking, but what if we don't have the requested
page? Or, what happens if we've moved that location? This brings us to two
important mechanisms in web serving—returning error responses and, as part of
that, potentially redirecting requests that have moved or have other interesting
properties that need to be reported back to the end users.

Redirecting requests
Before we look at simple and incredibly common errors like 404s, let's address the
idea of redirecting requests, something that's very common. Although not always for
reasons that are evident or tangible for the average user.

So we might we want to redirect requests to another request? Well there are quite a
few reasons, as defined by the HTTP specification that could lead us to implement
automatic redirects on any given request. Here are a few of them with their
corresponding HTTP status codes:

• A non-canonical address may need to be redirected to the canonical one
for SEO purposes or for changes in site architecture. This is handled by 301
Moved Permanently or 302 Found.

• Redirecting after a successful or unsuccessful POST. This helps us to prevent
re-POSTing of the same form data accidentally. Typically, this is defined by
307 Temporary Redirect.

• The page is not necessarily missing, but it now lives in another location.
This is handled by the status code 301 Moved Permanently.

Chapter 2

[19]

Executing any one of these is incredibly simple in basic Go with net/http, but as
you might expect, it is facilitated and improved with more robust frameworks,
such as Gorilla.

Serving basic errors
At this point, it makes some sense to talk a bit about errors. In all likelihood, you
may have already encountered one as you played with our basic flat file serving
server, particularly if you went beyond two or three pages.

Our example code includes four example HTML files for flat serving, numbered
1.html, 2.html, and so on. What happens when you hit the /pages/5 endpoint,
though? Luckily, the http package will automatically handle the file not found
errors, just like most common web servers.

Also, similar to most common web servers, the error page itself is small, bland, and
nondescript. In the following section, you can see the 404 page not found status
response we get from Go:

As mentioned, it's a very basic and nondescript page. Often, that's a good thing—
error pages that contain more information or flair than necessary can have a negative
impact.

Consider this error—the 404—as an example. If we include references to images
and stylesheets that exist on the same server, what happens if those assets are
also missing?

In short, you can very quickly end up with recursive errors—each 404 page calls an
image and stylesheet that triggers 404 responses and the cycle repeats. Even if the
web server is smart enough to stop this, and many are, it will produce a nightmare
scenario in the logs, rendering them so full of noise that they become useless.

Serving and Routing

[20]

Let's look at some code that we can use to implement a catch-all 404 page for any
missing files in our /files directory:

package main

import (
 "github.com/gorilla/mux"
 "net/http"
 "os"
)

const (
 PORT = ":8080"
)

func pageHandler(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 pageID := vars["id"]
 fileName := "files/" + pageID + ".html"_,
 err := os.Stat(fileName)
 if err != nil {
 fileName = "files/404.html"
 }

 http.ServeFile(w,r,fileName)
}

Here, you can see that we first attempt to check the file with os.Stat (and its
potential error) and output our own 404 response:

func main() {
 rtr := mux.NewRouter()
 rtr.HandleFunc("/pages/{id:[0-9]+}",pageHandler)
 http.Handle("/",rtr)
 http.ListenAndServe(PORT,nil)
}

Now if we take a look at the 404.html page, we will see that we've created a custom
HTML file that produces something that is a little more user-friendly than the default
Go Page Not Found message that we were invoking previously.

Chapter 2

[21]

Let's take a look at what this looks like, but remember that it can look any way
you'd like:

<!DOCTYPE html>
<html>
<head>
<title>Page not found!</title>
<style type="text/css">
body {
 font-family: Helvetica, Arial;
 background-color: #cceeff;
 color: #333;
 text-align: center;
}
</style>
<link rel="stylesheet" type="text/css" media="screen"
href="http://code.ionicframework.com/ionicons/2.0.1/css/ion
icons.min.css"></link>
</head>

<body>
<h1><i class="ion-android-warning"></i> 404, Page not found!</h1>
<div>Look, we feel terrible about this, but at least we're offer
ing a non-basic 404 page</div>
</body>

</html>

Also, note that while we keep the 404.html file in the same directory as the rest of
our files, this is solely for the purposes of simplicity.

In reality, and in most production environments with custom error pages, we'd
much rather have it exist in its own directory, which is ideally outside the publicly
available part of our web site. After all, you can now access the error page in a way
that is not actually an error by visiting http://localhost:8080/pages/404. This
returns the error message, but the reality is that in this case the file was found, and
we're simply returning it.

Serving and Routing

[22]

Let's take a look at our new, prettier 404 page by accessing http://localhost/
pages/5, which specifies a static file that does not exist in our filesystem:

By showing a more user-friendly error message, we can provide more useful actions
for users who encounter them. Consider some of the other common errors that might
benefit from more expressive error pages.

Summary
We can now produce not only the basic routes from the net/http package but more
complicated ones using the Gorilla toolkit. By utilizing Gorilla, we can now create
regular expressions and implement pattern-based routing and allow much more
flexibility to our routing patterns.

With this increased flexibility, we also have to be mindful of errors now, so we've
looked at handling error-based redirects and messages, including a custom 404,

Page not found message to produce more customized error messages.

Now that we have the basics down for creating endpoints, routes, and handlers;
we need to start doing some non-trivial data serving.

In Chapter 3, Connecting to Data, we'll start getting dynamic information from
databases, so we can manage data in a smarter and more reliable fashion.
By connecting to a couple of different, commonly-used databases, we'll be
able to build robust, dynamic, and scalable web applications.

[23]

Connecting to Data
In the previous chapter, we explored how to take URLs and translate them to
different pages in our web application. In doing so, we built URLs that were dynamic
and resulted in dynamic responses from our (very simple) net/http handlers.

By implementing an extended mux router from the Gorilla toolkit, we expanded the
capabilities of the built-in router by allowing regular expressions, which gives our
application a lot more flexibility.

This is something that's endemic to some of the most popular web servers. For
example, both Apache and Nginx provide methods to utilize regular expressions in
routes and staying at par with common solutions should be our minimal baseline for
functionality.

But this is just an admittedly important stepping stone to build a robust web
application with a lot of varied functionality. To go any further, we need to look at
bringing in data.

Our examples in the previous chapter relied on hardcoded content grabbed from
static files—this is obviously archaic and doesn't scale. Anyone who has worked
in the pre-CGI early days of the Web could regale you with tales of site updates
requiring total retooling of static files or explain the anachronism that was Server-
Side Includes.

But luckily, the Web became largely dynamic in the late 1990s and databases began to
rule the world. While APIs, microservices and NoSQL have in some places replaced
that architecture, it still remains the bread and butter of the way the Web works today.

So without further ado, let's get some dynamic data.

In this chapter, we will cover the following topics:

• Connecting to a database

Connecting to Data

[24]

• Using GUID for prettier URLs

• Handling 404s

Connecting to a database
When it comes to accessing databases, Go's SQL interface provides a very simple
and reliable way to connect to various database servers that have drivers.

At this point, most of the big names are covered—MySQL, Postgres, SQLite, MSSQL,
and quite a few more have well-maintained drivers that utilize the database/sql
interface provided by Go.

The best thing about the way Go handles this through a standardized SQL
interface is that you won't have to learn custom Go libraries to interact with your
database. This doesn't preclude needing to know the nuances of the database's SQL
implementation or other functionality, but it does eliminate one potential area of
confusion.

Before you go too much farther, you'll want to make sure that you have a library
and a driver for your database of choice installed via go get command.

The Go project maintains a Wiki of all of the current SQLDrivers and is a good
starting reference point when looking for an adapter at https://github.com/
golang/go/wiki/SQLDrivers

Note: We're using MySQL and Postgres for various examples in this
book, but use the solution that works best for you. Installing MySQL
and Postgres is fairly basic on any Nix, Windows, or OS X machine.

MySQL can be downloaded from https://www.mysql.com/ and although there are
a few drivers listed by Google, we recommend the Go-MySQL-Driver. Though you
won't go wrong with the recommended alternatives from the Go project, the Go-
MySQL-Driver is very clean and well-tested. You can get it at https://github.com/
go-sql-driver/mysql/

For Postgres, grab a binary or package manager command from http://www.
postgresql.org/. The Postgres driver of choice here is pq, which can be installed
via go get at github.com/lib/pq

Creating a MySQL database
You can choose to design any application you wish, but for these examples we'll
look at a very simple blog concept.

https://www.mysql.com/
http://www.postgresql.org/
http://www.postgresql.org/

Chapter 3

[25]

Our goal here is to have as few blog entries in our database as possible, to be able to
call those directly from our database by GUID and display an error if the particular
requested blog entry does not exist.

To do this, we'll create a MySQL database that contains our pages. These will have
an internal, automatically incrementing numeric ID, a textual globally unique
identifier, or GUID, and some metadata around the blog entry itself.

To start simply, we'll create a title page_title, body text page_content and a Unix
timestamp page_date. You can feel free to use one of MySQL's built-in date fields;
using an integer field to store a timestamp is just a matter of preference and can
allow for some more elaborate comparisons in your queries.

The following is the SQL in your MySQL console (or GUI application) to create the
database cms and the requisite table pages:

CREATE TABLE `pages` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `page_guid` varchar(256) NOT NULL DEFAULT '',
 `page_title` varchar(256) DEFAULT NULL,
 `page_content` mediumtext,
 `page_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON
UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 UNIQUE KEY `page_guid` (`page_guid`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=latin1;

As mentioned, you can execute this query through any number of
interfaces. To connect to MySQL, select your database and try these
queries, you can follow the command line documentation at http://
dev.mysql.com/doc/refman/5.7/en/connecting.html.

Note the UNIQUE KEY on page_guid. This is pretty important, as if we happen to
allow duplicate GUIDs, well, we have a problem. The idea of a globally unique key is
that it cannot exist elsewhere, and since we'll rely on it for URL resolution, we want
to make sure that there's only one entry per GUID.

As you can probably tell, this is a very basic content type of blog database. We have
an auto-incrementing ID value, a title, a date and the page's content, and not a whole
lot else going on.

While it's not a lot, it's enough to demonstrate dynamic pages in Go utilizing a
database interface.

http://dev.mysql.com/doc/refman/5.7/en/connecting.html
http://dev.mysql.com/doc/refman/5.7/en/connecting.html

Connecting to Data

[26]

Just to make sure there's some data in the pages table, add the following query to fill
this in a bit:

INSERT INTO `pages` (`id`, `page_guid`, `page_title`,
`page_content`, `page_date`) VALUES (NULL, 'hello-world', 'Hello,
World', 'I\'m so glad you found this page! It\'s been sitting
patiently on the Internet for some time, just waiting for a
visitor.', CURRENT_TIMESTAMP);

This will give us something to start with.

Now that we have our structure and some dummy data, let's take a look at how we
can connect to MySQL, retrieve the data, and serve it dynamically based on URL
requests and Gorilla's mux patterns.

To get started, let's create a shell of what we'll need to connect:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/go-sql-driver/mysql"
 "log"
)

We're importing the MySQL driver package for what's known as side effects.
By this, it's generally meant that the package is complementary to another and
provides various interfaces that do not need to be referenced specifically.

You can note this through the underscore _ syntax that precedes the packages
import. You're likely already familiar with this as a quick-and-dirty way to
ignore the instantiation of a returned value from a method. For example x,
_ := something()allows you to ignore the second returned value.

It's also often used when a developer plans to use a library, but hasn't yet. By
prepending the package this way, it allows the import declaration to stay without
causing a compiler error. While this is frowned upon, the use of the underscore—or
blank identifier—in the preceding method, for side effects, is fairly common and
often acceptable.

As always, though, this all depends on how and why you're using the identifier:

const (
 DBHost = "127.0.0.1"
 DBPort = ":3306"
 DBUser = "root"

Chapter 3

[27]

 DBPass = "password!"
 DBDbase = "cms"
)

Make sure to replace these values with whatever happens to be relevant to your
installation, of course:

var database *sql.DB

By keeping our database connection reference as a global variable, we can avoid a
lot of duplicate code. For the sake of clarity, we'll define it fairly high up in the code.
There's nothing preventing you from making this a constant instead, but we've left it
mutable for any necessary future flexibility, such as adding multiple databases to a
single application:

type Page struct {
 Title string
 Content string
 Date string
}

This struct, of course, matches our database schema rather closely, with Title,
Content and Date representing the non-ID values in our table. As we'll see a bit later
in this chapter (and more in the next), describing our data in a nicely-designed struct
helps parlay the templating functions of Go. And on that note, make sure your struct
fields are exportable or public by keeping them propercased. Any lowercased fields
will not be exportable and therefore not available to templates. We will talk more on
that later:

func main() {
 dbConn := fmt.Sprintf("%s:%s@tcp(%s)/%s", DBUser, DBPass,
DBHost, DBDbase)
 db, err := sql.Open("mysql", dbConn)
 if err != nil {
 log.Println("Couldn't connect!")
 log.Println(err.Error)
 }
 database = db
}

As we mentioned earlier, this is largely scaffolding. All we want to do here is ensure
that we're able to connect to our database. If you get an error, check your connection
and the log entry output after Couldn't connect.

If, hopefully, you were able to connect with this script, we can move on to creating a
generic route and outputting the relevant data from that particular request's GUID
from our database.

Connecting to Data

[28]

To do this we need to reimplement Gorilla, create a single route, and then implement
a handler that generates some very simple output that matches what we have in the
database.

Let's take a look at the modifications and additions we'll need to make to allow this
to happen:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/go-sql-driver/mysql"
 "github.com/gorilla/mux"
 "log"
 "net/http"
)

The big change here is that we're bringing Gorilla and net/http back into the
project. We'll obviously need these to serve pages:

const (
 DBHost = "127.0.0.1"
 DBPort = ":3306"
 DBUser = "root"
 DBPass = "password!"
 DBDbase = "cms"
 PORT = ":8080"
)

We've added a PORT constant, which refers to our HTTP server port.

Note that if your host is localhost/127.0.0.1, it's not necessary to specify a
DBPort, but we've kept this line in the constants section. We don't use the host
here in our MySQL connection:

var database *sql.DB

type Page struct {
 Title string
 Content string
 Date string
}

func ServePage(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)

Chapter 3

[29]

 pageID := vars["id"]
 thisPage := Page{}
 fmt.Println(pageID)
 err := database.QueryRow("SELECT page_title,page_content,page_date
FROM pages WHERE id=?",
pageID).Scan(&thisPage.Title, &thisPage.Content, &thisPage.Date)
 if err != nil {

 log.Println("Couldn't get page: +pageID")
 log.Println(err.Error)
 }
 html := `<html><head><title>` + thisPage.Title +
`</title></head><body><h1>` + thisPage.Title + `</h1><div>` +
thisPage.Content + `</div></body></html>`
 fmt.Fprintln(w, html)
}

ServePage is the function that takes an id from mux.Vars and queries our database
for the blog entry ID. There's some nuance in the way we make a query that is worth
noting; the simplest way to eliminate SQL injection vulnerabilities is to use prepared
statements, such as Query, QueryRow, or Prepare. Utilizing any of these and
including a variadic of variables to be injected into the prepared statement removes
the inherent risk of constructing a query by hand.

The Scan method then takes the results of a query and translates them to a struct;
you'll want to make sure the struct matches the order and number of requested fields
in the query. In this case, we're mapping page_title, page_content and page_date
to a Page struct's Title, Content and Date:

func main() {
 dbConn := fmt.Sprintf("%s:%s@/%s", DBUser, DBPass, DBDbase)
 fmt.Println(dbConn)
 db, err := sql.Open("mysql", dbConn)
 if err != nil {
 log.Println("Couldn't connect to"+DBDbase)
 log.Println(err.Error)
 }
 database = db

 routes := mux.NewRouter()
 routes.HandleFunc("/page/{id:[0-9]+}", ServePage)
 http.Handle("/", routes)
 http.ListenAndServe(PORT, nil)

}

Connecting to Data

[30]

Note our regular expression here: it's just numeric, with one or more digits
comprising what will be the id variable accessible from our handler.

Remember that we talked about using the built-in GUID? We'll get to that in a
moment, but for now let's look at the output of localhost:8080/page/1:

In the preceding example, we can see the blog entry that we had in our database.
This is good, but obviously lacking in quite a few ways.

Using GUID for prettier URLs
Earlier in this chapter we talked about using the GUID to act as the URL identifier
for all requests. Instead, we started by yielding to the numeric, thus automatically
incrementing column in the table. That was for the sake of simplicity, but switching
this to the alphanumeric GUID is trivial.

All we'll need to do is to switch our regular expression and change our resulting
SQL query in our ServePage handler.

If we only change our regular expression, our last URL's page will still work:

routes.HandleFunc("/page/{id:[0-9a-zA\\-]+}", ServePage)

The page will of course still pass through to our handler. To remove any ambiguity,
let's assign a guid variable to the route:

routes.HandleFunc("/page/{guid:[0-9a-zA\\-]+}", ServePage)

After that, we change our resulting call and SQL:

func ServePage(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 pageGUID := vars["guid"]
 thisPage := Page{}
 fmt.Println(pageGUID)
 err := database.QueryRow("SELECT page_title,page_content,page_date
FROM pages WHERE page_guid=?",
pageGUID).Scan(&thisPage.Title, &thisPage.Content, &thisPage.Date)

Chapter 3

[31]

After doing this, accessing our page by the /pages/hello-world URL will result
in the same page content we got by accessing it through /pages/1. The only real
advantage is cosmetic, it creates a prettier URL that is more human-readable and
potentially more useful for search engines:

Handling 404s
A very obvious problem with our preceding code is that it does not handle a scenario
wherein an invalid ID (or GUID) is requested.

As it is, a request to, say, /page/999 will just result in a blank page for the user and in
the background a Couldn't get page! message, as shown in the following screenshot:

Resolving this is pretty simple by passing proper errors. Now, in the previous chapter
we explored custom 404 pages and you can certainly implement one of those here,
but the easiest way is to just return an HTTP status code when a post cannot be found
and allow the browser to handle the presentation.

In our preceding code, we have an error handler that doesn't do much except return
the issue to our log file. Let's make that more specific:

 err := database.QueryRow("SELECT
page_title,page_content,page_date FROM pages WHERE page_guid=?",
pageGUID).Scan(&thisPage.Title, &thisPage.Content, &thisPage.Date)
 if err != nil {
 http.Error(w, http.StatusText(404), http.StatusNotFound)
 log.Println("Couldn't get page!")
 }

Connecting to Data

[32]

You will see the output in the following screenshot. Again, it would be trivial to
replace this with a custom 404 page, but for now we want to make sure we're
addressing the invalid requests by validating them against our database:

Providing good error messages helps improve usability for both developers and
other users. In addition, it can be beneficial for SEO, so it makes sense to use HTTP
status codes as defined in HTTP standards.

Summary
In this chapter, we've taken the leap from simply showing content to showing
content that's maintained in a sustainable and maintainable way using a database.
While this allows us to display dynamic data easily, it's just a core step toward
a fully-functional application.

We've looked at creating a database and then retrieving the data from it to inject into
route while keeping our query parameters sanitized to prevent SQL injections.

We also accounted for potential bad requests with invalid GUIDs, by returning 404
Not Found statuses for any requested GUID that does not exist in our database.
We also looked at requesting data by ID as well as the alphanumeric GUID.

This is just the start of our application, though.

In Chapter 4, Using Templates, we'll take the data that we've grabbed from MySQL
(and Postgres) and apply some of Go's template language to them to give us more
frontend flexibility.

By the end of that chapter, we will have an application that allows for creation
and deletion of pages directly from our application.

[33]

Using Templates
In Chapter 2, Serving and Routing, we explored how to take URLs and translate them to
different pages in our web application. In doing so, we built URLs that were dynamic
and resulted in dynamic responses from our (very simple) net/http handlers.

We've presented our data as real HTML, but we specifically hard-coded our HTML
directly into our Go source. This is not ideal for production-level environments for
a number of reasons.

Luckily, Go comes equipped with a robust but sometimes tricky template engine for
both text templates, as well as HTML templates.

Unlike a lot of other template languages that eschew logic as a part of the presentation
side, Go's template packages enable you to utilize some logic constructs, such as loops,
variables, and function declarations in a template. This allows you to offset some of
your logic to the template, which means that it's possible to write your application,
but you need to allow the template side to provide some extensibility to your product
without rewriting the source.

We say some logic constructs because Go templates are sold as logic-less. We will
discuss more on this topic later.

In this chapter, we'll explore ways to not only present your data but also explore
some of the more advanced possibilities in this chapter. By the end, we will be able to
parlay our templates into advancing the separation of presentation and source code.

We will cover the following topics:

• Introducing templates, context, and visibility

• HTML templates and text templates

• Displaying variables and security

• Using logic and control structures

Using Templates

[34]

Introducing templates, context,
and visibility
It's worth noting very early that while we're talking about taking our HTML part out
of the source code, it's possible to use templates inside our Go application. Indeed,
there's nothing wrong with declaring a template as shown:

tpl, err := template.New("mine").Parse(`<h1>{{.Title}}</h1>`)

If we do this, however, we'll need to restart our application every time the template
needs to change. This doesn't have to be the case if we use file-based templates; instead
we can make changes to the presentation (and some logic) without restarting.

The first thing we need to do to move from in-application HTML strings to file-based
templates is create a template file. Let's briefly look at an example template that
somewhat approximates to what we'll end up with later in this chapter:

<!DOCTYPE html>
<html>
<head>
<title>{{.Title}}</title>
</head>
<body>
 <h1>{{.Title}}</h1>

 <div>{{.Date}}</div>

 {{.Content}}
</body>
</html>

Very straightforward, right? Variables are clearly expressed by a name within
double curly brackets. So what's with all of the periods/dots? Not unlike a few
other similarly-styled templating systems (Mustache, Angular, and so on), the dot
signifies scope or context.

The easiest way to demonstrate this is in areas where the variables might otherwise
overlap. Imagine that we have a page with a title of Blog Entries and we then list all
of our published blog articles. We have a page title but we also have individual entry
titles. Our template might look something similar to this:

{{.Title}}
{{range .Blogs}}
 {{.Title}}
{{end}}

Chapter 4

[35]

The dot here specifies the specific scope of, in this case, a loop through the range
template operator syntax. This allows the template parser to correctly utilize
{{.Title}} as a blog's title versus the page's title.

This is all noteworthy because the very first templates we'll be creating will utilize
general scope variables, which are prefixed with the dot notation.

HTML templates and text templates
In our first example of displaying the values from our blog from our database to the
Web, we produced a hardcoded string of HTML and injected our values directly.

Following are the two lines that we used in Chapter 3, Connecting to Data:

 html := `<html><head><title>` + thisPage.Title +
`</title></head><body><h1>` + thisPage.Title + `</h1><div>` +
thisPage.Content + `</div></body></html>
 fmt.Fprintln(w, html)

It shouldn't be hard to realize why this isn't a sustainable system for outputting
our content to the Web. The best way to do this is to translate this into a template,
so we can separate our presentation from our application.

To do this as succinctly as possible, let's modify the method that called the preceding
code, ServePage, to utilize a template instead of hardcoded HTML.

So we'll remove the HTML we placed earlier and instead reference a file that will
encapsulate what we want to display. From your root directory, create a templates
subdirectory and blog.html within it.

The following is the very basic HTML we included, feel free to add some flair:

<html>
<head>
<title>{{.Title}}</title>
</head>
<body>
 <h1>{{.Title}}</h1>
 <p>
 {{.Content}}
 </p>
 <div>{{.Date}}</div>
</body>
</html>

Using Templates

[36]

Back in our application, inside the ServePage handler, we'll change our output code
slightly to leave an explicit string and instead parse and execute the HTML template
we just created:

func ServePage(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 pageGUID := vars["guid"]
 thisPage := Page{}
 fmt.Println(pageGUID)
 err := database.QueryRow("SELECT
page_title,page_content,page_date FROM pages WHERE page_guid=?",
pageGUID).Scan(&thisPage.Title, &thisPage.Content, &thisPage.Date)
 if err != nil {
 http.Error(w, http.StatusText(404), http.StatusNotFound)
 log.Println("Couldn't get page!")
 return
 }
 // html := <html>...</html>

 t, _ := template.ParseFiles("templates/blog.html")
 t.Execute(w, thisPage)
}

If, somehow, you failed to create the file or it is otherwise not accessible, the
application will panic when it attempts to execute. You can also get panicked
if you're referencing struct values that don't exist—we'll need to handle errors
a bit better.

Note: Don't forget to include html/template in your imports.

The benefits of moving away from a static string should be evident, but we now have
the foundation for a much more extensible presentation layer.

Chapter 4

[37]

If we visit http://localhost:9500/page/hello-world we'll see something similar
to this:

Displaying variables and security
To demonstrate this, let's create a new blog entry by adding this SQL command to
your MySQL command line:

INSERT INTO `pages` (`id`, `page_guid`, `page_title`,
page_content`, `page_date`)

VALUES:

 (2, 'a-new-blog', 'A New Blog', 'I hope you enjoyed the last
blog! Well brace yourself, because my latest blog is even
<i>better</i> than the last!', '2015-04-29 02:16:19');

Another thrilling piece of content, for sure. Note, however that we have some
embedded HTML in this when we attempt to italicize the word better.

Debates about how formatting should be stored notwithstanding, this allows
us to take a look at how Go's templates handle this by default. If we visit
http://localhost:9500/page/a-new-blog we'll see something similar to this:

Using Templates

[38]

As you can see, Go automatically sanitizes our data for output. There are a lot of
very, very wise reasons to do this, which is why it's the default behavior. The biggest
one, of course, is to avoid XSS and code-injection attack vectors from untrusted
sources of input, such as the general users of the site and so on.

But ostensibly we are creating this content and should be considered trusted.
So in order to validate this as trusted HTML, we need to change the type of
template.HTML:

type Page struct {
 Title string
 Content template.HTML
 Date string
}

If you attempt to simply scan the resulting SQL string value into a template.HTML
you'll find the following error:

sql: Scan error on column index 1: unsupported driver -> Scan
pair: []uint8 -> *template.HTML

The easiest way to work around this is to retain the string value in RawContent and
assign it back to Content:

type Page struct {
 Title string
 RawContent string
 Content template.HTML
 Date string
}
 err := database.QueryRow("SELECT
page_title,page_content,page_date FROM pages WHERE page_guid=?",
pageGUID).Scan(&thisPage.Title, &thisPage.RawContent,
&thisPage.Date)
 thisPage.Content = template.HTML(thisPage.RawContent)

Chapter 4

[39]

If we go run this again, we'll see our HTML as trusted:

Using logic and control structures
Earlier in this chapter we looked at how we can use a range in our templates just as
we would directly in our code. Take a look at the following code:

{{range .Blogs}}
 {{.Title}}
{{end}}

You may recall that we said that Go's templates are without any logic, but this
depends on how you define logic and whether shared logic lies exclusively in the
application, the template, or a little of both. It's a minor point, but because Go's
templates offer a lot of flexibility; it's the one worth thinking about.

Having a range feature in the preceding template, by itself, opens up a lot of
possibilities for a new presentation of our blog. We can now show a list of blogs
or break our blog up into paragraphs and allow each to exist as a separate entity.
This can be used to allow relationships between comments and paragraphs, which
have started to pop up as a feature in some publication systems in recent years.

But for now, let's use this opportunity to create a list of blogs in a new index page.
To do this, we'll need to add a route. Since we have /page we could go with /pages,
but since this will be an index, let's go with / and /home:

 routes := mux.NewRouter()
 routes.HandleFunc("/page/{guid:[0-9a-zA\\-]+}", ServePage)
 routes.HandleFunc("/", RedirIndex)
 routes.HandleFunc("/home", ServeIndex)
 http.Handle("/", routes)

Using Templates

[40]

We'll use RedirIndex to automatically redirect to our /home endpoint as a canonical
home page.

Serving a simple 301 or Permanently Moved redirect requires very little code in our
method, as shown:

func RedirIndex(w http.ResponseWriter, r *http.Request) {
 http.Redirect(w, r, "/home", 301)
}

This is enough to take any requests from / and bring the user to /home automatically.
Now, let's look at looping through our blogs on our index page in the ServeIndex
HTTP handler:

func ServeIndex(w http.ResponseWriter, r *http.Request) {
 var Pages = []Page{}
 pages, err := database.Query("SELECT page_title,page_content,page_
date FROM pages ORDER BY ? DESC",
"page_date")
 if err != nil {
 fmt.Fprintln(w, err.Error)
 }
 defer pages.Close()
 for pages.Next() {
 thisPage := Page{}
 pages.Scan(&thisPage.Title, &thisPage.RawContent,
&thisPage.Date)
 thisPage.Content = template.HTML(thisPage.RawContent)
 Pages = append(Pages, thisPage)
 }
 t, _ := template.ParseFiles("templates/index.html")
 t.Execute(w, Pages)
}

And here's templates/index.html:

<h1>Homepage</h1>

{{range .}}
 <div>{{.Title}}</div>
 <div>{{.Content}}</div>
 <div>{{.Date}}</div>
{{end}}

Chapter 4

[41]

We've highlighted an issue with our Page struct here—we have no way to get the
reference to the page's GUID. So, we need to modify our struct to include that as the
exportable Page.GUID variable:

type Page struct {
 Title string
 Content template.HTML
 RawContent string
 Date string
 GUID string
}

Now, we can link our listings on our index page to their respective blog entries
as shown:

 var Pages = []Page{}
 pages, err := database.Query("SELECT page_title,page_content,page_
date,page_guid FROM pages ORDER BY ?
DESC", "page_date")
 if err != nil {
 fmt.Fprintln(w, err.Error)
 }
 defer pages.Close()
 for pages.Next() {
 thisPage := Page{}
 pages.Scan(&thisPage.Title, &thisPage.Content, &thisPage.Date,
&thisPage.GUID)
 Pages = append(Pages, thisPage)
 }

Using Templates

[42]

And we can update our HTML part with the following code:

<h1>Homepage</h1>

{{range .}}
 <div>{{.Title}}</div>
 <div>{{.Content}}</div>
 <div>{{.Date}}</div>
{{end}}

But this is just the start of the power of the templates. What if we had a much longer
piece of content and wanted to truncate its description?

We can create a new field within our Page struct and truncate that. But that's a
little clunky; it requires the field to always exist within a struct, whether populated
with data or not. It's much more efficient to expose methods to the template itself.

So let's do that.

First, create yet another blog entry, this time with a larger content value. Choose
whatever you like or select the INSERT command as shown:

INSERT INTO `pages` (`id`, `page_guid`, `page_title`,
`page_content`, `page_date`)

VALUES:

 (3, 'lorem-ipsum', 'Lorem Ipsum', 'Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Maecenas sem tortor, lobortis in
posuere sit amet, ornare non eros. Pellentesque vel lorem sed nisl
dapibus fringilla. In pretium...', '2015-05-06 04:09:45');

Note: For the sake of brevity, we've truncated the full length of
our preceding Lorem Ipsum text.

Now, we need to represent our truncation as a method for the type Page. Let's create
that method to return a string that represents the shortened text.

The cool thing here is that we can essentially share a method between the application
and the template:

func (p Page) TruncatedText() string {
 chars := 0
 for i, _ := range p.Content {
 chars++
 if chars > 150 {
 return p.Content[:i] + ` ...`

Chapter 4

[43]

 }
 }
 return p.Content
}

This code will loop through the length of content and if the number of characters
exceeds 150, it will return the slice up to that number in the index. If it doesn't ever
exceed that number, TruncatedText will return the content as a whole.

Calling this in the template is simple, except that you might be expected to need a
traditional function syntax call, such as TruncatedText(). Instead, it's referenced
just as any variable within the scope:

<h1>Homepage</h1>

{{range .}}
 <div>{{.Title}}</div>
 <div>{{.TruncatedText}}</div>
 <div>{{.Date}}</div>
{{end}}

By calling .TruncatedText, we essentially process the value inline through that
method. The resulting page reflects our existing blogs and not the truncated ones
and our new blog entry with truncated text and ellipsis appended:

I'm sure you can imagine how being able to reference embedded methods directly in
your templates can open up a world of presentation possibilities.

Using Templates

[44]

Summary
We've just scratched the surface of what Go's templates can do and we'll explore
further topics as we continue, but this chapter has hopefully introduced the core
concepts necessary to start utilizing templates directly.

We've looked at simple variables, as well as implementing methods within the
application, within the templates themselves. We've also explored how to bypass
injection protection for trusted content.

In the next chapter, we'll integrate a backend API for accessing information in a
RESTful way to read and manipulate our underlying data. This will allow us to
do some more interesting and dynamic things on our templates with Ajax.

[45]

Frontend Integration
with RESTful APIs

In Chapter 2, Serving and Routing, we explored how to route URLs to the different
pages in our web application. In doing so, we built URLs that were dynamic and
resulted in dynamic responses from our (very simple) net/http handlers.

We've just scratched the surface of what Go's templates can do, and we'll also explore
further topics as we continue, but in this chapter we have tried to introduce the core
concepts that are necessary to start utilizing the templates directly.

We've looked at simple variables as well as the implementing methods within the
application using the templates themselves. We've also explored how to bypass
injection protection for trusted content.

The presentation side of web development is important, but it's also the least
engrained aspect. Almost any framework will present its own extension of built-in
Go templating and routing syntaxes. What really takes our application to the next
level is building and integrating an API for both general data access, as well as
allowing our presentation layer to be more dynamically driven.

In this chapter, we'll develop a backend API for accessing information in a RESTful
way and to read and manipulate our underlying data. This will allow us to do some
more interesting and dynamic things in our templates with Ajax.

In this chapter, we will cover the following topics:

• Setting up the basic API endpoint

• RESTful architecture and best practices

• Creating our first API endpoint

• Implementing security

Frontend Integration with RESTful APIs

[46]

• Creating data with POST
• Modifying data with PUT

Setting up the basic API endpoint
First, we'll set up a basic API endpoint for both pages and individual blog entries.

We'll create a Gorilla endpoint route for a GET request that will return information
about our pages and an additional one that accepts a GUID, which matches
alphanumeric characters and hyphens:

routes := mux.NewRouter()
routes.HandleFunc("/api/pages", APIPage).
 Methods("GET").
 Schemes("https")
routes.HandleFunc("/api/pages/{guid:[0-9a-zA\\-]+}", APIPage).
 Methods("GET").
 Schemes("https")
routes.HandleFunc("/page/{guid:[0-9a-zA\\-]+}", ServePage)
http.Handle("/", routes)
http.ListenAndServe(PORT, nil)

Note here that we're capturing the GUID again, this time for our /api/pages/*
endpoint, which will mirror the functionality of the web-side counterpart, returning
all meta data associated with a single page.

func APIPage(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
pageGUID := vars["guid"]
thisPage := Page{}
fmt.Println(pageGUID)
err := database.QueryRow("SELECT page_title,page_content,page_date
FROM pages WHERE page_guid=?", pageGUID).Scan(&thisPage.Title,
&thisPage.RawContent, &thisPage.Date)
thisPage.Content = template.HTML(thisPage.RawContent)
if err != nil {
 http.Error(w, http.StatusText(404), http.StatusNotFound)
 log.Println(err)
 return
}
APIOutput, err := json.Marshal(thisPage)
 fmt.Println(APIOutput)
if err != nil {
 http.Error(w, err.Error(), http.StatusInternalServerError)

Chapter 5

[47]

 return
}
w.Header().Set("Content-Type", "application/json")
fmt.Fprintln(w, thisPage)
}

The preceding code represents the simplest GET-based request, which returns a
single record from our /pages endpoint. Let's take a look at REST now, and see how
we'll structure and implement other verbs and data manipulations from the API.

RESTful architecture and best practices
In the world of web API design, there has been an array of iterative, and sometimes
competing, efforts to find a standard system and format to deliver information across
multiple environments.

In recent years, the web development community at large seems to have—at least
temporarily—settled on REST as the de facto approach. REST came after a few years
of SOAP dominance and introduced a simpler method for sharing data.

REST APIs aren't bound to a format and are typically cacheable and delivered via
HTTP or HTTPS.

The biggest takeaway to start with is an adherence to HTTP verbs; those initially
specified for the Web are honored in their original intent. For example, HTTP verbs,
such as DELETE and PATCH fell into years of disuse despite being very explicit about
their purpose. REST has been the primary impetus for the use of the right method for
the right purpose. Prior to REST, it was not uncommon to see GET and POST requests
being used interchangeably to do myriad things that were otherwise built into the
design of HTTP.

In REST, we follow a Create-Read-Update-Delete (CRUD)-like approach to retrieve
or modify data. POST is used majorly to create, PUT is used as an update (though it
can also be used to create), the familiar GET is used to read and DELETE is used to
delete, is well, just that.

Perhaps even more important is the fact that a RESTful API should be stateless.
By that we mean that each request should exist on its own, without the server
necessarily having any knowledge about prior or potential future requests. This
means that the idea of a session would technically violate this ethos, as we'd be
storing some sense of state on the server itself. Some people disagree; we'll look
at this in detail later on.

Frontend Integration with RESTful APIs

[48]

One final note is on API URL structure, because the method is baked into the request
itself as part of the header, we don't need to explicitly express that in our request.

In other words, we don't need something, such as /api/blogs/delete/1. Instead,
we can simply make our request with the DELETE method to api/blogs/1.

There is no rigid format of the URL structure and you may quickly discover that
some actions lack HTTP-specific verbs that make sense, but in short there are a few
things we should aim for:

• The resources are expressed cleanly in the URL

• We properly utilize HTTP verbs

• We return appropriate responses based on the type of request

Our goal in this chapter is to hit the preceding three points with our API.

If there is a fourth point, it would say that we maintain backwards compatibility with
our APIs. As you examine the URL structure here, you might wonder how versions
are handled. This tends to vary from organization to organization, but a good policy
is to keep the most recent URL canonical and deprecate to explicit version URLs.

For example, even though our comments will be accessible at /api/comments, the
older versions will be found at /api/v2.0/comments, where 2 obviously represents
our API, as it existed in version 2.0.

Despite being relatively simple and well-defined in nature, REST is
an oft-argued subject with enough ambiguity to start, most often for
the better, a lot of debate. Remember that REST is not a standard; for
example, the W3C has not and likely will not ever weigh in on what
REST is and isn't. If you haven't already, you'll begin to develop some
very strong opinions on what you feel is properly RESTful.

Creating our first API endpoint
Given that we want to access data from the client-side as well as from server to server,
we'll need to start making some of that accessible via an API.

The most reasonable thing for us to do is a simple read, since we don't yet have
methods to create data outside of direct SQL queries. We did that at the beginning
of the chapter with our APIPage method, routed through a /api/pages/{UUID}
endpoint.

Chapter 5

[49]

This is great for GET requests, where we're not manipulating data, but if we need
to create or modify data, we'll need to utilize other HTTP verbs and REST methods.
To do this effectively, it's time to investigate some authentication and security in
our API.

Implementing security
When you think about creating data with an API like the one we've just designed,
what's the first concern that comes to your mind? If it was security, then good for
you. Accessing data is not always without a security risk, but it's when we allow
for modification of data that we need to really start thinking about security.

In our case, read data is totally benign. If someone can access all of our blog entries
via a GET request, who cares? Well, we may have a blog on embargo or accidentally
exposed sensitive data on some resource.

Either way, security should always be a concern, even with a small personal project
like a blogging platform, similar to the one we're building.

There are two big ways of separating these concerns:

• Are the requests to our APIs secure and private?

• Are we controlling access to data?

Lets tackle Step 2 first. If we want to allow users to create or delete information,
we need to give them specific access to that.

There are a few ways to do this:

We can provide API tokens that will allow short-lived request windows, which can
be validated by a shared secret. This is the essence of Oauth; it relies on a shared
secret to validate cryptographically encoded requests. Without the shared secret,
the request and its token will never match, and an API request can then be rejected.

The cond method is a simple API key, which leads us back to point number 1 in the
preceding list.

If we allow cleartext API keys, then we might as well not have security at all. If our
requests can be sniffed off the wire without much effort, there's little point in even
requiring an API key.

Frontend Integration with RESTful APIs

[50]

So this means that no matter which method we choose, our servers should provide
an API over HTTPS. Luckily, Go provides a very easy way to utilize either HTTP or
HTTPS via Transport Layer Security (TLS); TLS is the successor of SSL. As a web
developer, you must already be familiar with SSL and also be aware of its history
of security issues, most recently its susceptibility to the POODLE vulnerability,
which was exposed in 2014.

To allow either method, we need to have a user registration model so that we
can have new users and they can have some sort of credentials to modify data.
To invoke a TLS server, we'll need a secure certificate. Since this is a small project
for experimentation, we won't worry too much about a real certificate with a high
level of trust. Instead, we'll just generate our own.

Creating a self-signed certificate varies by OS and is beyond the scope of this book,
so let's just look at the method for OS X.

A self-signed certificate doesn't have a lot of security value, obviously, but it
allows us to test things without needing to spend money or time verifying server
ownership. You'll obviously need to do those things for any certificate that you
expect to be taken seriously.

To create a quick set of certificates in OS X, go to your terminal and enter the
following three commands:

openssl genrsa -out key.pem

openssl req -new -key key.pem -out cert.pem

openssl req -x509 -days 365 -key key.pem -in cert.pem -out certifi
cate.pem

In this example, I generated the certificates using an OpenSSL on Ubuntu.

Note: OpenSSL comes preinstalled on OS X and most Linux
distributions. If you're on the latter, give the preceding commands
a shot before hunting for Linux-specific instructions. If you're on
Windows, particularly newer versions such as 8, you can do this in
a number of ways, but the most accessible way might be through
the MakeCert tool, provided by Microsoft through MSDN.

Read more about MakeCert at https://msdn.microsoft.com/
en-us/library/bfsktky3%28v=vs.110%29.aspx.

Once you have the certificate files, place them somewhere in your filesystem that is
not within your accessible application directory/directories.

Chapter 5

[51]

To switch from HTTP to TLS, we can use the references to these certificate files; beyond
that it's mostly the same in our code. Lets first add the certificates to our code.

Note: Once again, you can choose to maintain both HTTP
and TLS/HTTPS requests within the same server application,
but we'll be switching ours across the board.

Earlier, we started our server by listening through this line:

http.ListenAndServe(PORT, nil)

Now, we'll need to expand things a bit. First, let's load our certificate:

 certificates, err := tls.LoadX509KeyPair("cert.pem", "key.pem")
 tlsConf := tls.Config{Certificates:
[]tls.Certificate{certificates}}
 tls.Listen("tcp", PORT, &tlsConf)

Note: If you find that your server apparently runs without error
but does not stay running; there's probably a problem with your
certificate. Try running the preceding generation code again and
working with the new certificates.

Creating data with POST
Now that we have a security certificate in place, we can switch to TLS for our API
calls for both GET and other requests. Let's do that now. Note that you can retain
HTTP for the rest of our endpoints or switch them at this point as well.

Note: It's largely becoming a common practice to go the HTTPS-only
way and it's probably the best way to future-proof your app. This doesn't
solely apply to APIs or areas where explicit and sensitive information is
otherwise sent in cleartext, with privacy on the forefront; major providers
and services are stressing on the value of HTTPS everywhere.

Lets add a simple section for anonymous comments on our blog:

<div id="comments">
 <form action="/api/comments" method="POST">
 <input type="hidden" name="guid" value="{{Guid}}" />
 <div>
 <input type="text" name="name" placeholder="Your Name" />
 </div>

Frontend Integration with RESTful APIs

[52]

 <div>
 <input type="email" name="email" placeholder="Your Email" />
 </div>
 <div>
 <textarea name="comments" placeholder="Your Com-
ments"></textarea>
 </div>
 <div>
 <input type="submit" value="Add Comments" />
 </div>
 </form>
</div>

This will allow any user to add anonymous comments to our site on any of our blog
items, as shown in the following screenshot:

But what about all the security? For now, we just want to create an open comment
section, one that anyone can post to with their valid, well-stated thoughts as well as
their spammy prescription deals. We'll worry about locking that down shortly; for
now we just want to demonstrate a side-by-side API and frontend integration.

Chapter 5

[53]

We'll obviously need a comments table in our database, so make sure you create that
before implementing any of the API:

CREATE TABLE `comments` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`page_id` int(11) NOT NULL,
`comment_guid` varchar(256) DEFAULT NULL,
`comment_name` varchar(64) DEFAULT NULL,
`comment_email` varchar(128) DEFAULT NULL,
`comment_text` mediumtext,
`comment_date` timestamp NULL DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `page_id` (`page_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

With the table in place, let's take our form and POST it to our API endpoint. To create a
general purpose and a flexible JSON response, you can add a JSONResponse struct
that consists of essentially a hash-map, as shown:

type JSONResponse struct {
 Fields map[string]string
}

Then we'll need an API endpoint to create comments, so let's add that to our routes
under main():

func APICommentPost(w http.ResponseWriter, r *http.Request) {
 var commentAdded bool
 err := r.ParseForm()
 if err != nil {
 log.Println(err.Error)
 }
 name := r.FormValue("name")
 email := r.FormValue("email")
 comments := r.FormValue("comments")

 res, err := database.Exec("INSERT INTO comments SET com
ment_name=?, comment_email=?, comment_text=?", name, email, com
ments)

 if err != nil {
 log.Println(err.Error)
 }

Frontend Integration with RESTful APIs

[54]

 id, err := res.LastInsertId()
 if err != nil {
 commentAdded = false
 } else {
 commentAdded = true
 }
 commentAddedBool := strconv.FormatBool(commentAdded)
 var resp JSONResponse
 resp.Fields["id"] = string(id)
 resp.Fields["added"] = commentAddedBool
 jsonResp, _ := json.Marshal(resp)
 w.Header().Set("Content-Type", "application/json")
 fmt.Fprintln(w, jsonResp)
}

There are a couple of interesting things about the preceding code:

First, note that we're using commentAdded as a string and not a bool. We're doing
this largely because the json marshaller does not handle booleans elegantly and also
because casting directly to a string from a boolean is not possible. We also utilize
strconv and its FormatBool to handle this translation.

You might also note that for this example, we're POSTing the form directly to the
API endpoint. While an effective way to demonstrate that data makes it into the
database, utilizing it in practice might force some RESTful antipatterns, such as
enabling a redirect URL to return to the calling page.

A better way to approach this is through the client by utilizing an Ajax call through
a common library or through XMLHttpRequest natively.

Note: While internal functions/method names are largely a matter
of preference, we recommend keeping all methods distinct by
resource type and request method. The actual convention used
here is irrelevant, but as a matter of traversing the code, something
such as APICommentPost, APICommentGet, APICommentPut,
and APICommentDelete gives you a nice hierarchical way of
organizing the methods for better readability.

Chapter 5

[55]

Given the preceding client-side and server-side code, we can see how this will
appear to a user hitting our second blog entry:

As mentioned, actually adding your comments here will send the form directly to
the API endpoint, where it will silently succeed (hopefully).

Modifying data with PUT
Depending on whom you ask, PUT and POST can be used interchangeably for the
creation of records. Some people believe that both can be used for updating the
records and most believe that both can be used for the creation of records given
a set of variables. In lieu of getting into a somewhat confusing and often political
debate, we've separated the two as follows:

• Creation of new records: POST

• Updating existing records, idempotently: PUT

Given these guidelines, we'll utilize the PUT verb when we wish to make updates
to resources. We'll allow comments to be edited by anyone as nothing more than
a proof of concept to use the REST PUT verb.

Frontend Integration with RESTful APIs

[56]

In Chapter 6, Session and Cookies, we'll lock this down a bit more, but we also want
to be able to demonstrate the editing of content through a RESTful API; so this will
represent an incomplete stub for what will eventually be more secure and complete.

As with the creation of new comments, there is no security restriction in place here.
Anyone can create a comment and anyone can edit it. It's the wild west of blog
software, at least at this point.

First, we'll want to be able to see our submitted comments. To do so, we need
to make minor modifications to our Page struct and the creation of a Comment
struct to match our database structure:

type Comment struct {
 Id int
 Name string
 Email string
 CommentText string
}

type Page struct {
 Id int
 Title string
 RawContent string
 Content template.HTML
 Date string
 Comments []Comment
 Session Session
 GUID string
}

Since all the previously posted comments went into the database without any
real fanfare, there was no record of the actual comments on the blog post page.
To remedy that, we'll add a simple query of Comments and scan them using the
.Scan method into an array of Comment struct.

First, we'll add the query to ServePage:

func ServePage(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 pageGUID := vars["guid"]
 thisPage := Page{}
 fmt.Println(pageGUID)
 err := database.QueryRow("SELECT
id,page_title,page_content,page_date FROM pages WHERE
page_guid=?", pageGUID).Scan(&thisPage.Id, &thisPage.Title,
&thisPage.RawContent, &thisPage.Date)

Chapter 5

[57]

 thisPage.Content = template.HTML(thisPage.RawContent)
 if err != nil {
 http.Error(w, http.StatusText(404), http.StatusNotFound)
 log.Println(err)
 return
 }

 comments, err := database.Query("SELECT id, comment_name as Name,
comment_email, comment_text FROM comments WHERE page_id=?", this
Page.Id)
 if err != nil {
 log.Println(err)
 }
 for comments.Next() {
 var comment Comment
 comments.Scan(&comment.Id, &comment.Name, &comment.Email,
&comment.CommentText)
 thisPage.Comments = append(thisPage.Comments, comment)
 }

 t, _ := template.ParseFiles("templates/blog.html")
 t.Execute(w, thisPage)
}

Now that we have Comments packed into our Page struct, we can display the
Comments on the page itself:

Frontend Integration with RESTful APIs

[58]

Since we're allowing anyone to edit, we'll have to create a form for each item, which
will allow modifications. In general, HTML forms allow either GET or POST requests,
so our hand is forced to utilize XMLHttpRequest to send this request. For the sake of
brevity, we'll utilize jQuery and its ajax() method.

First, for our template's range for comments:

{{range .Comments}}
 <div class="comment">
 <div>Comment by {{.Name}} ({{.Email}})</div>
 {{.CommentText}}

 <div class="comment_edit">
 <h2>Edit</h2>
 <form onsubmit="return putComment(this);">
 <input type="hidden" class="edit_id" value="{{.Id}}" />
 <input type="text" name="name" class="edit_name" placehold
er="Your Name" value="{{.Name}}" />
 <input type="text" name="email" class="edit_email" placehold
er="Your Email" value="{{.Email}}" />
 <textarea class="edit_comments" name="comments">{{.
CommentText}}</textarea>
 <input type="submit" value="Edit" />
 </form>
 </div>
 </div>
{{end}}

And then for our JavaScript to process the form using PUT:

<script>
 function putComment(el) {
 var id = $(el).find('.edit_id');
 var name = $(el).find('.edit_name').val();
 var email = $(el).find('.edit_email').val();
 var text = $(el).find('.edit_comments').val();
 $.ajax({
 url: '/api/comments/' + id,
 type: 'PUT',
 succes: function(res) {
 alert('Comment Updated!');
 }
 });
 return false;
 }
</script>

Chapter 5

[59]

To handle this call with the PUT verb, we'll need an update route and function.
Lets add them now:

 routes.HandleFunc("/api/comments", APICommentPost).
 Methods("POST")
 routes.HandleFunc("/api/comments/{id:[\\w\\d\\-]+}", APICom
mentPut).
 Methods("PUT")

This enables a route, so now we just need to add the corresponding function,
which will look fairly similar to our POST/Create method:

func APICommentPut(w http.ResponseWriter, r *http.Request) {
 err := r.ParseForm()
 if err != nil {
 log.Println(err.Error)
 }
 vars := mux.Vars(r)
 id := vars["id"]
 fmt.Println(id)
 name := r.FormValue("name")
 email := r.FormValue("email")
 comments := r.FormValue("comments")
 res, err := database.Exec("UPDATE comments SET comment_name=?,
comment_email=?, comment_text=? WHERE comment_id=?", name, email,
comments, id)
 fmt.Println(res)
 if err != nil {
 log.Println(err.Error)
 }

 var resp JSONResponse

 jsonResp, _ := json.Marshal(resp)
 w.Header().Set("Content-Type", "application/json")
 fmt.Fprintln(w, jsonResp)
}

In short, this takes our form and transforms it into an update to the data based on the
comment's internal ID. As mentioned, it's not entirely different from our POST route
method, and just like that method it doesn't return any data.

Frontend Integration with RESTful APIs

[60]

Summary
In this chapter, we've gone from exclusively server-generated HTML presentations
to dynamic presentations that utilize an API. We've examined the basics of REST
and implemented a RESTful interface for our blogging application.

While this can use a lot more client-side polish, we have GET/POST/PUT requests
that are functional and allow us to create, retrieve, and update comments for our
blog posts.

In Chapter 6, Session and Cookies, we'll examine user authentication, sessions, and
cookies, and how we can take the building blocks we've laid in this chapter and apply
some very important security parameters to it. We had an open-ended creation and
updates of comments in this chapter; we'll restrict that to unique users in the next.

In doing all of this, we'll turn our proof-of-concept comment management into
something that can be used in production practically.

[61]

Sessions and Cookies
Our application is beginning to get a little more real now; in the previous chapter,
we added some APIs and client-side interfaces to them.

In our application's current state, we've added /api/comments, /api/comments/
[id], /api/pages, and /api/pages/[id], thus making it possible for us to get and
update our data in JSON format and making the application better suited for Ajax
and client-side access.

Though we can now add comments and edit them directly through our API, there
is absolutely no restriction on who can perform these actions. In this chapter, we'll
look at the ways to limit access to certain assets, establishing identities, and securely
authenticating when we have them.

By the end, we should be able to enable users to register and log in and utilize
sessions, cookies, and flash messages to keep user state in our application in
a secure way.

Setting cookies
The most common, fundamental, and simplest way to create persistent memory
across a user's session is by utilizing cookies.

Cookies provide a way to share state information across requests, URL endpoints,
and even domains, and they have been used (and abused) in every possible way.

Most often, they're used to keep a track of identity. When a user logs into a service,
successive requests can access some aspects of the previous request (without
duplicating a lookup or the login module) by utilizing the session information stored
in a cookie.

Sessions and Cookies

[62]

If you're familiar with cookies in any other language's implementation, the basic
struct will look familiar. Even so, the following relevant attributes are fairly
lockstep with the way a cookie is presented to the client:

type Cookie struct {
 Name string
 Value string
 Path string
 Domain string
 Expires time.Time
 RawExpires string
 MaxAge int
 Secure bool
 HttpOnly bool
 Raw string
 Unparsed []string
}

That's a lot of attributes for a very basic struct, so let's focus on the important ones.

The Name attribute is simply a key for the cookie. The Value attribute represents its
contents and Expires is a Time value for the moment when the cookie should be
flushed by a browser or another headless recipient. This is all you need in order to
set a valid cookie that lasts in Go.

Beyond the basics, you may find setting a Path, Domain, and HttpOnly useful, if you
want to lock down the accessibility of the cookie.

Capturing user information
When a user with a valid session and/or cookie attempts to access restricted data,
we need to get that from the user's browser.

A session itself is just that—a single session on the site. It doesn't naturally persist
indefinitely, so we need to leave a breadcrumb, but we also want to leave one that's
relatively secure.

For example, we would never want to leave critical user information in the cookie,
such as name, address, email, and so on.

However, any time we have some identifying information, we leave some vector
for misdeed—in this case we'll likely leave a session identifier that represents our
session ID. The vector in this case allows someone, who obtains this cookie, to log
in as one of our users and change information, find billing details, and so on.

Chapter 6

[63]

These types of physical attack vectors are well outside the scope of this (and most)
application and to a large degree, it's a concession that if someone loses access to
their physical machine, they can also have their account compromised.

What we want to do here is ensure that we're not transmitting personal or sensitive
information over clear text or without a secure connection. We'll cover setting up TLS
in Chapter 9, Security, so here we want to focus on limiting the amount of information
we store in our cookies.

Creating users
In the previous chapter, we allowed non-authorized requests to create new
comments by hitting our REST API via a POST. Anyone who's been on the Internet
for a while knows a few truisms, such as:

1. The comments section is often the most toxic part of any blog or news post

2. Step 1 is true, even when users have to authenticate in non-anonymous ways

Now, let's lock down the comments section to ensure that users have registered
themselves and are logged in.

We won't go deep into the authentication's security aspects now, as we'll be going
deeper with that in Chapter 9, Security.

First, let's add a users table in our database:

CREATE TABLE `users` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `user_name` varchar(32) NOT NULL DEFAULT '',
 `user_guid` varchar(256) NOT NULL DEFAULT '',
 `user_email` varchar(128) NOT NULL DEFAULT '',
 `user_password` varchar(128) NOT NULL DEFAULT '',
 `user_salt` varchar(128) NOT NULL DEFAULT '',
 `user_joined_timestamp` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

We could surely go a lot deeper with user information, but this is enough to get us
started. As mentioned, we won't go too deep into security, so we'll just generate a
hash for the password now and not worry about the salt.

Finally, to enable sessions and users in the app, we'll make some changes to our
structs:

type Page struct {
 Id int

Sessions and Cookies

[64]

 Title string
 RawContent string
 Content template.HTML
 Date string
 Comments []Comment
 Session Session
}

type User struct {
 Id int
 Name string
}

type Session struct {
 Id string
 Authenticated bool
 Unauthenticated bool
 User User
}

And here are the two stub handlers for registration and logging in. Again, we're not
putting our full effort into fleshing these out into something robust, we just want to
open the door a bit.

Enabling sessions
In addition to storing the users themselves, we'll also want some way of persistent
memory for accessing our cookie data. In other words, when a user's browser session
ends and they come back, we'll validate and reconcile their cookie value against
values in our database.

Use this SQL to create the sessions table:

CREATE TABLE `sessions` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `session_id` varchar(256) NOT NULL DEFAULT '',
 `user_id` int(11) DEFAULT NULL,
 `session_start` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON
UPDATE CURRENT_TIMESTAMP,
 `session_update` timestamp NOT NULL DEFAULT '0000-00-00
00:00:00',
 `session_active` tinyint(1) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `session_id` (`session_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Chapter 6

[65]

The most important values are the user_id, session_id, and the timestamps for
updating and starting. We can use the latter two to decide if a session is actually
valid after a certain period. This is a good security practice, just because a user has
a valid cookie doesn't necessarily mean that they should remain authenticated,
particularly if you're not using a secure connection.

Letting users register
To be able to allow users to create accounts themselves, we'll need a form for both
registering and logging in. Now, most systems similar to this do some multi-factor
authentication to allow a user backup system for retrieval as well as validation that
the user is real and unique. We'll get there, but for now let's keep it as simple
as possible.

We'll set up the following endpoints to allow a user to POST both the register and
login forms:

 routes.HandleFunc("/register", RegisterPOST).
 Methods("POST").
 Schemes("https")
 routes.HandleFunc("/login", LoginPOST).
 Methods("POST").
 Schemes("https")

Keep in mind that these are presently set to the HTTPS scheme. If you're not using
that, remove that part of the HandleFunc register.

Since we're only showing these following views to unauthenticated users, we
can put them on our blog.html template and wrap them in {{if .Session.
Unauthenticated}} … {{end}} template snippets. We defined .Unauthenticated
and .Authenticated in the application under the Session struct, as shown in the
following example:

{{if .Session.Unauthenticated}}<form action="/register"
method="POST">
 <div><input type="text" name="user_name" placeholder="User name"
/></div>
 <div><input type="email" name="user_email" placeholder="Your
email" /></div>
 <div><input type="password" name="user_password"
placeholder="Password" /></div>
 <div><input type="password" name="user_password2"
placeholder="Password (repeat)" /></div>
 <div><input type="submit" value="Register" /></div>
</form>{{end}}

Sessions and Cookies

[66]

And our /register endpoint:

func RegisterPOST(w http.ResponseWriter, r *http.Request) {
 err := r.ParseForm()
 if err != nil {
 log.Fatal(err.Error)
 }
 name := r.FormValue("user_name")
 email := r.FormValue("user_email")
 pass := r.FormValue("user_password")
 pageGUID := r.FormValue("referrer")
 // pass2 := r.FormValue("user_password2")
 gure := regexp.MustCompile("[^A-Za-z0-9]+")
 guid := gure.ReplaceAllString(name, "")
 password := weakPasswordHash(pass)

 res, err := database.Exec("INSERT INTO users SET user_name=?,
user_guid=?, user_email=?, user_password=?", name, guid, email,
password)
 fmt.Println(res)
 if err != nil {
 fmt.Fprintln(w, err.Error)
 } else {
 http.Redirect(w, r, "/page/"+pageGUID, 301)
 }
}

Note that this fails inelegantly for a number of reasons. If the passwords do not
match, we don't check and report to the user. If the user already exists, we don't tell
them the reason for a registration failure. We'll get to that, but now our main intent
is producing a session.

For reference, here's our weakPasswordHash function, which is only intended to
generate a hash for testing:

func weakPasswordHash(password string) []byte {
 hash := sha1.New()
 io.WriteString(hash, password)
 return hash.Sum(nil)
}

Letting users log in
A user may be already registered; in which case, we'll also want to provide a
login mechanism on the same page. This can obviously be subject to better design
considerations, but we just want to make them both available:

Chapter 6

[67]

<form action="/login" method="POST">
 <div><input type="text" name="user_name" placeholder="User name"
/></div>
 <div><input type="password" name="user_password"
placeholder="Password" /></div>
 <div><input type="submit" value="Log in" /></div>
</form>

And then we'll need receiving endpoints for each POSTed form. We're not going to
do a lot of validation here either, but we're not in a position to validate a session.

Initiating a server-side session
One of the most common ways of authenticating a user and saving their state on the
Web is through sessions. You may recall that we mentioned in the last chapter that
REST is stateless, the primary reason for that is because HTTP itself is stateless.

If you think about it, to establish a consistent state with HTTP, you need to include a
cookie or a URL parameter or something that is not built into the protocol itself.

Sessions are created with unique identifiers that are usually not entirely random but
unique enough to avoid conflicts for most logical and plausible scenarios. This is
not absolute, of course, and there are plenty of (historical) examples of session token
hijacking that are not related to sniffing.

Session support as a standalone process does not exist in Go core. Given that we
have a storage system on the server side, this is somewhat irrelevant. If we create a
safe process for generation of server keys, we can store them in secure cookies.

But generating session tokens is not completely trivial. We can do this using a set of
available cryptographic methods, but with session hijacking as a very prevalent way
of getting into systems without authorization, that may be a point of insecurity in
our application.

Since we're already using the Gorilla toolkit, the good news is that we don't have to
reinvent the wheel, there's a robust session system in place.

Not only do we have access to a server-side session, but we get a very convenient
tool for one-time messages within a session. These work somewhat similar to a
message queue in the manner that once data goes into them, the flash message is
no longer valid when that data is retrieved.

Sessions and Cookies

[68]

Creating a store
To utilize the Gorilla sessions, we first need to invoke a cookie store, which will hold
all the variables that we want to keep associated with a user. You can test this out
pretty easily by the following code:

package main

import (
 "fmt"
 "github.com/gorilla/sessions"
 "log"
 "net/http"
)

func cookieHandler(w http.ResponseWriter, r *http.Request) {
 var cookieStore = sessions.NewCookieStore([]byte("ideally, some
random piece of entropy"))
 session, _ := cookieStore.Get(r, "mystore")
 if value, exists := session.Values["hello"]; exists {
 fmt.Fprintln(w, value)
 } else {
 session.Values["hello"] = "(world)"
 session.Save(r, w)
 fmt.Fprintln(w, "We just set the value!")
 }
}

func main() {
 http.HandleFunc("/test", cookieHandler)
 log.Fatal(http.ListenAndServe(":8080", nil))
}

The first time you hit your URL and endpoint, you'll see We just set the value!, as
shown in the following screenshot:

Chapter 6

[69]

In the second request, you should see (world), as shown in the following screenshot:

A couple of notes here. First, you must set cookies before sending anything else
through your io.Writer (in this case the ResponseWriter w). If you flip these lines:

 session.Save(r, w)
 fmt.Fprintln(w, "We just set the value!")

You can see this in action. You'll never get the value set to your cookie store.

So now, let's apply it to our application. We will want to initiate a session store
before any requests to /login or /register.

We'll initialize a global sessionStore:

var database *sql.DB
var sessionStore = sessions.NewCookieStore([]byte("our-social-
network-application"))

Feel free to group these, as well, in a var (). Next, we'll want to create four simple
functions that will get an active session, update a current one, generate a session ID,
and evaluate an existing cookie. These will allow us to check if a user is logged in by
a cookie's session ID and enable persistent logins.

First, the getSessionUID function, which will return a user's ID if a session
already exists:

func getSessionUID(sid string) int {
 user := User{}
 err := database.QueryRow("SELECT user_id FROM sessions WHERE
session_id=?", sid).Scan(user.Id)
 if err != nil {
 fmt.Println(err.Error)
 return 0
 }
 return user.Id
}

Sessions and Cookies

[70]

Next, the update function, which will be called with every front-facing request, thus
enabling a timestamp update or inclusion of a user ID if a new log in is attempted:

func updateSession(sid string, uid int) {
 const timeFmt = "2006-01-02T15:04:05.999999999"
 tstamp := time.Now().Format(timeFmt)
 _, err := database.Exec("INSERT INTO sessions SET session_id=?,
user_id=?, session_update=? ON DUPLICATE KEY UPDATE user_id=?,
session_update=?", sid, uid, tstamp, uid, tstamp)
 if err != nil {
 fmt.Println(err.Error)
 }
}

An important part is the ability to generate a strongly-random byte array (cast
to string) that will allow unique identifiers. We do that with the following
generateSessionId() function:

func generateSessionId() string {
 sid := make([]byte, 24)
 _, err := io.ReadFull(rand.Reader, sid)
 if err != nil {
 log.Fatal("Could not generate session id")
 }
 return base64.URLEncoding.EncodeToString(sid)
}

And finally, we have the function that will be called with every request to check for
a cookie's session or create one if it doesn't exist.

func validateSession(w http.ResponseWriter, r *http.Request) {
 session, _ := sessionStore.Get(r, "app-session")
 if sid, valid := session.Values["sid"]; valid {
 currentUID := getSessionUID(sid.(string))
 updateSession(sid.(string), currentUID)
 UserSession.Id = string(currentUID)
 } else {
 newSID := generateSessionId()
 session.Values["sid"] = newSID
 session.Save(r, w)
 UserSession.Id = newSID
 updateSession(newSID, 0)
 }
 fmt.Println(session.ID)
}

Chapter 6

[71]

This is predicated on having a global Session struct, in this case defined as:

var UserSession Session

This leaves us with just one piece—to call validateSession() on our ServePage()
method and LoginPost() method and then validate the passwords on the latter and
update our session on a successful login attempt:

func LoginPOST(w http.ResponseWriter, r *http.Request) {
 validateSession(w, r)

In our previously defined check against the form values, if a valid user is found,
we'll update the session directly:

 u := User{}
 name := r.FormValue("user_name")
 pass := r.FormValue("user_password")
 password := weakPasswordHash(pass)
 err := database.QueryRow("SELECT user_id, user_name FROM users
WHERE user_name=? and user_password=?", name,
password).Scan(&u.Id, &u.Name)
 if err != nil {
 fmt.Fprintln(w, err.Error)
 u.Id = 0
 u.Name = ""
 } else {
 updateSession(UserSession.Id, u.Id)
 fmt.Fprintln(w, u.Name)
 }

Utilizing flash messages
As mentioned earlier in this chapter, Gorilla sessions offer a simple system to utilize
a single-use and cookie-based data transfer between requests.

The idea behind a flash message is not all that different than an in-browser/server
message queue. It's most frequently utilized in a process such as this:

• A form is POSTed
• The data is processed

• A header redirect is initiated

• The resulting page needs some access to information about the POST process
(success, error)

Sessions and Cookies

[72]

At the end of this process, the message should be removed so that the message is not
duplicated erroneously at some other point. Gorilla makes this incredibly easy, and
we'll look at that shortly, but it makes sense to show a quick example of how this can
be accomplished in native Go.

To start, we'll create a simple HTTP server that includes a starting point handler
called startHandler:

package main

import (
 "fmt"
 "html/template"
 "log"
 "net/http"
 "time"
)

var (
 templates = template.Must(template.ParseGlob("templates/*"))
 port = ":8080"
)

func startHandler(w http.ResponseWriter, r *http.Request) {
 err := templates.ExecuteTemplate(w, "ch6-flash.html", nil)
 if err != nil {
 log.Fatal("Template ch6-flash missing")
 }
}

We're not doing anything special here, just rendering our form:

func middleHandler(w http.ResponseWriter, r *http.Request) {
 cookieValue := r.PostFormValue("message")
 cookie := http.Cookie{Name: "message", Value: "message:" +
cookieValue, Expires: time.Now().Add(60 * time.Second), HttpOnly:
true}
 http.SetCookie(w, &cookie)
 http.Redirect(w, r, "/finish", 301)
}

Our middleHandler demonstrates creating cookies through a Cookie struct, as
described earlier in this chapter. There's nothing important to note here except the
fact that you may want to extend the expiration out a bit, just to ensure that there's
no way a cookie could expire (naturally) between requests:

Chapter 6

[73]

func finishHandler(w http.ResponseWriter, r *http.Request) {
 cookieVal, _ := r.Cookie("message")

 if cookieVal != nil {
 fmt.Fprintln(w, "We found: "+string(cookieVal.Value)+", but
try to refresh!")
 cookie := http.Cookie{Name: "message", Value: "", Expires:
time.Now(), HttpOnly: true}
 http.SetCookie(w, &cookie)
 } else {
 fmt.Fprintln(w, "That cookie was gone in a flash")
 }

}

The finishHandler function does the magic of a flash message—removes the cookie
if and only if a value has been found. This ensures that the cookie is a one-time
retrievable value:

func main() {

 http.HandleFunc("/start", startHandler)
 http.HandleFunc("/middle", middleHandler)
 http.HandleFunc("/finish", finishHandler)
 log.Fatal(http.ListenAndServe(port, nil))

}

The following example is our HTML for POSTing our cookie value to the /middle
handler:

<html>
<head><title>Flash Message</title></head>
<body>
<form action="/middle" method="POST">
 <input type="text" name="message" />
 <input type="submit" value="Send Message" />
</form>
</body>
</html>

If you do as the page suggests and refresh again, the cookie value would have been
removed and the page will not render, as you've previously seen.

Sessions and Cookies

[74]

To begin the flash message, we hit our /start endpoint and enter an intended value
and then click on the Send Message button:

At this point, we'll be sent to the /middle endpoint, which will set the cookie value
and HTTP redirect to /finish:

And now we can see our value. Since the /finish endpoint handler also unsets the
cookie, we'll be unable to retrieve that value again. Here's what happens if we do
what /finish tells us on its first appearance:

That's all for now.

Summary
Hopefully by this point you have a grasp of how to utilize basic cookies and sessions
in Go, either through native Go or through the use of a framework, such as Gorilla.
We've tried to demonstrate the inner workings of the latter so you're able to build
without additional libraries obfuscating the functionality.

We've implemented sessions into our application to enable persistent state between
requests. This is the very basis of authentication for the Web. By enabling users and
sessions table in our database, we're able to log users in, register a session, and
associate that session with the proper user on subsequent requests.

Chapter 6

[75]

By utilizing flash messages, we made use of a very specific feature that allows
transfer of information between two endpoints without enabling an additional
request that may look like an error to the user or generate erroneous output.
Our flash messages works just once and then expire.

In Chapter 7, Microservices and Communication, we'll look at connecting disparate
systems and applications across our existing and new APIs to allow event-based
actions to be coordinated between those systems. This will facilitate connecting to
other services within the same environment as well as those outside of our application.

[77]

Microservices and
Communication

Our application is beginning to get a little more real now. In the previous chapter,
we added some APIs and client-side interfaces to them.

Microservices have become very hot in the last few years, primarily because
they reduce the developmental and support weight of a very large or monolithic
application. By breaking apart these monoliths, microservices enable a more agile
and concurrent development. They can allow separate teams to work on separate
parts of the application without worrying too much about conflicts, backwards
compatibility issues, or stepping on the toes of other parts of the application.

In this chapter, we'll introduce microservices and explore how Go can work within
them, to enable them and even drive their central mechanisms.

To sum this all up, we will be covering the following aspects:

• Introducing the microservice approach

• Pros and cons of utilizing microservices

• Understanding the heart of microservices

• Communicating between microservices

• Putting a message on the wire

• Reading from another service

Microservices and Communication

[78]

Introducing the microservice approach
If you've not yet encountered the term microservice or explored its meaning in
depth, we can very quickly demystify it. Microservices are, in essence, independent
functions of an overall application being broken apart and made accessible via some
universally known protocol.

The microservice approach is, usually, utilized to break apart a very large monolithic
application.

Imagine your standard web application in the mid-2000s. When new functionality is
needed, let's say a function that emails new users, it's added directly to the codebase
and integrated with the rest of the application.

As the application grows, so does the necessary test coverage. So, it increases the
potential for critical errors too. In this scenario, a critical error doesn't just bring
down that component, in this case the e-mailing system; it takes down the entire
application.

This can be a nightmare to track down, patch, and re-deploy, and it's exactly the type
of nightmare that microservices were designed to address.

If the e-mailing part of the application is separated into its own app, it has a level of
isolation and insulation that makes finding problems much easier. It also means that
the entire stack doesn't fall down just because someone introduced a critical error
into one small part of the whole app, as shown in the following figure:

Consider the following basic example architecture, where an application is split into
four separate concepts, which represent their own applications in the microservices
framework.

Once, every single piece existed in its own application; now they are broken
apart into smaller and more manageable systems. Communication between the
applications happens via a message queue utilizing REST API endpoints.

Chapter 7

[79]

Pros and cons of utilizing microservices
If microservices seem like a panacea at this point, we should also note that this
approach does not come without its own set of issues. Whether the tradeoff is
worth it or not depends heavily on an overall organizational approach.

As mentioned earlier, stability and error detection comprise a big production-level
win for microservices. But if you think of the flip side of applications not breaking,
it could also mean that issues go hidden for longer than they otherwise would.
It's hard to ignore the entire site being down, but it could be hours before anyone
realizes that e-mails have not been sent, unless some very robust logging is in place.

But there are other big pros to microservices. For one, utilizing an external standard
communication protocol (REST, for example) means that you're not locked into a
single language.

If, for example, some part of your application can be written better in Node than
in Go, you can do that without having to rewrite an entire application. This is a
frequent temptation for developers: rewriting the whole thing because the new and
shiny language app or feature is introduced. Well, microservices safely enable this
behavior—it allows a developer or a group of developers to try something without
needing to go deeper than the specific function they wish to write.

This, too, comes with a potentially negative scenario—since the application
components are decoupled, so can the institutional knowledge around them be
decoupled. Few developers may know enough to keep the service operating ideally.
Other members of the group may lack the language knowledge to jump in and fix
critical errors.

One final, but important, consideration is that microservice architecture generally
means a distributed environment by default. This leads us to the biggest immediate
caveat, which is the fact that this situation almost always means that eventual
consistency is the name of the game.

Since every message must depend on multiple external services, you're subject to
several layers of latency to get a change enacted.

Understanding the heart of microservices
You might be wondering about one thing as you consider this system to design
dissonant services that work in congress: what's the communication platform?
To answer this, we'll say there is an easy answer and a more intricate one.

Microservices and Communication

[80]

The easy answer is REST. This is great news, as you're likely to be well versed
in REST or you at least understand some portion of it from Chapter 5, Frontend
Integration with RESTful APIs. There we described the basics of API communication
utilizing RESTful, stateless protocols and implementing HTTP verbs as actions.

Which leads us to the more complex answer: not everything in a large or involved
application can operate on REST alone. Some things require state or at least some
level of long-lasting consistency.

For the latter problem, most microservice architectures are centered on a message
queue as a platform for information sharing and dissemination. A message queue
serves as a conduit to receive REST requests from one service and holds it until
another service retrieves the request for further processing.

Communicating between microservices
There are a number of approaches to communicate between microservices, as
mentioned; REST endpoints provide a nice landing pad for messages. You may
recall the preceding graphic, which shows a message queue as the central conduit
between services. This is one of the most common ways to handle message passing
and we'll use RabbitMQ to demonstrate this.

In this case, we'll show when new users register to an e-mail queue for the delivery
of a message in our RabbitMQ installation, which will then be picked up by an
emailing microservice.

You can read more about RabbitMQ, which utilizes Advanced Message

Queuing Protocol (AMQP) here: https://www.rabbitmq.com/.

To install an AMQP client for Go, we'll recommend Sean Treadway's
AMQP package. You can install it with a go get command. You can
get it at github.com/streadway/amqp

Putting a message on the wire
There are a lot of approaches to use RabbitMQ. For example, one allows multiple
workers to accomplish the same thing, as a method for distributing works among
available resources.

Assuredly, as a system grows, it is likely to find use for that method. But in our tiny
example, we want to segregate tasks based on a specific channel. Of course, this is
not analogous to Go's concurrency channels, so keep that in mind when you read
about this approach.

https://www.rabbitmq.com/
github.com/streadway/amqp

Chapter 7

[81]

But to explain this method, we may have separate exchanges to route our messages.
In our example, we might have a log queue where messages are aggregated from all
services into a single log location, or a cache expiration method that removes cached
items from memory when they're deleted from the database.

In this example, though, we'll implement an e-mail queue that can take a message
from any other service and use its contents to send an e-mail. This keeps all e-mail
functionality outside of core and supportive services.

Recall that in Chapter 5, Frontend Integration with RESTful APIs, we added register and
login methods. The one we're most interested in here is RegisterPOST(), where we
allowed users to register to our site and then comment on our posts.

It's not uncommon for newly registered users to get an e-mail, either for confirmation
of identity or for a simple welcome message. We'll do the latter here, but adding
confirmation is trivial; it's just a matter of producing a key, delivering via e-mail and
then enabling the user once the link is hit.

Since we're using an external package, the first thing we need to do is import it.

Here's how we do it:

import (
 "bufio"
 "crypto/rand"
 "crypto/sha1"
 "database/sql"
 "encoding/base64"
 "encoding/json"
 "fmt"
 _ "github.com/go-sql-driver/mysql"
 "github.com/gorilla/mux"
 "github.com/gorilla/sessions"
 "github.com/streadway/amqp"
 "html/template"
 "io"
 "log"
 "net/http"
 "regexp"
 "text/template"
 "time"
)

Note that here we've included text/template, which is not strictly necessary
since we have html/template, but we've noted here in case you wish to use it in a
separate process. We have also included bufio, which we'll use as part of the same
templating process.

Microservices and Communication

[82]

For the sake of sending an e-mail, it will be helpful to have a message and a title for
the e-mail, so let's declare these. In a production environment, we'd probably have a
separate language file, but we don't have much else to show at this point:

var WelcomeTitle = "You've successfully registered!"
var WelcomeEmail = "Welcome to our CMS, {{Email}}! We're glad you
could join us."

These simply represent the e-mail variables we need to utilize when we have a
successful registration.

Since we're putting a message on the wire and yielding some responsibility for the
application's logic to another service, for now we'll only need to ensure that our
message has been received by RabbitMQ.

Next, we'll need to connect to the queue, which we can pass either by reference or
reconnect with each message. Generally, you'll want to keep the connection in the
queue for a long time, but you may choose to reconnect and close your connection
each time while testing.

In order to do so, we'll add our MQ host information to our constants:

const (
 DBHost = "127.0.0.1"
 DBPort = ":3306"
 DBUser = "root"
 DBPass = ""
 DBDbase = "cms"
 PORT = ":8080"
 MQHost = "127.0.0.1"
 MQPort = ":5672"
)

When we create a connection, we'll use the somewhat familiar TCP Dial() method,
which returns an MQ connection. Here is our function for connecting:

func MQConnect() (*amqp.Connection, *amqp.Channel, error) {
 url := "amqp://" + MQHost + MQPort
 conn, err := amqp.Dial(url)
 if err != nil {
 return nil, nil, err
 }
 channel, err := conn.Channel()
 if err != nil {
 return nil, nil, err
 }

Chapter 7

[83]

 if _, err := channel.QueueDeclare("", false, true, false, false,
nil); err != nil {
 return nil, nil, err
 }
 return conn, channel, nil
}

We can choose to pass the connection by reference or sustain it as a global with all
applicable caveats considered here.

You can read a bit more about RabbitMQ connections and detecting
disrupted connections at https://www.rabbitmq.com/
heartbeats.html

Technically, any producer (in this case our application) doesn't push messages to
the queue; rather, it pushes them to the exchange. RabbitMQ allows you to find
exchanges with the rabbitmqctl list_exchanges command (rather than list_
queues). Here, we're using an empty exchange, which is totally valid. The distinction
between a queue and an exchange is non-trivial; the latter is responsible for having
defined the rules surrounding a message, en route to a queue or queues.

Inside our RegisterPOST(), let's send a JSON-encoded message when a successful
registration takes place. We'll want a very simple struct to maintain the data
we'll need:

type RegistrationData struct {
 Email string `json:"email"`
 Message string `json:"message"`
}

Now we'll create a new RegistrationData struct if, and only if, the registration
process succeeds:

 res, err := database.Exec("INSERT INTO users SET user_name=?,
user_guid=?, user_email=?, user_password=?", name, guid, email,
password)

 if err != nil {
 fmt.Fprintln(w, err.Error)
 } else {
 Email := RegistrationData{Email: email, Message: ""}
 message, err := template.New("email").Parse(WelcomeEmail)
 var mbuf bytes.Buffer
 message.Execute(&mbuf, Email)
 MQPublish(json.Marshal(mbuf.String()))

https://www.rabbitmq.com/heartbeats.html
https://www.rabbitmq.com/heartbeats.html

Microservices and Communication

[84]

 http.Redirect(w, r, "/page/"+pageGUID, 301)
 }

And finally, we'll need the function that actually sends our data, MQPublish():

func MQPublish(message []byte) {
 err = channel.Publish(
 "email", // exchange
 "", // routing key
 false, // mandatory
 false, // immediate
 amqp.Publishing{
 ContentType: "text/plain",
 Body: []byte(message),
 })
}

Reading from another service
Now that we've sent a message to our message queue in our app, let's use another
microservice to pluck that from the queue on the other end.

To demonstrate the flexibility of a microservice design, our secondary service will be
a Python script that connects to the MQ and listens for messages on the e-mail queue,
when it finds one. It will parse the message and send an e-mail. Optionally, it could
publish a status message back on the queue or log it, but we won't go down that road
for now:

import pika
import json
import smtplib
from email.mime.text import MIMEText

connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='email')

print ' [*] Waiting for messages. To exit press CTRL+C'

def callback(ch, method, properties, body):
 print " [x] Received %r" % (body,)
 parsed = json.loads(body)
 msg = MIMEText()
 msg['From'] = 'Me'

Chapter 7

[85]

 msg['To'] = parsed['email']
 msg['Subject'] = parsed['message']
 s = smtplib.SMTP('localhost')
 s.sendmail('Me', parsed['email'], msg.as_string())
 s.quit()

channel.basic_consume(callback,
 queue='email',
 no_ack=True)

channel.start_consuming()

Summary
In this chapter, we looked at experimenting with utilizing microservices as a way
to dissect your app into separate domains of responsibility. In this example, we
delegated the e-mail aspect of our application to another service written in Python.

We did this to utilize the concept of microservices or interconnected smaller
applications as callable networked functions. This ethos is driving a large part
of the Web of late and has myriad benefits and drawbacks.

In doing this, we implemented a message queue, which operates as the backbone
of our communications system, allowing each component to speak to the other in
a reliable and repeatable way. In this case, we used a Python application to read
messages sent from our Go application across RabbitMQ and take that e-mail data
and process it.

In Chapter 8, Logging and Testing, we'll focus on logging and testing, which we can
use to extend the microservices concept so that we can recover from errors and
understand where things might go awry in the process.

[87]

Logging and Testing
In the previous chapter, we discussed delegating application responsibility to
networked services accessible by API and intra-process communication and
handled by a message queue.

This approach mimics an emerging trend of breaking large monolithic applications
into smaller chunks; thus, allowing developers to leverage dissonant languages,
frameworks, and designs.

We listed a few upsides and downsides of this approach; while most of the upsides
dealt with keeping the development agile and lean while preventing catastrophic
and cascading errors that might bring down an entire application, a large downside
is the fragility of each individual component. For example, if our e-mail microservice
had bad code as a part of a large application, the error would make itself known
quickly because it would almost assuredly have a direct and detectable impact on
another component. But by isolating processes as part of microservices, we also
isolate their state and status.

This is where the contents of this chapter come into play—the ability to test and log
within a Go application is the strength of the language's design. By utilizing these in
our application, it grows to include more microservices; due to which we can be in a
better position to keep track of any issues with a cog in the system without imposing
too much additional complexity to the overall application.

In this chapter we will cover the following topics:

• Introducing logging in Go

• Logging to IO
• Formatting your output

• Using panics and fatal errors

• Introducing testing in Go

Logging and Testing

[88]

Introducing logging in Go
Go comes with innumerable ways to display output to stdout, most commonly the
fmt package's Print and Println. In fact, you can eschew the fmt package entirely
and just use print() or println().

In mature applications, you're unlikely to see too many of these, because simply
displaying an output without having the capability to store that somewhere for
debugging or later analysis is rare and lacks much utility. Even if you're just
outputting minor feedback to a user, it often makes sense to do so and keep the
ability to save that to a file or elsewhere, this is where the log package comes into
play. Most of the examples in this book have used log.Println in lieu of fmt.
Println for this very reason. It's trivial to make that change if, at some point,
you choose to supplant stdout with some other (or additional) io.Writer.

Logging to IO
So far we've been logging in to stdout, but you can utilize any io.Writer to ingest
the log data. In fact, you can use multiple io.Writers if you want the output to be
routed to more than one place.

Multiple loggers
Most mature applications will write to more than one log file to delineate between
the various types of messages that need to be retained.

The most common use case for this is found in web server. They typically keep an
access.log and an error.log file to allow the analysis of all successful requests;
however, they also maintain separate logging of different types of messages.

In the following example, we modify our logging concept to include errors as well
as warnings:

package main

import (
 "log"
 "os"
)
var (
 Warn *log.Logger
 Error *log.Logger
 Notice *log.Logger
)

Chapter 8

[89]

func main() {
 warnFile, err := os.OpenFile("warnings.log",
os.O_RDWR|os.O_APPEND, 0660)
 defer warnFile.Close()
 if err != nil {
 log.Fatal(err)
 }
 errorFile, err := os.OpenFile("error.log",
os.O_RDWR|os.O_APPEND, 0660)
 defer errorFile.Close()
 if err != nil {
 log.Fatal(err)
 }

 Warn = log.New(warnFile, "WARNING: ", Log.LstdFlags
)

 Warn.Println("Messages written to a file called 'warnings.log'
are likely to be ignored :(")

 Error = log.New(errorFile, "ERROR: ", log.Ldate|log.Ltime)
 Error.SetOutput(errorFile)
 Error.Println("Error messages, on the other hand, tend to catch
attention!")
}

We can take this approach to store all sorts of information. For example, if we
wanted to store registration errors, we can create a specific registration error logger
and allow a similar approach if we encounter an error in that process as shown:

 res, err := database.Exec("INSERT INTO users SET user_name=?,
user_guid=?, user_email=?, user_password=?", name, guid, email,
passwordEnc)

 if err != nil {
 fmt.Fprintln(w, err.Error)
 RegError.Println("Could not complete registration:",
err.Error)
 } else {
 http.Redirect(w, r, "/page/"+pageGUID, 301)
 }

Logging and Testing

[90]

Formatting your output
When instantiating a new Logger, you can pass a few useful parameters and/or
helper strings to help define and clarify the output. Each log entry can be prepended
with a string, which can be helpful while reviewing multiple types of log entries.
You can also define the type of date and time formatting that you would like on
each entry.

To create a custom formatted log, just invoke the New() function with an io.Writer
as shown:

package main

import (
 "log"
 "os"
)

var (
 Warn *log.Logger
 Error *log.Logger
 Notice *log.Logger
)

func main() {
 warnFile, err := os.OpenFile("warnings.log",
os.O_RDWR|os.O_APPEND, 0660)
 defer warnFile.Close()
 if err != nil {
 log.Fatal(err)
 }
 Warn = log.New(warnFile, "WARNING: ", log.Ldate|log.Ltime)

 Warn.Println("Messages written to a file called 'warnings.log'
are likely to be ignored :(")
 log.Println("Done!")
}

This not only allows us to utilize stdout with our log.Println function but
also store more significant messages in a log file called warnings.log. Using the
os.O_RDWR|os.O_APPEND constants allow us to write to the file and use an append
file mode, which is useful for logging.

Chapter 8

[91]

Using panics and fatal errors
In addition to simply storing messages from your applications, you can create
application panics and fatal errors that will prevent the application from continuing.
This is critical for any use case where errors that do not halt execution lead to
potential security issues, data loss, or any other unintended consequence. These
types of mechanisms are generally relegated to the most critical of errors.

When to use a panic() method is not always clear, but in practice this should be
relegated to errors that are unrecoverable. An unrecoverable error typically means
the one where state becomes ambiguous or cannot otherwise be guaranteed.

For example, operations on acquired database records that fail to return expected
results from the database may be considered unrecoverable because future
operations might occur on outdated or missing data.

In the following example, we can implement a panic where we can't create a new
user; this is important so that we don't attempt to redirect or move forward with any
further creation steps:

 if err != nil {
 fmt.Fprintln(w, err.Error)
 RegError.Println("Could not complete registration:",
err.Error)
 panic("Error with registration,")
 } else {
 http.Redirect(w, r, "/page/"+pageGUID, 301)
 }

Note that if you want to force this error, you can just make an intentional MySQL
error in your query:

 res, err := database.Exec("INSERT INTENTIONAL_ERROR INTO users
SET user_name=?, user_guid=?, user_email=?, user_password=?",
name, guid, email, passwordEnc)

When this error is triggered you will find this in your respective log file or stdout:

In the preceding example, we utilize the panic as a hard stop, one that will prevent
further execution that could lead to further errors and/or data inconsistency. If it
need not be a hard stop, utilizing the recover() function allows you to re-enter
application flow once the problem has been addressed or mitigated.

Logging and Testing

[92]

Introducing testing in Go
Go comes packaged with a great deal of wonderful tools for making sure your code
is clean, well-formatted, free of race conditions, and so on. From go vet to go fmt,
many of the helper applications that you need to install separately in other languages
come as a package with Go.

Testing is a critical step for software-development. Unit testing and test-driven
development helps find bugs that aren't immediately apparent, especially to the
developer. Often we're too close and too familiar with the application to make the
types of usability mistakes that can invoke the otherwise undiscovered errors.

Go's testing package allows unit testing of actual functionality as well as making
certain that all of the dependencies (network, file system locations) are available;
testing in disparate environments allows you to discover these errors before
users do.

If you're already utilizing unit tests, Go's implementation will be both familiar and
pleasant to get started in:

package example

func Square(x int) int {
 y := x * x
 return y
}

This is saved as example.go. Next, create another Go file that tests this square root
functionality, with the following code:

package example

import (
 "testing"
)

func TestSquare(t *testing.T) {
 if v := Square(4); v != 16 {
 t.Error("expected", 16, "got", v)
 }
}

Chapter 8

[93]

You can run this by entering the directory and simply typing go test -v. As expected,
this passes given our test input:

This example is obviously trivial, but to demonstrate what you will see if your tests
fail, let's change our Square() function as shown:

func Square(x int) int {
 y := x
 return y
}

And again after running the test, we get:

Running command-line tests against command-line applications is different than
interacting with the Web. Our application being the one that includes standard
HTML endpoints as well as API endpoints; testing it requires more nuance than
the approach we used earlier.

Luckily, Go also includes a package for specifically testing the results of an HTTP
application, net/http/httptest.

Unlike the preceding example, httptest lets us evaluate a number of pieces of
metadata returned from our individual functions, which act as handlers in the
HTTP version of unit tests.

So let's look at a simple way of evaluating what our HTTP server might be producing,
by generating a quick endpoint that simply returns the day of the year.

Logging and Testing

[94]

To begin, we'll add another endpoint to our API. Lets separate this handler example
into its own application to isolate its impact:

package main

import (
 "fmt"
 "net/http"
 "time"
)

func testHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now()
 fmt.Fprintln(w, t.YearDay())
}

func main() {
 http.HandleFunc("/test", testHandler)
 http.ListenAndServe(":8080", nil)
}

This will simply return the day (1-366) of the year through the HTTP endpoint
/test. So how do we test this?

First, we need a new file specifically for testing. When it comes to how much test
coverage you'll need to hit, which is often helpful to the developer or organization—
ideally we'd want to hit every endpoint and method to get a fairly comprehensive
coverage. For this example, we'll make sure that one of our API endpoints returns
a proper status code and that a GET request returns what we expect to see in the
development:

package main

import (
 "io/ioutil"
 "net/http"
 "net/http/httptest"
 "testing"
)

func TestHandler(t *testing.T) {
 res := httptest.NewRecorder()
 path := "http://localhost:4000/test"
 o, err := http.NewRequest("GET", path, nil)
 http.DefaultServeMux.ServeHTTP(res, req)

Chapter 8

[95]

 response, err := ioutil.ReadAll(res.Body)
 if string(response) != "115" || err != nil {
 t.Errorf("Expected [], got %s", string(response))
 }
}

Now, we can implement this in our actual application by making certain that our
endpoints pass (200) or fail (404) and return the text we expect them to return.
We could also automate adding new content and validating it, and you should be
equipped to take that on after these examples.

Given the fact that we have a hello-world endpoint, let's write a quick test that
validates our response from the endpoint and have a look at how we can get a
proper response in a test.go file:

package main

import (
 "net/http"
 "net/http/httptest"
 "testing"
)

func TestHelloWorld(t *testing.T) {

 req, err := http.NewRequest("GET", "/page/hello-world", nil)
 if err != nil {
 t.Fatal("Creating 'GET /page/hello-world' request failed!")
 }
 rec := httptest.NewRecorder()
 Router().ServeHTTP(rec, req)
}

Here we can test that we're getting the status code we expect, which is not necessarily
a trivial test despite its simplicity. In practice, we'd probably also create one that
should fail and another test that checks to make sure that we get the HTTP response
we expect. But this sets the stage for more complex test suites, such as sanity tests
or deployment tests. For example, we might generate development-only pages that
generate HTML content from templates and check the output to ensure our page
access and our template parsing work as we expect.

Read more about the testing with http and the httptest package
at https://golang.org/pkg/net/http/httptest/

https://golang.org/pkg/net/http/httptest/

Logging and Testing

[96]

Summary
Simply building an application is not even half the battle and user-testing as a
developer introduces a huge gap in testing strategy. Test coverage is a critical
weapon when it comes to finding bugs, before they ever manifest to an end user.

Luckily, Go provides all the tools necessary to implement automated unit tests and
the logging architecture necessary to support it.

In this chapter, we looked at both loggers and testing options. By producing multiple
loggers for different messages, we were able separate warnings from errors brought
about by internal application failures.

We then examined unit testing using the test and the httptest packages to
automatically check our application and keep it current by testing for potential
breaking changes.

In Chapter 9, Security, we'll look at implementing security more thoroughly; from
better TLS/SSL, to preventing injection and man-in-the-middle and cross-site
request forgery attacks in our application.

[97]

Security
In the previous chapter we looked at how to store information generated by our
application as it works as well as adding unit tests to our suite to ensure that the
application behaves as we expect it to and diagnose errors when it does not.

In that chapter, we did not add a lot of functionality to our blog app; so let's get
back to that now. We'll also extend some of the logging and testing functionality
from this chapter into our new features.

Till now, we have been working on the skeleton of a web application that implements
some basic inputs and outputs of blog data and user-submitted comments. Just like
any public networked server, ours is subject to a variety of attack vectors.

None of these are unique to Go, but we have an arsenal of tools at our disposal to
implement the best practices and extend our server and application to mitigate
common issues.

When building a publicly accessible networked application, one quick and easy
reference guide for common attack vectors is the Open Web Application Security

Project (OWASP), which provides a periodically updated list of the most critical
areas where security issues manifest. OWASP can be found at https://www.owasp.
org/. Its Top Ten Project compiles the 10 most common and/or critical network
security issues. While it's not a comprehensive list and has a habit of becoming dated
between updates, but it still remains a good first start when compiling potential
vectors.

A few of the most pervasive vectors of the years have unfortunately stuck around;
despite the fact that security experts have been shouting from the rooftops of their
severity. Some have seen a rapid decrease in exposure across the Web (like injection),
but they still tend to stick around longer, for years and years, even as legacy
applications phase out.

Security

[98]

Here is a glimpse of four of the most recent top 10 vulnerabilities, from late 2013,
some of which we'll look at in this chapter:

• Injections: Any case where untrusted data has an opportunity to be
processed without escaping, thus allowing data manipulation or access
to data or systems, normally its not exposed publicly. Most commonly
this is an SQL injection.

• Broken authentication: This is caused due to poor encryption algorithms,
weak password requirements, session hijacking is feasible.

• XSS: Cross-site scripting allows an attacker to access sensitive information
by injecting and executing scripts on another site.

• Cross-site request forgery: Unlike XSS, this allows the attack vector to
originate from another site, but it fools a user into completing some action
on another site.

While the other attack vectors range from being relevant to irrelevant for our use
case, it is worth evaluating the ones that we aren't covering, to see what other places
might be rife for exploitation.

To get going, we'll look at the best ways to implement and force HTTPS in your
applications using Go.

HTTPS everywhere – implementing TLS
In Chapter 5, Frontend Integration with RESTful APIs, we looked at creating self-signed
certificates and utilizing HTTPS/TLS in our app. But let's review quickly why this
matters so much in terms of overall security for not just our application but the Web
in general.

First, simple HTTP generally produces no encryption for traffic, particularly for vital
request header values, such as cookies and query parameters. We say generally here
because RFC 2817 does specify a system use TLS over the HTTP protocol, but it's all
but unused. Most importantly, it would not give users the type of palpable feedback
necessary to register that a site is secure.

Second and similarly, HTTP traffic is subsequently vulnerable to man-in-the-middle
attacks.

One other side effect: Google (and perhaps other search engines) begun to favor
HTTPS traffic over less secure counterparts.

Chapter 9

[99]

Until relatively recently, HTTPS was relegated primarily to e-commerce applications,
but the rise in available and prevalent attacks utilizing the deficiencies of HTTP—like
sidejacking and man-in-the-middle attacks—began to push much of the Web toward
HTTPS.

You may have heard of the resulting movement and motto HTTPS Everywhere,
which also bled into the browser plugins that force site usage to implement the most
secure available protocol for any given site.

One of the easiest things we can do to extend the work in Chapter 6, Session and
Cookies is to require that all traffic goes through HTTPS by rerouting the HTTP traffic.
There are other ways of doing this, as we'll see at the end of the chapter, but it can be
accomplished fairly simply.

First, we'll implement a goroutine to concurrently serve our HTTPS and HTTP
traffic using the tls.ListenAndServe and http.ListenAndServe respectively:

 var wg sync.WaitGroup
 wg.Add(1)
 go func() {
 http.ListenAndServe(PORT, http.HandlerFunc(redirectNonSecure))
 wg.Done()
 }()
 wg.Add(1)
 go func() {
 http.ListenAndServeTLS(SECUREPORT, "cert.pem", "key.pem",
routes)
 wg.Done()
 }()

 wg.Wait()

This assumes that we set a SECUREPORT constant to, likely, ":443" just as we
set PORT to ":8080", or whatever you chose. There's nothing preventing you
from using another port for HTTPS; the benefit here is that the browser directs
https:// requests to port 443 by default, just as it directs HTTP requests to ports
80 and sometimes fallback to port 8080. Remember that you'll need to run as sudo
or administrator in many cases to launch with ports below 1000.

Security

[100]

You'll note in the preceding example that we're utilizing a separate handler for HTTP
traffic called redirectNonSecure. This fulfills a very basic purpose, as you'll see
here:

func redirectNonSecure(w http.ResponseWriter, r *http.Request) {
 log.Println("Non-secure request initiated, redirecting.")
 redirectURL := "https://" + serverName + r.RequestURI
 http.Redirect(w, r, redirectURL, http.StatusMovedPermanently)
}

Here, serverName is set explicitly.

There are some potential issues with gleaning the domain or server name from the
request, so it's best to set this explicitly if you can.

Another very useful piece to add here is HTTP Strict Transport Security (HSTS),
an approach that, when combined with compliant consumers, aspires to mitigate
protocol downgrade attacks (such as forcing/redirecting to HTTP).

This is nothing more than an HTTPS header that, when consumed, will automatically
handle and force the https:// requests for requests that would otherwise utilize less
secure protocols.

OWASP recommends the following setting for this header:

Strict-Transport-Security: max-age=31536000; includeSubDomains;
preload

Note that this header is ignored over HTTP.

Preventing SQL injection
While injection remains one of the biggest attack vectors across the Web today, most
languages have simple and elegant ways of preventing or largely mitigating the odds
of leaving vulnerable SQL injections in place with prepared statements and sanitized
inputs.

But even with languages that provide these services, there is still an opportunity to
leave areas open for exploits.

One of the core tenets of any software development whether on the Web or a server
or a standalone executable is to never trust input data acquired from an external (and
sometimes internal) source.

Chapter 9

[101]

This tenet stands true for any language, though some make interfacing with a
database safer and/or easier either through prepared queries or abstractions, such as
Object-relational mapping (ORM).

Natively, Go doesn't have any ORM and since there technically isn't even an O
(Object) (Go not being purely object-oriented), it's hard to replicate a lot of what
object-oriented languages have in this area.

There are, however, a number of third-party libraries that attempt to coerce ORM
through interfaces and structs, but a lot of this could be very easily written by hand
since you probably know your schemas and data structures better than any library,
even in the abstract sense.

For SQL, however, Go has a robust and consistent interface for almost any database
that supports SQL.

To show how an SQL injection exploit can simply surface in a Go application, we'll
compare a raw SQL query to a prepared statement.

When we select pages from our database, we use the following query:

err := database.QueryRow("SELECT page_title,page_content,page_date
FROM pages WHERE page_guid="+requestGUID, pageGUID).Scan(&this
Page.Title, &thisPage.Content, &thisPage.Date)

This shows us how to open up your application to injection vulnerabilities by
accepting unsanitized user input. In this case, anyone requesting a page like

/page/foo;delete from pages could, in theory, empty your pages table in a hurry.

We have some preliminary sanitization at the router level that does help in this
regard. As our mux routes only include alphanumeric characters, we can avoid
some of the characters that would otherwise need to be escaped being routed to
our ServePage or APIPage handlers:

 routes.HandleFunc("/page/{guid:[0-9a-zA\\-]+}", ServePage)
 routes.HandleFunc("/api/page/{id:[\\w\\d\\-]+}", APIPage).
 Methods("GET").
 Schemes("https")

This is not a foolproof way of addressing this, though. The preceding query took raw
input and appended it to the SQL query, but we can handle this much better with
parameterized, prepared queries in Go. The following is what we ended up using:

 err := database.QueryRow("SELECT page_title,page_con
tent,page_date FROM pages WHERE page_guid=?",
pageGUID).Scan(&thisPage.Title, &thisPage.Content, &thisPage.Date)

Security

[102]

 if err != nil {
 http.Error(w, http.StatusText(404), http.StatusNotFound)
 log.Println("Couldn't get page!")
 return
 }

This approach is available in any of Go's query interfaces, which take a query using ?
in place of values as a variadic:

res, err := db.Exec("INSERT INTO table SET field=?, field2=?",
value1, value2)
rows, err := db.Query("SELECT * FROM table WHERE field2=?",value2)
statement, err := db.Prepare("SELECT * FROM table WHERE
field2=?",value2)
row, err := db.QueryRow("SELECT * FROM table WHERE
field=?",value1)

While all of these fulfill a slightly different purpose within the world of SQL, they all
implement the prepared query in the same way.

Protecting against XSS
We've touched briefly upon cross-site scripting and limiting this as a vector makes
your application safer for all users, against the actions of a few bad apples. The crux
of the issue is the ability for one user to add dangerous content that will be shown to
users without scrubbing out the aspects that make it dangerous.

Ultimately you have a choice here—sanitize the data as it comes in or sanitize the
data as you present it to other users.

In other words, if someone produces a block of comment text that includes a
script tag, you must take care to stop that from ever being rendered by another
user's browser. You can choose to save the raw HTML and then strip all, or only
the sensitive tags on the output rendering. Or, you can encode it as it's entered.

There's no right answer; however, you may discover value in following the former
approach, where you accept anything and sanitize the output.

There is risk with either, but this approach allows you to keep the original intent
of the message should you choose to change your approach down the road. The
downside is that of course you can accidentally allow some of this raw data to slip
through unsanitized:

template.HTMLEscapeString(string)
template.JSEscapeString(inputData)

Chapter 9

[103]

The first function will take the data and remove the formatting of the HTML to
produce a plaintext version of the message input by a user.

The second function will do something similar but for JavaScript-specific values. You
can test these very easily with a quick script similar to the following example:

package main

import (
 "fmt"
 "github.com/gorilla/mux"
 "html/template"
 "net/http"
)

func HTMLHandler(w http.ResponseWriter, r *http.Request) {
 input := r.URL.Query().Get("input")
 fmt.Fprintln(w, input)
}

func HTMLHandlerSafe(w http.ResponseWriter, r *http.Request) {
 input := r.URL.Query().Get("input")
 input = template.HTMLEscapeString(input)
 fmt.Fprintln(w, input)
}

func JSHandler(w http.ResponseWriter, r *http.Request) {
 input := r.URL.Query().Get("input")
 fmt.Fprintln(w, input)
}

func JSHandlerSafe(w http.ResponseWriter, r *http.Request) {
 input := r.URL.Query().Get("input")
 input = template.JSEscapeString(input)
 fmt.Fprintln(w, input)
}

func main() {
 router := mux.NewRouter()
 router.HandleFunc("/html", HTMLHandler)
 router.HandleFunc("/js", JSHandler)
 router.HandleFunc("/html_safe", HTMLHandlerSafe)
 router.HandleFunc("/js_safe", JSHandlerSafe)
 http.ListenAndServe(":8080", router)
}

Security

[104]

If we request from the unsafe endpoint, we'll get our data back:

Compare this with /html_safe, which automatically escapes the input, where you
can see the content in its sanitized form:

None of this is foolproof, but if you choose to take input data as the user submits it,
you'll want to look at ways to relay that information on resulting display without
opening up other users to XSS.

Preventing cross-site request forgery
(CSRF)
While we won't go very deeply into CSRF in this book, the general gist is that it is
a slew of methods that malicious actors can use to fool a user into performing an
undesired action on another site.

As it's at least tangentially related to XSS in approach, it's worth talking about now.

Chapter 9

[105]

The biggest place where this manifests is in forms; think of it as a Twitter form that
allows you to send tweets. If a third party forced a request on a user's behalf without
their consent, think of something similar to this:

<h1>Post to our guestbook (and not twitter, we swear!)</h1>
 <form action="https://www.twitter.com/tweet" method="POST">
 <input type="text" placeholder="Your Name" />
 <textarea placeholder="Your Message"></textarea>
 <input type="hidden" name="tweet_message" value="Make sure to
check out this awesome, malicious site and post on their
guestbook" />
 <input type="submit" value="Post ONLY to our guestbook" />
</form>

Without any protection, anyone who posts to this guestbook would inadvertently
help spread spam to this attack.

Obviously, Twitter is a mature application that has long ago handled this, but you
get the general idea. You might think that restricting referrers will fix this problem,
but that can also be spoofed.

The shortest solution is to generate secure tokens for form submissions, which
prevents other sites from being able to construct a valid request.

Of course, our old friend Gorilla also provides a few helpful tools in this regard.
Most relevant is the csrf package, which includes tools to produce tokens for
requests as well as prebaked form fields that will produce 403 if violated or ignored.

The simplest way to produce a token is to include it as part of the interface
that your handler will be using to produce a template, as so from our
ApplicationAuthenticate() handler:

 Authorize.TemplateTag = csrf.TemplateField(r)
 t.ExecuteTemplate(w, "signup_form.tmpl", Authorize)

At this point we'll need to expose {{.csrfField}} in our template. To validate,
we'll need to chain it to our ListenAndServe call:

 http.ListenAndServe(PORT, csrf.Protect([]byte("32-byte-long-
auth-key"))(r))

Securing cookies
One of the attack vectors we looked at earlier was session hijacking, which we
discussed in the context of HTTP versus HTTPS and the way others can see the
types of information that are critical to identity on a website.

Security

[106]

Finding this data is incredibly simple on public networks for a lot of non-HTTPS
applications that utilize sessions as definitive IDs. In fact, some large applications
have allowed session IDs to be passed in URLs

In our application, we've used Gorilla's securecookie package, which does not rely
on HTTPS because the cookie values themselves are encoded and validated using
HMAC hashing.

Producing the key itself can be very simple, as demonstrated in our application and
the securecookie documentation:

var hashKey = []byte("secret hash key")
var blockKey = []byte("secret-er block key")
var secureKey = securecookie.New(hashKey, blockKey)

For more info on Gorilla's securecookie package see:
http://www.gorillatoolkit.org/pkg/securecookie

Presently, our app's server has HTTPS first and secure cookies, which means that
we likely feel a little more confident about storing and identifying data in the cookie
itself. Most of our create/update/delete operations are happening at the API level,
which still implements session checking to ensure our users are authenticated.

Using the secure middleware
One of the more helpful packages for quickly implementing some of the security
fixes (and others) mentioned in this chapter is a package from Cory Jacobsen called,
helpfully, secure.

Secure offers a host of useful utilities, such as SSLRedirects (as we implemented in
this chapter), allowed Hosts, HSTS options, and X-Frame-Options shorthand for
preventing your site from being loaded into frames.

A good amount of this covers some of the topics that we looked at in this chapter and
is largely the best practice. As a piece of middleware, secure can be an easy way to
quickly cover some of those best practices in one swoop.

To grab secure, simply go get it at github.com/unrolled/secure.

Chapter 9

[107]

Summary
While this chapter is not a comprehensive review of web security issues and solutions,
we hoped to address some of the biggest and most common vectors as surfaced by
OWASP and others.

Within this chapter we covered or reviewed the best practices to prevent some of
these issues from creeping into your applications.

In Chapter 10, Caching, Proxies, and Improved Performance, we'll look at how to make
your application scale with increased traffic while remaining performant and speedy.

[109]

Caching, Proxies and
Improved Performance

We have covered a great deal about the web application that you'll need to connect
to data sources, render templates, utilize SSL/TLS, build APIs for single-page
applications, and so on.

While the fundamentals are clear, you may find that putting an application built on
these guidelines into production would lead to some quick problems, particularly
under heavy load.

We've implemented some of the best security practices in the last chapter by
addressing some of the most common security issues in web applications. Let's do
the same here in this chapter, by applying the best practices against some of the
biggest issues of performance and speed.

To do this, we'll look at some of the most common bottlenecks in the pipeline and
see how we can reduce these to make our application as performant as possible in
production.

Specifically, we'll be identifying those bottlenecks and then looking to reverse
proxies and load balancing, implementing caching into our application, utilizing
SPDY, and look at how to use managed cloud services to augment our speed
initiatives by reducing the number of requests that get to our application.

By this chapter's end, we hope to produce tools that can help any Go application
squeeze every bit of performance out of our environment.

In this chapter, we will cover the following topics:

• Identifying bottlenecks

• Implementing reverse proxies

Caching, Proxies and Improved Performance

[110]

• Implementing caching strategies

• Implementing HTTP/2

Identifying bottlenecks
To simplify things a little, there are two types of bottlenecks for your application,
those caused by development and programming deficiencies and those inherent
to an underlying software or infrastructure limitation.

The answer to the former is simple, identify the poor design and fix it. Putting
patches around bad code can hide the security vulnerabilities or delay even bigger
performance issues from being discovered in a timely manner.

Sometimes these issues are born from a lack of stress testing; a code that is performant
locally is not guaranteed to scale without applying artificial load. A lack of this testing
sometimes leads to surprise downtime in production.

However, ignoring bad code as a source of issues, lets take a look at some of the
other frequent offenders:

• Disk I/O
• Database access

• High memory/CPU usage

• Lack of concurrency support

There are of course hundreds of offenders, such as network issues, garbage collection
overhead in some applications, not compressing payloads/headers, non-database
deadlocks, and so on.

High memory and CPU usage is most often the result rather than the cause, but a lot
of the other causes are specific to certain languages or environments.

For our application, we could have a weak point at the database layer. Since
we're doing no caching, every request will hit the database multiple times. ACID-
compliant databases (such as MySQL/PostgreSQL) are notorious for failing under
loads, which would not be a problem on the same hardware for less strict key/value
stores and NoSQL solutions. The cost of database consistency contributes heavily to
this and it's one of the trade-offs of choosing a traditional relational database.

Chapter 10

[111]

Implementing reverse proxies
As we know by now, unlike a lot of languages, Go comes with a complete and
mature web server platform with net/http.

Of late, some other languages have been shipped with small toy servers intended
for local development, but they are not intended for production. In fact, many
specifically warn against it. Some common ones are WEBrick for Ruby, Python's
SimpleHTTPServer, and PHP's -S. Most of these suffer from concurrency issues that
prevent them from being viable choices in production.

Go's net/http is different; by default, it handles these issues with aplomb out of the
box. Obviously, much of this depends on the underlying hardware, but in a pinch
you could use it natively with success. Many sites are using net/http to serve non-
trivial amounts of traffic.

But even strong underlying web servers have some inherent limitations:

• They lack failover or distributed options

• They have limited caching options upstream

• They cannot easily load balance the incoming traffic

• They cannot easily concentrate on centralized logging

This is where a reverse proxy comes into play. A reverse proxy accepts all the
incoming traffic on behalf of one or more servers and distributes it by applying
the preceding (and other) options and benefits. Another example is URL rewriting,
which is more applicable for underlying services that may not have built-in routing
and URL rewriting.

There are two big advantages of throwing a simple reverse proxy in front of your
web server, such as Go; they are caching options and the ability to serve static
content without hitting the underlying application.

One of the most popular options for reverse proxying sites is Nginx (pronounced
Engine-X). While Nginx is a web server itself, it gained acclaim early on for being
lightweight with a focus on concurrency. It quickly became the frontend du jour for
front line defense of a web application in front of an otherwise slower or heavier
web server, such as Apache. The situation has changed a bit in recent years, as
Apache has caught up in terms of concurrency options and utilization of alternative
approaches to events and threading. The following is an example of a reverse proxy
Nginx configuration:

server {
 listen 80;

Caching, Proxies and Improved Performance

[112]

 root /var/;
 index index.html index.htm;

 large_client_header_buffers 4 16k;

 # Make site accessible from http://localhost/
 server_name localhost

 location / {
 proxy_pass http://localhost:8080;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

}

With this in place, make sure that your Go app is running on port 8080 and restart
Nginx. Requests to http//:port 80 will be served through Nginx as a reverse
proxy to your application. You can check this through viewing headers or in the
Developer tools in your browser:

Remember that we wish to support TLS/SSL whenever possible, but providing a
reverse proxy here is just a matter of changing the ports. Our application should run
on another port, likely a nearby port for clarity and then our reverse proxy would
run on port 443.

As a reminder, any port is legal for HTTP or HTTPS. However, when a port is not
specified, the browsers automatically direct to 443 for secure connections. It's as
simple as modifying the nginx.conf and our app's constant:

server {
 listen 443;
 location / {
 proxy_pass http://localhost:444;

Chapter 10

[113]

Lets see how to modify our application as shown in the following code:

const (
 DBHost = "127.0.0.1"
 DBPort = ":3306"
 DBUser = "root"
 DBPass = ""
 DBDbase = "cms"
 PORT = ":444"
)

This allows us to pass through SSL requests with a frontend proxy.

On many Linux distributions, you'll need SUDO or root privileges to
use ports below 1000.

Implementing caching strategies
There are a number of ways to decide when to create and when to expire the cache
items, so we'll look at one of the easier and faster methods for doing so. But if you
are interested in developing this further, you might consider other caching strategies;
some of which can provide efficiencies for resource usage and performance.

Using Least Recently Used
One common tactic to maintain cache stability within allocated resources (disk
space, memory) is the Least Recently Used (LRU) system for cache expiration.
In this model, utilizing information about the last cache access time (creation or
update) and the cache management system can remove the oldest entry in the list.

This has a number of benefits for performance. First, if we assume that the most
recently created/updated cache entries are for entries that are presently the most
popular, we can remove entries that are not being accessed much sooner; in order
to free up the resources for the existing and new resources that might be accessed
much more frequently.

This is a fair assumption, assuming the allocated resources for caching is not
inconsequential. If you have a large volume for file cache or a lot of memory for
memcache, the oldest entries, in terms of last access, are quite likely not being
utilized with great frequency.

Caching, Proxies and Improved Performance

[114]

There is a related and more granular strategy called Least Frequently Used that
maintains strict statistics on the usage of the cache entries themselves. This not only
removes the need for assumptions about cache data but also adds overhead for the
statistics maintenance.

For our demonstrations here, we will be using LRU.

Caching by file
Our first approach is probably best described as a classical one for caching, but
a method not without issues. We'll utilize the disk to create file-based caches for
individual endpoints, both API and Web.

So what are the issues associated with caching in the filesystem? Well, previously in
the chapter, we mentioned that disk can introduce its own bottleneck. Here, we're
doing a trade-off to protect the access to our database in lieu of potentially running
into other issues with disk I/O.

This gets particularly complicated if our cache directory gets very big. At this point
we end up introducing more file access issues.

Another downside is that we have to manage our cache; because the filesystem is not
ephemeral and our available space is. We'll need to be able to expire cache files by
hand. This introduces another round of maintenance and another point of failure.

All that said, it's still a useful exercise and can still be utilized if you're willing to take
on some of the potential pitfalls:

package cache

const (
 Location "/var/cache/"
)

type CacheItem struct {
 TTL int
 Key string
}

func newCache(endpoint string, params ...[]string) {

}

func (c CacheItem) Get() (bool, string) {
 return true, ""

Chapter 10

[115]

}

func (c CacheItem) Set() bool {

}

func (c CacheItem) Clear() bool {

}

This sets the stage to do a few things, such as create unique keys based on an
endpoint and query parameters, check for the existence of a cache file, and if it
does not exist, get the requested data as per normal.

In our application, we can implement this simply. Let's put a file caching layer in
front of our /page endpoint as shown:

func ServePage(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 pageGUID := vars["guid"]
 thisPage := Page{}
 cached := cache.newCache("page",pageGUID)

The preceding code creates a new CacheItem. We utilize the variadic params to
generate a reference filename:

func newCache(endpoint string, params ...[]string) CacheItem {
cacheName := endponit + "_" + strings.Join(params, "_")
c := CacheItem{}
return c
}

When we have a CacheItem object, we can check using the Get() method, which
will return true if the cache is still valid, otherwise the method will return false.
We utilize filesystem information to determine if a cache item is within its valid
time-to-live:

 valid, cachedData := cached.Get()
 if valid {
 thisPage.Content = cachedData
 fmt.Fprintln(w, thisPage)
 return
 }

Caching, Proxies and Improved Performance

[116]

If we find an existing item via the Get() method, we'll check to make sure that it has
been updated within the set TTL:

func (c CacheItem) Get() (bool, string) {

 stats, err := os.Stat(c.Key)
 if err != nil {
 return false, ""
 }

 age := time.Nanoseconds() - stats.ModTime()
 if age <= c.TTL {
 cache, _ := ioutil.ReadFile(c.Key)
 return true, cache
 } else {
 return false, ""
 }
}

If the code is valid and within the TTL, we'll return true and the file's body will
be updated. Otherwise, we will allow a passthrough to the page retrieval and
generation. At the tail of this we can set the cache data:

 t, _ := template.ParseFiles("templates/blog.html")
 cached.Set(t, thisPage)
 t.Execute(w, thisPage)

We then save this as:

func (c CacheItem) Set(data []byte) bool {
 err := ioutil.WriteFile(c.Key, data, 0644)
}

This function effectively writes the value of our cache file.

We now have a working system that will take individual endpoints and innumerable
query parameters and create a file-based cache library, ultimately preventing
unnecessary queries to our database, if data has not been changed.

In practice we'd want to limit this to mostly read-based pages and avoid putting
blind caching on any write or update endpoints, particularly on our API.

Chapter 10

[117]

Caching in memory
Just as file system caching became a lot more palatable because storage prices
plummeted, we've seen a similar move in RAM, trailing just behind hard storage.
The big advantage here is speed, caching in memory can be insanely fast for
obvious reasons.

Memcache, and its distributed sibling Memcached, evolved out of a need to create
a light and super-fast caching for LiveJournal and a proto-social network from Brad
Fitzpatrick. If that name feels familiar, it's because Brad now works at Google and is
a serious contributor to the Go language itself.

As a drop-in replacement for our file caching system, Memcached will work
similarly. The only major change is our key lookups, which will be going against
working memory instead of doing file checks.

To use memcache with Go language, go to godoc.org/github.com/
bradfitz/gomemcache/memcache from Brad Fitz, and install it
using go get command.

Implementing HTTP/2
One of the more interesting, perhaps noble, initiatives that Google has invested in
within the last five years has been a focus on making the Web faster. Through tools,
such as PageSpeed, Google has sought to push the Web as a whole to be faster,
leaner, and more user-friendly.

No doubt this initiative is not entirely altruistic. Google has built their business on
extensive web search and crawlers are always at the mercy of the speed of the pages
they crawl. The faster the web pages, the faster and more comprehensive is the
crawling; therefore, less time and less infrastructure resulting in less money required.
The bottom line here is that a faster web benefits Google, as much as it does people
creating and viewing web sites.

But this is mutually beneficial. If web sites are faster to comply with Google's
preferences, everyone benefits with a faster Web.

This brings us to HTTP/2, a version of HTTP that replaces 1.1, introduced in
1999 and largely the defacto method for most of the Web. HTTP/2 also envelops
and implements a lot of SPDY, a makeshift protocol that Google developed and
supported through Chrome.

godoc.org/github.com/bradfitz/gomemcache/memcache
godoc.org/github.com/bradfitz/gomemcache/memcache

Caching, Proxies and Improved Performance

[118]

HTTP/2 and SPDY introduce a host of optimizations including header compression
and non-blocking and multiplexed request handling.

If you're using version 1.6, net/http supports HTTP/2 out of the box. If you're
using version 1.5 or earlier, you can use the experimental package.

To use HTTP/2 prior to Go version 1.6, go get it from godoc.org/
golang.org/x/net/http2

Summary
In this chapter, we focused on quick wins for increasing the overall performance for
our application, by reducing impact on our underlying application's bottlenecks,
namely our database.

We've implemented caching at the file level and described how to translate that into
a memory-based caching system. We looked at SPDY and HTTP/2, which has now
become a part of the underlying Go net/http package by default.

This in no way represents all the optimizations that we may need to produce highly
performant code, but hits on some of the most common bottlenecks that can keep
applications that work well in development from behaving similarly in production
under heavy load.

This is where we end the book; hope you all enjoyed the ride!

godoc.org/golang.org/x/net/http2
godoc.org/golang.org/x/net/http2

Module 2

Go Programming Blueprints

Build real-world, production-ready solutions in Go using cutting-edge technology
and techniques

Chat Application with
Web Sockets

Go is great for writing high-performance, concurrent server applications and tools,
and the Web is the perfect medium over which to deliver them. It would be difficult
these days to find a gadget that is not web-enabled and allows us to build a single
application that targets almost all platforms and devices.

Our first project will be a web-based chat application that allows multiple users to
have a real-time conversation right in their web browser. Idiomatic Go applications
are often composed of many packages, which are organized by having code in
different folders, and this is also true of the Go standard library. We will start by
building a simple web server using the net/http package, which will serve the
HTML files. We will then go on to add support for web sockets through which
our messages will flow.

In languages such as C#, Java, or Node.js, complex threading code and clever use
of locks need to be employed in order to keep all clients in sync. As we will see,
Go helps us enormously with its built-in channels and concurrency paradigms.

In this chapter, you will learn how to:

• Use the net/http package to serve HTTP requests

• Deliver template-driven content to users' browsers

• Satisfy a Go interface to build our own http.Handler types

• Use Go's goroutines to allow an application to perform multiple
tasks concurrently

• Use channels to share information between running Go routines

• Upgrade HTTP requests to use modern features such as web sockets

Chat Application with Web Sockets

[122]

• Add tracing to the application to better understand its inner workings

• Write a complete Go package using test-driven development practices

• Return unexported types through exported interfaces

Complete source code for this project can be found at https://
github.com/matryer/goblueprints/tree/master/
chapter1/chat. The source code was periodically committed so
the history in GitHub actually follows the flow of this chapter too.

A simple web server
The first thing our chat application needs is a web server that has two main
responsibilities: it must serve the HTML and JavaScript chat clients that run
in the user's browser and accept web socket connections to allow the clients
to communicate.
Create a main.go file inside a new folder called chat in your GOPATH and add the
following code:

package main

import (
 "log"
 "net/http"
)

func main() {

 http.HandleFunc("/", func(w http.ResponseWriter, r
*http.Request) {
 w.Write([]byte(`
 <html>
 <head>
 <title>Chat</title>
 </head>
 <body>
 Let's chat!
 </body>
 </html>
 `))
 })

https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat

Chapter 1

[123]

 // start the web server
 if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

This is a complete albeit simple Go program that will:

• Listen to the root path using the net/http package

• Write out the hardcoded HTML when a request is made

• Start a web server on port :8080 using the ListenAndServe method

The http.HandleFunc function maps the path pattern "/" to the function we
pass as the second argument, so when the user hits http://localhost:8080/,
the function will be executed. The function signature of func(w http.
ResponseWriter, r *http.Request) is a common way of handling HTTP
requests throughout the Go standard library.

We are using package main because we want to build and run
our program from the command line. However, if we were building
a reusable chatting package, we might choose to use something
different, such as package chat.

In a terminal, run the program by navigating to the main.go file you just created
and execute:

go run main.go

Open a browser to localhost:8080 to see the Let's chat! message.

Having the HTML code embedded within our Go code like this works, but it is
pretty ugly and will only get worse as our projects grow. Next, we will see how
templates can help us clean this up.

Templates
Templates allow us to blend generic text with specific text, for instance, injecting a
user's name into a welcome message. For example, consider the following template:

Hello {name}, how are you?

Chat Application with Web Sockets

[124]

We are able to replace the {name} text in the preceding template with the real name
of a person. So if Laurie signs in, she might see:

Hello Laurie, how are you?

The Go standard library has two main template packages: one called text/template
for text and one called html/template for HTML. The html/template package does
the same as the text version except that it understands the context in which data will
be injected into the template. This is useful because it avoids script injection attacks
and resolves common issues such as having to encode special characters for URLs.

Initially, we just want to move the HTML code from inside our Go code to its own
file, but won't blend any text just yet. The template packages make loading external
files very easy, so it's a good choice for us.

Create a new folder under our chat folder called templates and create a chat.html
file inside it. We will move the HTML from main.go to this file, but we will make a
minor change to ensure our changes have taken effect.

<html>
 <head>
 <title>Chat</title>
 </head>
 <body>
 Let's chat (from template)
 </body>
</html>

Now, we have our external HTML file ready to go, but we need a way to compile
the template and serve it to the user's browser.

Compiling a template is a process by which the source template is
interpreted and prepared for blending with various data, which must
happen before a template can be used but only needs to happen once.

Chapter 1

[125]

We are going to write our own struct type that is responsible for loading,
compiling, and delivering our template. We will define a new type that will take a
filename string, compile the template once (using the sync.Once type), keep the
reference to the compiled template, and then respond to HTTP requests. You will
need to import the text/template, path/filepath, and sync packages in order
to build your code.

In main.go, insert the following code above the func main() line:

// templ represents a single template
type templateHandler struct {
 once sync.Once
 filename string
 templ *template.Template
}
// ServeHTTP handles the HTTP request.
func (t *templateHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 t.once.Do(func() {
 t.templ =
template.Must(template.ParseFiles(filepath.Join("templates",
t.filename)))
 })
 t.templ.Execute(w, nil)
}

The templateHandler type has a single method called ServeHTTP whose signature
looks suspiciously like the method we passed to http.HandleFunc earlier. This
method will load the source file, compile the template and execute it, and write
the output to the specified http.ResponseWriter object. Because the ServeHTTP
method satisfies the http.Handler interface, we can actually pass it directly to
http.Handle.

A quick look at the Go standard library source code, which is located
at http://golang.org/pkg/net/http/#Handler, will reveal
that the interface definition for http.Handler specifies that only the
ServeHTTP method need be present in order for a type to be used to
serve HTTP requests by the net/http package.

http://golang.org/pkg/net/http/#Handler

Chat Application with Web Sockets

[126]

Doing things once
We only need to compile the template once, and there are a few different ways to
approach this in Go. The most obvious is to have a NewTemplateHandler function
that creates the type and calls some initialization code to compile the template. If we
were sure the function would be called by only one goroutine (probably the main
one during the setup in the main function), this would be a perfectly acceptable
approach. An alternative, which we have employed in the preceding section, is
to compile the template once inside the ServeHTTP method. The sync.Once type
guarantees that the function we pass as an argument will only be executed once,
regardless of how many goroutines are calling ServeHTTP. This is helpful because
web servers in Go are automatically concurrent and once our chat application takes
the world by storm, we could very well expect to have many concurrent calls to the
ServeHTTP method.

Compiling the template inside the ServeHTTP method also ensures that our
code does not waste time doing work before it is definitely needed. This lazy
initialization approach doesn't save us much in our present case, but in cases
where the setup tasks are time- and resource-intensive and where the functionality
is used less frequently, it's easy to see how this approach would come in handy.

Using your own handlers
To implement our templateHandler type, we need to update the main body
function so that it looks like this:

func main() {
 // root
 http.Handle("/", &templateHandler{filename: "chat.html"})
 // start the web server
 if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

The templateHandler structure is a valid http.Handler type so we can pass
it directly to the http.Handle function and ask it to handle requests that match
the specified pattern. In the preceding code, we created a new object of the type
templateHandler specifying the filename as chat.html that we then take the
address of (using the & address of operator) and pass it to the http.Handle
function. We do not store a reference to our newly created templateHandler
type, but that's OK because we don't need to refer to it again.

Chapter 1

[127]

In your terminal, exit the program by pressing Ctrl + C before re-running it, then
refresh your browser and notice the addition of the (from template) text. Now
our code is much simpler than an HTML code and free from those ugly blocks.

Properly building and executing Go programs
Running Go programs using a go run command is great when our code is made
up of a single main.go file. However, often we might quickly need to add other
files. This requires us to properly build the whole package into an executable
binary before running it. This is simple enough, and from now on, this is how
you will build and run your programs in a terminal:

go build -o {name}

./{name}

The go build command creates the output binary using all the .go files in the
specified folder, and the -o flag indicates the name of the generated binary. You
can then just run the program directly by calling it by name.

For example, in the case of our chat application, we could run:

go build -o chat

./chat

Since we are compiling templates the first time the page is served, we will need
to restart your web server program every time anything changes in order to see
the changes take effect.

Modeling a chat room and clients on
the server
All users (clients) of our chat application will automatically be placed in one big
public room where everyone can chat with everyone else. The room type will be
responsible for managing client connections and routing messages in and out,
while the client type represents the connection to a single client.

Go refers to classes as types and instances of those classes as objects.

Chat Application with Web Sockets

[128]

To manage our web sockets, we are going to use one of the most powerful aspects
of the Go community—open source third-party packages. Every day new packages
solving real-world problems are released, ready for you to use in your own projects
and even allow you to add features, report and fix bugs, and get support.

It is often unwise to reinvent the wheel unless you have a very good
reason. So before embarking on building a new package, it is worth
searching for any existing projects that might have already solved
your very problem. If you find one similar project that doesn't quite
satisfy your needs, consider contributing to the project and adding
features. Go has a particularly active open source community
(remember that Go itself is open source) that is always ready to
welcome new faces or avatars.

We are going to use Gorilla Project's websocket package to handle our server-side
sockets rather than write our own. If you're curious about how it works, head over
to the project home page on GitHub, https://github.com/gorilla/websocket,
and browse the open source code.

Modeling the client
Create a new file called client.go alongside main.go in the chat folder and add
the following code:

package main
import (
 "github.com/gorilla/websocket"
)
// client represents a single chatting user.
type client struct {
 // socket is the web socket for this client.
 socket *websocket.Conn
 // send is a channel on which messages are sent.
 send chan []byte
 // room is the room this client is chatting in.
 room *room
}

In the preceding code, socket will hold a reference to the web socket that will allow
us to communicate with the client, and the send field is a buffered channel through
which received messages are queued ready to be forwarded to the user's browser
(via the socket). The room field will keep a reference to the room that the client is
chatting in—this is required so that we can forward messages to everyone else in
the room.

https://github.com/gorilla/websocket

Chapter 1

[129]

If you try to build this code, you will notice a few errors. You must ensure that you
have called go get to retrieve the websocket package, which is as easy as opening
a terminal and typing the following:

go get github.com/gorilla/websocket

Building the code again will yield another error:

./client.go:17 undefined: room

The problem is that we have referred to a room type without defining it anywhere.
To make the compiler happy, create a file called room.go and insert the following
placeholder code:

package main
type room struct {
 // forward is a channel that holds incoming messages
 // that should be forwarded to the other clients.
 forward chan []byte
}

We will improve this definition later once we know a little more about what our
room needs to do, but for now, this will allow us to proceed. Later, the forward
channel is what we will use to send the incoming messages to all other clients.

You can think of channels as an in-memory thread-safe message queue
where senders pass data and receivers read data in a non-blocking,
thread-safe way.

In order for a client to do any work, we must define some methods that will do the
actual reading and writing to and from the web socket. Adding the following code
to client.go outside (underneath) the client struct will add two methods called
read and write to the client type:

func (c *client) read() {
 for {
 if _, msg, err := c.socket.ReadMessage(); err == nil {
 c.room.forward <- msg
 } else {
 break
 }
 }

Chat Application with Web Sockets

[130]

 c.socket.Close()
}
func (c *client) write() {
 for msg := range c.send {
 if err := c.socket.WriteMessage(websocket.TextMessage, msg);
err != nil {
 break
 }
 }
 c.socket.Close()
}

The read method allows our client to read from the socket via the ReadMessage
method, continually sending any received messages to the forward channel on
the room type. If it encounters an error (such as 'the socket has died'), the loop
will break and the socket will be closed. Similarly, the write method continually
accepts messages from the send channel writing everything out of the socket via
the WriteMessage method. If writing to the socket fails, the for loop is broken
and the socket is closed. Build the package again to ensure everything compiles.

Modeling a room
We need a way for clients to join and leave rooms in order to ensure that the c.room.
forward <- msg code in the preceding section actually forwards the message to all
the clients. To ensure that we are not trying to access the same data at the same time,
a sensible approach is to use two channels: one that will add a client to the room and
another that will remove it. Let's update our room.go code to look like this:

package main

type room struct {

 // forward is a channel that holds incoming messages
 // that should be forwarded to the other clients.
 forward chan []byte
 // join is a channel for clients wishing to join the room.
 join chan *client
 // leave is a channel for clients wishing to leave the room.
 leave chan *client
 // clients holds all current clients in this room.
 clients map[*client]bool
}

Chapter 1

[131]

We have added three fields: two channels and a map. The join and leave channels
exist simply to allow us to safely add and remove clients from the clients map.
If we were to access the map directly, it is possible that two Go routines running
concurrently might try to modify the map at the same time resulting in corrupt
memory or an unpredictable state.

Concurrency programming using idiomatic
Go
Now we get to use an extremely powerful feature of Go's concurrency offerings—the
select statement. We can use select statements whenever we need to synchronize
or modify shared memory, or take different actions depending on the various
activities within our channels.

Beneath the room structure, add the following run method that contains two of
these select clauses:

func (r *room) run() {
 for {
 select {
 case client := <-r.join:
 // joining
 r.clients[client] = true
 case client := <-r.leave:
 // leaving
 delete(r.clients, client)
 close(client.send)
 case msg := <-r.forward:
 // forward message to all clients
 for client := range r.clients {
 select {
 case client.send <- msg:
 // send the message
 default:
 // failed to send
 delete(r.clients, client)
 close(client.send)
 }
 }
 }
 }
}

Chat Application with Web Sockets

[132]

Although this might seem like a lot of code to digest, once we break it down a little,
we will see that it is fairly simple, although extremely powerful. The top for loop
indicates that this method will run forever, until the program is terminated. This might
seem like a mistake, but remember, if we run this code as a Go routine, it will run in
the background, which won't block the rest of our application. The preceding code
will keep watching the three channels inside our room: join, leave, and forward.
If a message is received on any of those channels, the select statement will run the
code for that particular case. It is important to remember that it will only run one
block of case code at a time. This is how we are able to synchronize to ensure that
our r.clients map is only ever modified by one thing at a time.

If we receive a message on the join channel, we simply update the r.clients map
to keep a reference of the client that has joined the room. Notice that we are setting
the value to true. We are using the map more like a slice, but do not have to worry
about shrinking the slice as clients come and go through time—setting the value to
true is just a handy, low-memory way of storing the reference.

If we receive a message on the leave channel, we simply delete the client type
from the map, and close its send channel. Closing a channel has special significance
in Go, which becomes clear when we look at our final select case.

If we receive a message on the forward channel, we iterate over all the clients and
send the message down each client's send channel. Then, the write method of our
client type will pick it up and send it down the socket to the browser. If the send
channel is closed, then we know the client is not receiving any more messages,
and this is where our second select clause (specifically the default case) takes
the action of removing the client from the room and tidying things up.

Turning a room into an HTTP handler
Now we are going to turn our room type into an http.Handler type like we did
with the template handler earlier. As you will recall, to do this, we must simply add
a method called ServeHTTP with the appropriate signature. Add the following code
to the bottom of the room.go file:

const (
 socketBufferSize = 1024
 messageBufferSize = 256
)

Chapter 1

[133]

var upgrader = &websocket.Upgrader{ReadBufferSize:
socketBufferSize, WriteBufferSize: socketBufferSize}
func (r *room) ServeHTTP(w http.ResponseWriter, req *http.Request) {
 socket, err := upgrader.Upgrade(w, req, nil)
 if err != nil {
 log.Fatal("ServeHTTP:", err)
 return
 }
 client := &client{
 socket: socket,
 send: make(chan []byte, messageBufferSize),
 room: r,
 }
 r.join <- client
 defer func() { r.leave <- client }()
 go client.write()
 client.read()
}

The ServeHTTP method means a room can now act as a handler. We will implement
it shortly, but first let's have a look at what is going on in this snippet of code.

In order to use web sockets, we must upgrade the HTTP connection using the
websocket.Upgrader type, which is reusable so we need only create one. Then,
when a request comes in via the ServeHTTP method, we get the socket by calling
the upgrader.Upgrade method. All being well, we then create our client and pass
it into the join channel for the current room. We also defer the leaving operation
for when the client is finished, which will ensure everything is tidied up after a
user goes away.

The write method for the client is then called as a Go routine, as indicated by the
three characters at the beginning of the line go (the word go followed by a space
character). This tells Go to run the method in a different thread or goroutine.

Compare the amount of code needed to achieve multithreading
or concurrency in other languages with the three key presses that
achieve it in Go, and you will see why it has become a favorite
among systems developers.

Chat Application with Web Sockets

[134]

Finally, we call the read method in the main thread, which will block operations
(keeping the connection alive) until it's time to close it. Adding constants at the
top of the snippet is a good practice for declaring values that would otherwise be
hardcoded throughout the project. As these grow in number, you might consider
putting them in a file of their own, or at least at the top of their respective files so
they remain easy to read and modify.

Use helper functions to remove complexity
Our room is almost ready to use, although in order for it to be of any use, the
channels and map need to be created. As it is, this could be achieved by asking
the developer to use the following code to be sure to do this:

r := &room{
 forward: make(chan []byte),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
}

Another, slightly more elegant, solution is to instead provide a newRoom function
that does this for us. This removes the need for others to know about exactly what
needs to be done in order for our room to be useful. Underneath the type room
struct definition, add this function:

// newRoom makes a new room that is ready to go.
func newRoom() *room {
 return &room{
 forward: make(chan []byte),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
 }
}

Now the users of our code need only call the newRoom function instead of the more
verbose six lines of code.

Chapter 1

[135]

Creating and using rooms
Let's update our main function in main.go to first create and then run a room for
everybody to connect to:

func main() {
 r := newRoom()
 http.Handle("/", &templateHandler{filename: "chat.html"})
 http.Handle("/room", r)
 // get the room going
 go r.run()
 // start the web server
 if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

We are running the room in a separate Go routine (notice the go keyword again)
so that the chatting operations occur in the background, allowing our main thread
to run the web server. Our server is now finished and successfully built, but
remains useless without clients to interact with.

Building an HTML and JavaScript chat
client
In order for the users of our chat application to interact with the server and
therefore other users, we need to write some client-side code that makes use of the
web sockets found in modern browsers. We are already delivering HTML content
via the template when users hit the root of our application, so we can enhance that.

Update the chat.html file in the templates folder with the following markup:

<html>
 <head>
 <title>Chat</title>
 <style>
 input { display: block; }
 ul { list-style: none; }
 </style>
 </head>
 <body>
 <ul id="messages">

Chat Application with Web Sockets

[136]

 <form id="chatbox">
 <textarea></textarea>
 <input type="submit" value="Send" />
 </form> </body>
</html>

The preceding HTML will render a simple web form on the page containing a
text area and a Send button—this is how our users will submit messages to the
server. The messages element in the preceding code will contain the text of the
chat messages so that all the users can see what is being said. Next, we need to
add some JavaScript to add some functionality to our page. Underneath the
form tag, above the closing </body> tag, insert the following code:

 <script
src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">
</script>
 <script>
 $(function(){
 var socket = null;
 var msgBox = $("#chatbox textarea");
 var messages = $("#messages");
 $("#chatbox").submit(function(){
 if (!msgBox.val()) return false;
 if (!socket) {
 alert("Error: There is no socket connection.");
 return false;
 }
 socket.send(msgBox.val());
 msgBox.val("");
 return false;
 });
 if (!window["WebSocket"]) {
 alert("Error: Your browser does not support web
sockets.")
 } else {
 socket = new WebSocket("ws://localhost:8080/room");
 socket.onclose = function() {
 alert("Connection has been closed.");
 }
 socket.onmessage = function(e) {
 messages.append($("").text(e.data));
 }
 }

Chapter 1

[137]

 });
 </script>

The socket = new WebSocket("ws://localhost:8080/room") line is where
we open the socket and add event handlers for two key events: onclose and
onmessage. When the socket receives a message, we use jQuery to append the
message to the list element and thus present it to the user.

Submitting the HTML form triggers a call to socket.send, which is how we send
messages to the server.

Build and run the program again to ensure the templates recompile so these
changes are represented.

Navigate to http://localhost:8080/ in two separate browsers (or two tabs of
the same browser) and play with the application. You will notice that messages
sent from one client appear instantly in the other clients.

Getting more out of templates
Currently, we are using templates to deliver static HTML, which is nice because
it gives us a clean and simple way to separate the client code from the server code.
However, templates are actually much more powerful, and we are going to tweak
our application to make some more realistic use of them.

Chat Application with Web Sockets

[138]

The host address of our application (:8080) is hardcoded in two places at the
moment. The first instance is in main.go where we start the web server:

if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal("ListenAndServe:", err)
}

The second time it is hardcoded in the JavaScript when we open the socket:

socket = new WebSocket("ws://localhost:8080/room");

Our chat application is pretty stubborn if it insists on only running locally on port
8080, so we are going to use command-line flags to make it configurable and then
use the injection capabilities of templates to make sure our JavaScript knows the
right host.

Update your main function in main.go:

func main() {
 var addr = flag.String("addr", ":8080", "The addr of the
application.")
 flag.Parse() // parse the flags
 r := newRoom()
 http.Handle("/", &templateHandler{filename: "chat.html"})
 http.Handle("/room", r)
 // get the room going
 go r.run()
 // start the web server
 log.Println("Starting web server on", *addr)
 if err := http.ListenAndServe(*addr, nil); err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

You will need to import the flag package in order for this code to build. The
definition for the addr variable sets up our flag as a string that defaults to :8080
(with a short description of what the value is intended for). We must call flag.
Parse() that parses the arguments and extracts the appropriate information.
Then, we can reference the value of the host flag by using *addr.

The call to flag.String returns a type of *string, which is to say
it returns the address of a string variable where the value of the flag
is stored. To get the value itself (and not the address of the value), we
must use the pointer indirection operator, *.

Chapter 1

[139]

We also added a log.Println call to output the address in the terminal so we can
be sure that our changes have taken effect.

We are going to modify the templateHandler type we wrote so that it passes the
details of the request as data into the template's Execute method. In main.go,
update the ServeHTTP function to pass the request r as the data argument to the
Execute method:

func (t *templateHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 t.once.Do(func() {
 t.templ =
template.Must(template.ParseFiles(filepath.Join("templates",
t.filename)))
 })
 t.templ.Execute(w, r)
}

This tells the template to render itself using data that can be extracted from http.
Request, which happens to include the host address that we need.

To use the Host value of http.Request, we can then make use of the special
template syntax that allows us to inject data. Update the line where we create
our socket in the chat.html file:

socket = new WebSocket("ws://{{.Host}}/room");

The double curly braces represent an annotation and the way we tell our template
source to inject data. {{.Host}} is essentially the equivalent of telling it to replace
the annotation with the value from request.Host (since we passed the request r
object in as data).

We have only scratched the surface of the power of the templates built
into Go's standard library. The text/template package documentation
is a great place to learn more about what you can achieve. You can find
out more about it at http://golang.org/pkg/text/template.

Rebuild and run the chat program again, but this time notice that the chatting
operations no longer produce an error, whichever host we specify:

go build -o chat
./chat -addr=":3000"

http://golang.org/pkg/text/template

Chat Application with Web Sockets

[140]

View the source of the page in the browser and notice that {{.Host}} has
been replaced with the actual host of the application. Valid hosts aren't just port
numbers; you can also specify the IP addresses or other hostnames—provided they
are allowed in your environment, for example, -addr="192.168.0.1:3000".

Tracing code to get a look under the
hood
The only way we will know that our application is working is by opening two or
more browsers and using our UI to send messages. In other words, we are manually
testing our code. This is fine for experimental projects such as our chat application
or small projects that aren't expected to grow, but if our code is to have a longer life
or be worked on by more than one person, manual testing of this kind becomes a
liability. We are not going to tackle Test-driven Development (TDD) for our chat
program, but we should explore another useful debugging technique called tracing.

Tracing is a practice by which we log or print key steps in the flow of a program to
make what is going on under the covers visible. In the previous section, we added a
log.Println call to output the address that the chat program was binding to. In this
section, we are going to formalize this and write our own complete tracing package.

We are going to explore TDD practices when writing our tracing code because it is a
perfect example of a package that we are likely to reuse, add to, share, and hopefully,
even open source.

Writing a package using TDD
Packages in Go are organized into folders, with one package per folder. It is a
build error to have differing package declarations within the same folder because
all sibling files are expected to contribute to a single package. Go has no concept of
subpackages, which means nested packages (in nested folders) exist only for aesthetic
or informational reasons but do not inherit any functionality or visibility from super
packages. In our chat application, all of our files contributed to the main package
because we wanted to build an executable tool. Our tracing package will never be
run directly, so it can and should use a different package name. We will also need
to think about the Application Programming Interface (API) of our package,
considering how to model a package so that it remains as extensible and flexible
as possible for users. This includes the fields, functions, methods, and types that
should be exported (visible to the user) and remain hidden for simplicity's sake.

Chapter 1

[141]

Go uses capitalization of names to denote which items are exported such
that names that begin with a capital letter (for example, Tracer) are
visible to users of a package, and names that begin with a lowercase
letter (for example, templateHandler) are hidden or private.

Create a new folder called trace, which will be the name of our tracing package,
alongside the chat folder.

Before we jump into the code, let's agree on some design goals for our package by
which we can measure success:

• The package should be easy to use

• Unit tests should cover the functionality

• Users should have the flexibility to replace the tracer with their
own implementation

Interfaces
Interfaces in Go are an extremely powerful language feature that allow us to
define an API without being strict or specific on the implementation details.
Wherever possible, describing the basic building blocks of your packages using
interfaces usually ends up paying dividends down the road, and this is where
we will start for our tracing package.

Create a new file called tracer.go inside the trace folder and write the
following code:

package trace
// Tracer is the interface that describes an object capable of
// tracing events throughout code.
type Tracer interface {
 Trace(...interface{})
}

The first thing to notice is that we have defined our package as trace.

While it is a good practice to have the folder name match the package
name, Go tools do not enforce it, which means you are free to name
them differently if it makes sense. Remember, when people import
your package, they will type the name of the folder, and if suddenly
a package with a different name is imported, it could get confusing.

Chat Application with Web Sockets

[142]

Our Tracer type (the capital T means we intend this to be a publicly visible type)
is an interface that describes a single method called Trace. The ...interface{}
argument type states that our Trace method will accept zero or more arguments
of any type. You might think that this is redundant since the method should just
take a single string (we want to just trace out some string of characters, don't we?).
However, consider functions such as fmt.Sprint and log.Fatal, both of which
follow a pattern littered through to Go's standard library that provides a helpful
shortcut when trying to communicate multiple things in one go. Wherever possible,
we should follow such patterns and practices because we want our own APIs to be
familiar and clear to the Go community.

Unit tests
We promised ourselves we would follow test-driven practices, but interfaces
are simply definitions that do not provide any implementation and so cannot
be directly tested. But we are about to write a real implementation of a Tracer
method, and we will indeed write the tests first.

Create a new file called tracer_test.go in the trace folder and insert the
following scaffold code:

package trace
import (
 "testing"
)
func TestNew(t *testing.T) {
 t.Error("We haven't written our test yet")
}

Testing was built into the Go tool chain from the very beginning, making writing
automatable tests a first-class citizen. The test code lives alongside the production
code in files suffixed with _test.go. The Go tools will treat any function that starts
with Test (taking a single *testing.T argument) as a unit test, and it will be
executed when we run our tests. To run them for this package, navigate to the
trace folder in a terminal and do the following:

go test

You will see that our tests fail because of our call to t.Error in the body of our
TestNew function:

--- FAIL: TestNew (0.00 seconds)

Chapter 1

[143]

 tracer_test.go:8: We haven't written our test yet

FAIL

exit status 1

FAIL trace 0.011s

Clearing the terminal before each test run is a great way to make
sure you aren't confusing previous runs with the most recent one.
On Windows, you can use the cls command; on Unix machines,
the clear command does the same thing.

Obviously, we haven't properly written our test and we don't expect it to pass yet,
so let's update the TestNew function:

func TestNew(t *testing.T) {
 var buf bytes.Buffer
 tracer := New(&buf)
 if tracer == nil {
 t.Error("Return from New should not be nil")
 } else {
 tracer.Trace("Hello trace package.")
 if buf.String() != "Hello trace package.\n" {
 t.Errorf("Trace should not write '%s'.", buf.String())
 }
 }
}

Most packages throughout the book are available from the Go standard library, so
you can add an import statement for the appropriate package in order to access the
package. Others are external, and that's when you need to use go get to download
them before they can be imported. For this case, you'll need to add import "bytes"
to the top of the file.

We have started designing our API by becoming the first user of it. We want to
be able to capture the output of our tracer in a bytes.Buffer so that we can then
ensure that the string in the buffer matches the expected value. If it does not, a call
to t.Errorf will fail the test. Before that, we check to make sure the return from a
made-up New function is not nil; again, if it is, the test will fail because of the call
to t.Error.

Chat Application with Web Sockets

[144]

Red-green testing
Running go test now actually produces an error; it complains that there is no New
function. We haven't made a mistake here; we are following a practice known as
red-green testing. Red-green testing proposes that we first write a unit test, see it fail
(or produce an error), write the minimum amount of code possible to make that test
pass, and rinse and repeat it again. The key point here being that we want to make
sure the code we add is actually doing something as well as ensuring that the test
code we write is testing something meaningful.

Consider a meaningless test for a minute:
if true == true {
 t.Error("True should be true")
}

It is logically impossible for true to not be true (if true ever equals false,
it's time to get a new computer), and so our test is pointless. If a test or
claim cannot fail, there is no value whatsoever to be found in it.

Replacing true with a variable that you expect to be set to true under
certain conditions would mean that such a test can indeed fail (like
when the code being tested is misbehaving)—at this point, you have
a meaningful test that is worth contributing to the code base.

You can treat the output of go test like a to-do list, solving only one problem at a
time. Right now, the complaint about the missing New function is all we will address.
In the tracer.go file, let's add the minimum amount of code possible to progress
with things; add the following snippet underneath the interface type definition:

func New() {}

Running go test now shows us that things have indeed progressed, albeit not
very far. We now have two errors:

./tracer_test.go:11: too many arguments in call to New

./tracer_test.go:11: New(&buf) used as value

The first error tells us that we are passing arguments to our New function, but the New
function doesn't accept any. The second error says that we are using the return of the
New function as a value, but that the New function doesn't return anything. You might
have seen this coming, and indeed as you gain more experience writing test-driven
code, you will most likely jump over such trivial details. However, to properly
illustrate the method, we are going to be pedantic for a while. Let's address the
first error by updating our New function to take in the expected argument:

func New(w io.Writer) {}

Chapter 1

[145]

We are taking an argument that satisfies the io.Writer interface, which means that
the specified object must have a suitable Write method.

Using existing interfaces, especially ones found in the Go standard
library, is an extremely powerful and often necessary way to ensure
that your code is as flexible and elegant as possible.

Accepting io.Writer means that the user can decide where the tracing output will
be written. This output could be the standard output, a file, network socket, bytes.
Buffer as in our test case, or even some custom-made object, provided it implements
the Write method of the io.Writer interface

Running go test again shows us that we have resolved the first error and we only
need add a return type in order to progress past our second error:

func New(w io.Writer) Tracer {}

We are stating that our New function will return a Tracer, but we do not return
anything, which go test happily complains about:

./tracer.go:13: missing return at end of function

Fixing this is easy; we can just return nil from the New function:

func New(w io.Writer) Tracer {
 return nil
}

Of course, our test code has asserted that the return should not be nil, so go test
now gives us a failure message:

tracer_test.go:14: Return from New should not be nil

You can see how a strict adherence to the red-green principle can get
a little tedious, but it is vital that we do not jump too far ahead. If we
were to write a lot of implementation code in one go, we will very
likely have code that is not covered by a unit test.

The ever-thoughtful core team has even solved this problem for us by
providing code coverage statistics which we can generate by running
the following command:
go test -cover

Provided that all tests pass, adding the -cover flag will tell us how
much of our code was touched during the execution of the tests.
Obviously, the closer we get to 100 percent the better.

Chat Application with Web Sockets

[146]

Implementing the interface
To satisfy this test, we need something that we can properly return from the New
method because Tracer is only an interface and we have to return something real.
Let's add an implementation of a tracer to our tracer.go file:

type tracer struct {
 out io.Writer
}

func (t *tracer) Trace(a ...interface{}) {}

Our implementation is extremely simple; the tracer type has an io.Writer field
called out which is where we will write the trace output to. And the Trace method
exactly matches the method required by the Tracer interface, although it doesn't
do anything yet.

Now we can finally fix the New method:

func New(w io.Writer) Tracer {
 return &tracer{out: w}
}

Running go test again shows us that our expectation was not met because nothing
was written during our call to Trace:

tracer_test.go:18: Trace should not write ''.

Let's update our Trace method to write the blended arguments to the specified
io.Writer field:

func (t *tracer) Trace(a ...interface{}) {
 t.out.Write([]byte(fmt.Sprint(a...)))
 t.out.Write([]byte("\n"))
}

When the Trace method is called, we call Write on the io.Writer stored in the
out field and use fmt.Sprint to format the a arguments. We convert the string
return type from fmt.Sprint to string and then to []byte because that is what is
expected by the io.Writer interface.

Have we finally satisfied our test?

go test -cover

PASS

Chapter 1

[147]

coverage: 100.0% of statements

ok trace 0.011s

Congratulations! We have successfully passed our test and have 100.0% test
coverage. Once we have finished our glass of champagne, we can take a minute
to consider something very interesting about our implementation.

Unexported types being returned to users
The tracer struct type we wrote is unexported because it begins with a lowercase
t, so how is it that we are able to return it from the exported New function? After all,
doesn't the user receive the returned object? This is perfectly acceptable and valid
Go code; the user will only ever see an object that satisfies the Tracer interface and
will never even know about our private tracer type. Since they only ever interact
with the interface anyway, it wouldn't matter if our tracer implementation exposed
other methods or fields; they would never be seen. This allows us to keep the public
API of our package clean and simple.

This hidden implementation technique is used throughout the Go standard library,
for example, the ioutil.NopCloser method is a function that turns a normal
io.Reader into io.ReadCloser whereas the Close method does nothing (used for
when io.Reader objects that don't need to be closed are passed into functions that
require io.ReadCloser types). The method returns io.ReadCloser as far as the
user is concerned, but under the hood, there is a secret nopCloser type hiding the
implementation details.

To see this for yourself, browse the Go standard library source code
at http://golang.org/src/pkg/io/ioutil/ioutil.go and
search for the nopCloser struct.

Using our new trace package
Now that we have completed the first version of our trace package, we can use it
in our chat application in order to better understand what is going on when users
send messages through the user interface.

In room.go, let's import our new package and make some calls to the Trace
method. The path to the trace package we just wrote will depend on your GOPATH
environment variable because the import path is relative to the $GOPATH/src folder.
So if you create your trace package in $GOPATH/src/mycode/trace, then you
would need to import mycode/trace.

http://golang.org/src/pkg/io/ioutil/ioutil.go

Chat Application with Web Sockets

[148]

Update the room type and the run() method like this:

type room struct {
 // forward is a channel that holds incoming messages
 // that should be forwarded to the other clients.
 forward chan []byte
 // join is a channel for clients wishing to join the room.
 join chan *client
 // leave is a channel for clients wishing to leave the room.
 leave chan *client
 // clients holds all current clients in this room.
 clients map[*client]bool
 // tracer will receive trace information of activity
 // in the room.
 tracer trace.Tracer
}
func (r *room) run() {
 for {
 select {
 case client := <-r.join:
 // joining
 r.clients[client] = true
 r.tracer.Trace("New client joined")
 case client := <-r.leave:
 // leaving
 delete(r.clients, client)
 close(client.send)
 r.tracer.Trace("Client left")
 case msg := <-r.forward:
 r.tracer.Trace("Message received: ", string(msg))
 // forward message to all clients
 for client := range r.clients {
 select {
 case client.send <- msg:
 // send the message
 r.tracer.Trace(" -- sent to client")
 default:
 // failed to send
 delete(r.clients, client)
 close(client.send)
 r.tracer.Trace(" -- failed to send, cleaned up client")
 }
 }
 }
 }
}

Chapter 1

[149]

We added a trace.Tracer field to our room type and then made periodic calls to
the Trace method peppered throughout the code. If we run our program and try
to send messages, you'll notice that the application panics because the tracer
field is nil. We can remedy this for now by making sure we create and assign an
appropriate object when we create our room type. Update the main.go file to do this:

r := newRoom()
r.tracer = trace.New(os.Stdout)

We are using our New method to create an object that will send the output to the
os.Stdout standard output pipe (this is a technical way of saying we want it to
print the output to our terminal).

Now rebuild and run the program and use two browsers to play with the
application, and notice that the terminal now has some interesting trace
information for us:

New client joined

New client joined

Message received: Hello Chat

 -- sent to client

 -- sent to client

Message received: Good morning :)

 -- sent to client

 -- sent to client

Client left

Client left

Now we are able to use the debug information to get an insight into what the
application is doing, which will assist us when developing and supporting
our project.

Making tracing optional
Once the application is released, the sort of tracing information we are generating will
be pretty useless if it's just printed out to some terminal somewhere, or even worse, if
it creates a lot of noise for our systems administrators. Also, remember that when we
don't set a tracer for our room type, our code panics, which isn't a very user-friendly
situation. To resolve these two issues, we are going to enhance our trace package with
a trace.Off() method that will return an object that satisfies the Tracer interface but
will not do anything when the Trace method is called.

Chat Application with Web Sockets

[150]

Let's add a test that calls the Off function to get a silent tracer before making a call to
Trace to ensure the code doesn't panic. Since the tracing won't happen, that's all we
can do in our test code. Add the following test function to the tracer_test.go file:

func TestOff(t *testing.T) {
 var silentTracer Tracer = Off()
 silentTracer.Trace("something")
}

To make it pass, add the following code to the tracer.go file:

type nilTracer struct{}
func (t *nilTracer) Trace(a ...interface{}) {}
// Off creates a Tracer that will ignore calls to Trace.
func Off() Tracer {
 return &nilTracer{}
}

Our nilTracer struct has defined a Trace method that does nothing, and a call
to the Off() method will create a new nilTracer struct and return it. Notice
that our nilTracer struct differs from our tracer struct in that it doesn't take
an io.Writer; it doesn't need one because it isn't going to write anything.

Now let's solve our second problem by updating our newRoom method in the room.
go file:

func newRoom() *room {
 return &room{
 forward: make(chan []byte),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
 tracer: trace.Off(),
 }
}

By default, our room type will be created with a nilTracer struct and any calls to
Trace will just be ignored. You can try this out by removing the r.tracer = trace.
New(os.Stdout) line from the main.go file: notice that nothing gets written to the
terminal when you use the application and there is no panic.

Chapter 1

[151]

Clean package APIs
A quick glance at the API (in this context, the exposed variables, methods, and types)
for our trace package highlights that a simple and obvious design has emerged:

• The New() method

• The Off() method

• The Tracer interface

I would be very confident to give this package to a Go programmer without any
documentation or guidelines, and I'm pretty sure they would know what do to with it.

In Go, adding documentation is as simple as adding comments to the
line before each item. The blog post on the subject is a worthwhile read
(http://blog.golang.org/godoc-documenting-go-code),
where you can see a copy of the hosted source code for tracer.go that
is an example of how you might annotate the trace package. For more
information, refer to github.com/matryer/goblueprints/blob/
master/chapter1/trace/tracer.go.

Summary
In this chapter, we developed a complete concurrent chat application and our own
simple package to trace the flow of our programs to help us better understand what
is going on under the hood.

We used the net/http package to quickly build what turned out to be a very powerful
concurrent HTTP web server. In one particular case, we then upgraded the connection
to open a web socket between the client and server. This means that we can easily and
quickly communicate messages to the user's web browser without having to write
messy polling code. We explored how templates are useful to separate the code from
the content as well as to allow us to inject data into our template source, which let
us make the host address configurable. Command-line flags helped us give simple
configuration control to the people hosting our application while also letting us
specify sensible defaults.

Our chat application made use of Go's powerful concurrency capabilities that allowed
us to write clear threaded code in just a few lines of idiomatic Go. By controlling the
coming and going of clients through channels, we were able to set synchronization
points in our code that prevented us from corrupting memory by attempting to
modify the same objects at the same time.

http://blog.golang.org/godoc-documenting-go-code
github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go

Chat Application with Web Sockets

[152]

We learned how interfaces such as http.Handler and our own trace.Tracer
allow us to provide disparate implementations without having to touch the code
that makes use of them, and in some cases, without having to expose even the
name of the implementation to our users. We saw how just by adding a ServeHTTP
method to our room type, we turned our custom room concept into a valid HTTP
handler object, which managed our web socket connections.

We aren't actually very far away from being able to properly release our application,
except for one major oversight: you cannot see who sent each message. We have
no concept of users or even user names, and for a real chat application, this is
not acceptable.

In the next chapter, we will add the names of the people responding to their
messages in order to make them feel like they are having a real conversation
with other humans.

Adding Authentication
The chat application we built in the previous chapter focused on high-performance
transmission of messages from the clients to the server and back again, but our
users have no way of knowing who they are talking to. One solution to this problem
is building of some kind of signup and login functionality and letting our users
create accounts and authenticate themselves before they can open the chat page.

Whenever we are about to build something from scratch, we must ask ourselves how
others have solved this problem before (it is extremely rare to encounter genuinely
original problems), and whether any open solutions or standards already exist that
we can make use of. Authorization and authentication are hardly new problems,
especially in the world of the Web, with many different protocols out there to choose
from. So how do we decide on the best option to pursue? As always, we must look
at this question from the point of view of the user.

A lot of websites these days allow you to sign in using your accounts existing
elsewhere on a variety of social media or community websites. This saves users
the tedious job of entering all their account information over and over again as
they decide to try out different products and services. It also has a positive effect
on the conversion rates for new sites.

In this chapter, we will enhance our chat codebase to add authentication, which
will allow our users to sign in using Google, Facebook, or GitHub and you'll see
how easy it is to add other sign-in portals too. In order to join the chat, users must
first sign in. Following this, we will use the authorized data to augment our user
experience so everyone knows who is in the room, and who said what.

In this chapter, you will learn to:

• Use the decorator pattern to wrap http.Handler types to add additional
functionality to handlers

• Serve HTTP endpoints with dynamic paths

Adding Authentication

[154]

• Use the Gomniauth open source project to access authentication services

• Get and set cookies using the http package

• Encode objects as Base64 and back to normal again

• Send and receive JSON data over a web socket
• Give different types of data to templates

• Work with channels of your own types

Handlers all the way down
For our chat application, we implemented our own http.Handler type in order
to easily compile, execute, and deliver HTML content to browsers. Since this is a
very simple but powerful interface, we are going to continue to use it wherever
possible when adding functionality to our HTTP processing.

In order to determine whether a user is authenticated, we will create an
authentication wrapper handler that performs the check, and passes execution
on to the inner handler only if the user is authenticated.

Our wrapper handler will satisfy the same http.Handler interface as the object
inside it, allowing us to wrap any valid handler. In fact, even the authentication
handler we are about to write could be later encapsulated inside a similar
wrapper if needed.

Diagram of a chaining pattern when applied to HTTP handlers

Chapter 2

[155]

The preceding figure shows how this pattern could be applied in a more complicated
HTTP handler scenario. Each object implements the http.Handler interface,
which means that object could be passed into the http.Handle method to directly
handle a request, or it can be given to another object, which adds some kind of extra
functionality. The Logging handler might write to a logfile before and after the
ServeHTTP method is called on the inner handler. Because the inner handler is just
another http.Handler, any other handler can be wrapped in (or decorated with)
the Logging handler.

It is also common for an object to contain logic that decides which inner handler
should be executed. For example, our authentication handler will either pass the
execution to the wrapped handler, or handle the request itself by issuing a redirect
to the browser.

That's plenty of theory for now; let's write some code. Create a new file called auth.
go in the chat folder:

package main
import (
 "net/http"
)
type authHandler struct {
 next http.Handler
}
func (h *authHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 if _, err := r.Cookie("auth"); err == http.ErrNoCookie {
 // not authenticated
 w.Header().Set("Location", "/login")
 w.WriteHeader(http.StatusTemporaryRedirect)
 } else if err != nil {
 // some other error
 panic(err.Error())
 } else {
 // success - call the next handler
 h.next.ServeHTTP(w, r)
 }
}
func MustAuth(handler http.Handler) http.Handler {
 return &authHandler{next: handler}
}

Adding Authentication

[156]

The authHandler type not only implements the ServeHTTP method (which satisfies
the http.Handler interface) but also stores (wraps) http.Handler in the next field.
Our MustAuth helper function simply creates authHandler that wraps any other
http.Handler. Let's tweak the following root mapping line:

http.Handle("/", &templateHandler{filename: "chat.html"})

Let's change the first argument to make it explicit about the page meant for
chatting. Next, let's use the MustAuth function to wrap templateHandler for
the second argument:

http.Handle("/chat", MustAuth(&templateHandler{filename:
"chat.html"}))

Wrapping templateHandler with the MustAuth function will cause execution
to run first through our authHandler, and only to templateHandler if the request
is authenticated.

The ServeHTTP method in our authHandler will look for a special cookie called
auth, and use the Header and WriteHeader methods on http.ResponseWriter
to redirect the user to a login page if the cookie is missing.

Build and run the chat application and try to hit http://localhost:8080/chat:

go build -o chat

./chat -host=":8080"

You need to delete your cookies to clear out previous auth
tokens, or any other cookies that might be left over from
other development projects served through localhost.

If you look in the address bar of your browser, you will notice that you are
immediately redirected to the /login page. Since we cannot handle that path
yet, you'll just get a 404 page not found error.

Making a pretty social sign-in page
So far we haven't paid much attention to making our application look nice, after
all this book is about Go and not user-interface development. However, there is no
excuse for building ugly apps, and so we will build a social sign-in page that is as
pretty as it is functional.

Chapter 2

[157]

Bootstrap is a frontend framework used to develop responsive projects on the Web.
It provides CSS and JavaScript code that solve many user-interface problems in a
consistent and good-looking way. While sites built using Bootstrap all tend to look
the same (although there are plenty of ways in which the UI can be customized), it
is a great choice for early versions of apps, or for developers who don't have access
to designers.

If you build your application using the semantic standards set forth by
Bootstrap, it becomes easy for you to make a Bootstrap theme for your
site or application and you know it will slot right into your code.

We will use the version of Bootstrap hosted on a CDN so we don't have to worry
about downloading and serving our own version through our chat application.
This means that in order to render our pages properly, we will need an active
Internet connection, even during development.

If you prefer to download and host your own copy of Bootstrap, you
can do so. Keep the files in an assets folder and add the following
call to your main function (it uses http.Handle to serve the assets
via your application):

http.Handle("/assets/", http.StripPrefix("/assets",
http.FileServer(http.Dir("/path/to/assets/"))))

Notice how the http.StripPrefix and http.FileServer
functions return objects that satisfy the http.Handler interface as
per the decorator pattern that we implement with our MustAuth
helper function.

In main.go, let's add an endpoint for the login page:

http.Handle("/chat", MustAuth(&templateHandler{filename:
"chat.html"}))
http.Handle("/login", &templateHandler{filename: "login.html"})
http.Handle("/room", r)

Obviously, we do not want to use the MustAuth method for our login page because
it will cause an infinite redirection loop.

Create a new file called login.html inside our templates folder, and insert the
following HTML code:

<html>
 <head>
 <title>Login</title>
 <link rel="stylesheet"

Adding Authentication

[158]

 href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/
 bootstrap.min.css">
 </head>
 <body>
 <div class="container">
 <div class="page-header">
 <h1>Sign in</h1>
 </div>
 <div class="panel panel-danger">
 <div class="panel-heading">
 <h3 class="panel-title">In order to chat, you must be
 signed in</h3>
 </div>
 <div class="panel-body">
 <p>Select the service you would like to sign in
 with:</p>

 Facebook

 GitHub

 Google

 </div>
 </div>
 </div>
 </body>
</html>

Restart the web server and navigate to http://localhost:8080/login. You will
notice that it now displays our sign-in page:

Chapter 2

[159]

Endpoints with dynamic paths
Pattern matching for the http package in the Go standard library isn't the most
comprehensive and fully featured implementation out there. For example, Ruby
on Rails makes it much easier to have dynamic segments inside the path:

"auth/:action/:provider_name"

This then provides a data map (or dictionary) containing the values that the framework
automatically extracted from the matched path. So if you visit auth/login/google,
then params[:provider_name] would equal google, and params[:action] would
equal login.

The most the http package lets us specify by default is a path prefix, which we
can do by leaving a trailing slash at the end of the pattern:

"auth/"

We would then have to manually parse the remaining segments to extract the
appropriate data. This is acceptable for relatively simple cases, which suits our
needs for the time being since we only need to handle a few different paths such as:

• /auth/login/google

• /auth/login/facebook

• /auth/callback/google

• /auth/callback/facebook

If you need to handle more advanced routing situations, you might
want to consider using dedicated packages such as Goweb, Pat,
Routes, or mux. For extremely simple cases such as ours, the built-in
capabilities will do.

We are going to create a new handler that powers our login process. In auth.go,
add the following loginHandler code:

// loginHandler handles the third-party login process.
// format: /auth/{action}/{provider}
func loginHandler(w http.ResponseWriter, r *http.Request) {
 segs := strings.Split(r.URL.Path, "/")
 action := segs[2]
 provider := segs[3]
 switch action {
 case "login":
 log.Println("TODO handle login for", provider)

Adding Authentication

[160]

 default:
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintf(w, "Auth action %s not supported", action)
 }
}

In the preceding code, we break the path into segments using strings.Split before
pulling out the values for action and provider. If the action value is known, we
will run the specific code; otherwise, we will write out an error message and return
an http.StatusNotFound status code (which in the language of HTTP status code,
is a 404 code).

We will not bullet-proof our code right now but it's worth noticing that
if someone hits loginHandler with too few segments, our code will
panic because it expects segs[2] and segs[3] to exist.

For extra credit, see whether you can protect against this and return a
nice error message instead of a panic if someone hits /auth/nonsense.

Our loginHandler is only a function and not an object that implements the http.
Handler interface. This is because, unlike other handlers, we don't need it to store
any state. The Go standard library supports this, so we can use the http.HandleFunc
function to map it in a way similar to how we used http.Handle earlier. In main.go,
update the handlers:

http.Handle("/chat", MustAuth(&templateHandler{filename:
"chat.html"}))
http.Handle("/login", &templateHandler{filename: "login.html"})
http.HandleFunc("/auth/", loginHandler)
http.Handle("/room", r)

Rebuild and run the chat application:

go build –o chat

./chat –host=":8080"

Hit the following URLs and notice the output logged in the terminal:

• http://localhost:8080/auth/login/google outputs TODO handle
login for google

• http://localhost:8080/auth/login/facebook outputs TODO handle
login for facebook

We have successfully implemented a dynamic path-matching mechanism that so
far just prints out to-do messages; next we need to write code that integrates with
the authentication services.

Chapter 2

[161]

OAuth2
OAuth2 is an open authentication and authorization standard designed to allow
resource owners to give clients delegated access to private data (such as wall posts
or tweets) via an access token exchange handshake. Even if you do not wish to access
the private data, OAuth2 is a great option that allows people to sign in using their
existing credentials, without exposing those credentials to a third-party site. In this
case, we are the third party and we want to allow our users to sign in using services
that support OAuth2.

From a user's point of view, the OAuth2 flow is:

1. A user selects provider with whom they wish to sign in to the client app.

2. The user is redirected to the provider's website (with a URL that includes the
client app ID) where they are asked to give permission to the client app.

3. The user signs in from the OAuth2 service provider and accepts the
permissions requested by the third-party application.

4. The user is redirected back to the client app with a request code.

5. In the background, the client app sends the grant code to the provider,
who sends back an auth token.

6. The client app uses the access token to make authorized requests to the
provider, such as to get user information or wall posts.

To avoid reinventing the wheel, we will look at a few open source projects that
have already solved this problem for us.

Open source OAuth2 packages
Andrew Gerrand has been working on the core Go team since February 2010,
that is two years before Go 1.0 was officially released. His goauth2 package
(see https://code.google.com/p/goauth2/) is an elegant implementation
of the OAuth2 protocol written entirely in Go.

Andrew's project inspired Gomniauth (see https://github.com/stretchr/
gomniauth). An open source Go alternative to Ruby's omniauth project, Gomniauth
provides a unified solution to access different OAuth2 services. In the future, when
OAuth3 (or whatever next-generation authentication protocol it is) comes out, in
theory, Gomniauth could take on the pain of implementing the details, leaving the
user code untouched.

https://code.google.com/p/goauth2/
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth

Adding Authentication

[162]

For our application, we will use Gomniauth to access OAuth services provided by
Google, Facebook, and GitHub, so make sure you have it installed by running the
following command:

go get github.com/stretchr/gomniauth

Some of the project dependencies of Gomniauth are kept in Bazaar
repositories, so you'll need to head over to http://wiki.bazaar.
canonical.com to download them.

Tell the authentication providers about
your app
Before we ask an authentication provider to help our users sign in, we must tell them
about our application. Most providers have some kind of web tool or console where
you can create applications to kick-start the process. Here's one from Google:

In order to identify the client application, we need to create a client ID and secret.
Despite the fact that OAuth2 is an open standard, each provider has their own
language and mechanism to set things up, so you will most likely have to play
around with the user interface or the documentation to figure it out in each case.

http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com

Chapter 2

[163]

At the time of writing this, in Google Developer Console, you navigate to APIs &

auth | Credentials and click on the Create new Client ID button.

In most cases, for added security, you have to be explicit about the host URLs
from where requests will come. For now, since we're hosting our app locally on
localhost:8080, you should use that. You will also be asked for a redirect URI that
is the endpoint in our chat application and to which the user will be redirected after
successfully signing in. The callback will be another action on our loginHandler, so
the redirection URL for the Google client will be http://localhost:8080/auth/
callback/google.

Once you finish the authentication process for the providers you want to support,
you will be given a client ID and secret for each provider. Make a note of these,
because we will need them when we set up the providers in our chat application.

If we host our application on a real domain, we have to create new
client IDs and secrets, or update the appropriate URL fields on our
authentication providers to ensure that they point to the right place.
Either way, it's not bad practice to have a different set of development
and production keys for security.

Implementing external logging in
In order to make use of the projects, clients, or accounts that we created on the
authentication provider sites, we have to tell Gomniauth which providers we want
to use, and how we will interact with them. We do this by calling the WithProviders
function on the primary Gomniauth package. Add the following code snippet to main.
go (just underneath the flag.Parse() line towards the top of the main function):

// set up gomniauth
gomniauth.SetSecurityKey("some long key")
gomniauth.WithProviders(
 facebook.New("key", "secret",
 "http://localhost:8080/auth/callback/facebook"),
 github.New("key", "secret",
 "http://localhost:8080/auth/callback/github"),
 google.New("key", "secret",
 "http://localhost:8080/auth/callback/google"),
)

Adding Authentication

[164]

You should replace the key and secret placeholders with the actual values you
noted down earlier. The third argument represents the callback URL that should
match the ones you provided when creating your clients on the provider's website.
Notice the second path segment is callback; while we haven't implemented this
yet, this is where we handle the response from the authentication process.

As usual, you will need to ensure all the appropriate packages are imported:

import (
 "github.com/stretchr/gomniauth/providers/facebook"
 "github.com/stretchr/gomniauth/providers/github"
 "github.com/stretchr/gomniauth/providers/google"
)

Gomniauth requires the SetSecurityKey call because it sends state
data between the client and server along with a signature checksum,
which ensures that the state values haven't been tempered with while
transmitting. The security key is used when creating the hash in a way
that it is almost impossible to recreate the same hash without knowing
the exact security key. You should replace some long key with a
security hash or phrase of your choice.

Logging in
Now that we have configured Gomniauth, we need to redirect users to the provider's
authentication page when they land on our /auth/login/{provider} path. We just
have to update our loginHandler function in auth.go:

func loginHandler(w http.ResponseWriter, r *http.Request) {
 segs := strings.Split(r.URL.Path, "/")
 action := segs[2]
 provider := segs[3]
 switch action {
 case "login":
 provider, err := gomniauth.Provider(provider)
 if err != nil {
 log.Fatalln("Error when trying to get provider", provider,
"-", err)
 }
 loginUrl, err := provider.GetBeginAuthURL(nil, nil)
 if err != nil {

Chapter 2

[165]

 log.Fatalln("Error when trying to GetBeginAuthURL for",
provider, "-", err)
 }
 w.Header().Set("Location",loginUrl)
 w.WriteHeader(http.StatusTemporaryRedirect)
 default:
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintf(w, "Auth action %s not supported", action)
 }
}

We do two main things here. First, we use the gomniauth.Provider function to get
the provider object that matches the object specified in the URL (such as google or
github). Then we use the GetBeginAuthURL method to get the location where we
must send users in order to start the authentication process.

The GetBeginAuthURL(nil, nil) arguments are for the state
and options respectively, which we are not going to use for our chat
application.

The first argument is a state map of data that is encoded, and signed
and sent to the authentication provider. The provider doesn't do
anything with the state, it just sends it back to our callback endpoint.
This is useful if, for example, we want to redirect the user back to
the original page they were trying to access before the authentication
process intervened. For our purpose, we have only the /chat
endpoint, so we don't need to worry about sending any state.

The second argument is a map of additional options that will be
sent to the authentication provider, which somehow modifies the
behavior of the authentication process. For example, you can specify
your own scope parameter, which allows you to make a request for
permission to access additional information from the provider. For
more information about the available options, search for OAuth2 on
the Internet or read the documentation for each provider, as these
values differ from service to service.

If our code gets no error from the GetBeginAuthURL call, we simply redirect the
user's browser to the returned URL.

Rebuild and run the chat application:

go build -o chat

./chat -host=":8080"

Adding Authentication

[166]

Open the main chat page by accessing http://localhost:8080/chat. As we aren't
logged in yet, we are redirected to our sign-in page. Click on the Google option to
sign in using your Google account, and you will notice that you are presented with
a Google-specific sign-in page (if you are not already signed in to Google). Once you
are signed in, you will be presented with a page asking you to give permission for
our chat application before you can view basic information about your account:

This is the same flow that users of our chat application will experience when
signing in.

Click on Accept and you will notice that you are redirected back to our application
code, but presented with an Auth action callback not supported error. This is
because we haven't yet implemented the callback functionality in loginHandler.

Handling the response from the provider
Once the user clicks on Accept on the provider's website (or if they click on the
equivalent of Cancel), they will be redirected back to the callback endpoint in
our application.

A quick glance at the complete URL that comes back shows us the grant code that
the provider has given us.

http://localhost:8080/auth/callback/google?code=4/Q92xJ-
BQfoX6PHhzkjhgtyfLc0Ylm.QqV4u9AbA9sYguyfbjFEsNoJKMOjQI

Chapter 2

[167]

We don't have to worry about what to do with this code because Gomniauth will
process the OAuth URL parameters for us (by sending the grant code to Google
servers and exchanging it for an access token as per the OAuth specification), so
we can simply jump to implementing our callback handler. However, it's worth
knowing that this code will be exchanged by the authentication provider for a token
that allows us to access private user data. For added security, this additional step
happens behind the scenes, from server to server rather than in the browser.

In auth.go, we are ready to add another switch case to our action path segment.
Insert the following code above the default case:

case "callback":

 provider, err := gomniauth.Provider(provider)
 if err != nil {
 log.Fatalln("Error when trying to get provider", provider, "-
", err)
 }

 creds, err :=
provider.CompleteAuth(objx.MustFromURLQuery(r.URL.RawQuery))
 if err != nil {
 log.Fatalln("Error when trying to complete auth for",
provider, "-", err)
 }

 user, err := provider.GetUser(creds)
 if err != nil {
 log.Fatalln("Error when trying to get user from", provider, "-
", err)
 }

 authCookieValue := objx.New(map[string]interface{}{
 "name": user.Name(),
 }).MustBase64()
 http.SetCookie(w, &http.Cookie{
 Name: "auth",
 Value: authCookieValue,
 Path: "/"})

 w.Header()["Location"] = []string{"/chat"}
 w.WriteHeader(http.StatusTemporaryRedirect)

Adding Authentication

[168]

When the authentication provider redirects the users back after they have granted
permission, the URL specifies that it is a callback action. We look up the authentication
provider as we did before, and call its CompleteAuth method. We parse the RawQuery
from the http.Request (the GET request that the user's browser is now making) into
objx.Map (the multi-purpose map type that Gomniauth uses) and the CompleteAuth
method uses the URL query parameter values to complete the authentication
handshake with the provider. All being well, we will be given some authorized
credentials with which we access our user's basic data. We then use the GetUser
method for the provider and Gomniauth uses the specified credentials to access
some basic information about the user.

Once we have the user data, we Base64-encode the Name field in a JSON object and
store it as the value to our auth cookie for later use.

Base64-encoding of data ensures it won't contain any special or
unpredictable characters, like passing data in a URL or storing it in a
cookie. Remember that although Base64-encoded data looks encrypted,
it is not—you can easily decode Base64-encoded data back into the
original text with little effort. There are online tools that do this for you.

After setting the cookie, we redirect the user to the chat page, which we can safely
assume was the original destination.

Once you build and run the code again and hit the /chat page, you will notice
that the signup flow works, and we are finally allowed back to the chat page. Most
browsers have an inspector or a console—a tool that allows you to view the cookies
that the server has sent you—that you can use to see whether the auth cookie has
appeared:

go build –o chat

./chat –host=":8080"

In our case, the cookie value is eyJuYW1lIjoiTWF0IFJ5ZXIifQ==, which is a
Base64-encoded version of {"name":"Mat Ryer"}. Remember, we never typed
in a name in our chat application; instead, Gomniauth asked Google for a name
when we opted to sign in with Google. Storing non-signed cookies like this is fine
for incidental information such as a user's name, however, you should avoid storing
any sensitive information using non-signed cookies, as it's easy for people to access
and change the data.

Chapter 2

[169]

Presenting the user data
Having the user data inside a cookie is a good start, but nontechnical people will
never even know it's there, so we must bring the data to the fore. We will do this
by enhancing our templateHandler method that first passes the user data into
the template's Execute method; this allows us to use template annotations in our
HTML to display the user data to the users.

Update the ServeHTTP method of our templateHandler in main.go:

func (t *templateHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 t.once.Do(func() {
 t.templ =
template.Must(template.ParseFiles(filepath.Join("templates",
t.filename)))
 })
 data := map[string]interface{}{
 "Host": r.Host,
 }
 if authCookie, err := r.Cookie("auth"); err == nil {
 data["UserData"] = objx.MustFromBase64(authCookie.Value)
 }

 t.templ.Execute(w, data)
}

Instead of just passing the entire http.Request object to our template as data,
we are creating a new map[string]interface{} definition for a data object that
potentially has two fields: Host and UserData (the latter will only appear if an auth
cookie is present). By specifying the map type followed by curly braces, we are able
to add the Host entry at the same time as making our map. We then pass this new
data object as the second argument to the Execute method on our template.

Now we add an HTML file to our template source to display the name. Update the
chatbox form in chat.html:

<form id="chatbox">
 {{.UserData.name}}:

 <textarea></textarea>
 <input type="submit" value="Send" />
</form>

Adding Authentication

[170]

The {{.UserData.name}} annotation tells the template engine to insert our user's
name before the textarea control.

Since we're using the objx package, don't forget to run go get
http://github.com/stretchr/objx, and import it.

Rebuild and run the chat application again, and you will notice the addition of your
name before the chat box:

go build -o chat

./chat –host=":8080"

Augmenting messages with additional data
So far, our chat application has only transmitted messages as slices of bytes or []
byte types between the client and the server; therefore, our forward channel for
our room has the chan []byte type. In order to send data (such as who sent it and
when) in addition to the message itself, we enhance our forward channel and also
how we interact with the web socket on both ends.

Define a new type that will replace the []byte slice by creating a new file called
message.go in the chat folder:

package main
import (
 "time"
)
// message represents a single message
type message struct {
 Name string
 Message string
 When time.Time
}

The message type will encapsulate the message string itself, but we have also added
the Name and When fields that respectively hold the user's name and a timestamp of
when the message was sent.

Chapter 2

[171]

Since the client type is responsible for communicating with the browser, it needs
to transmit and receive more than just the single message string. As we are talking
to a JavaScript application (that is the chat client running in the browser) and the Go
standard library has a great JSON implementation, this seems the perfect choice to
encode additional information in the messages. We will change the read and write
methods in client.go to use the ReadJSON and WriteJSON methods on the socket,
and we will encode and decode our new message type:

func (c *client) read() {
 for {
 var msg *message
 if err := c.socket.ReadJSON(&msg); err == nil {
 msg.When = time.Now()
 msg.Name = c.userData["name"].(string)
 c.room.forward <- msg
 } else {
 break
 }
 }
 c.socket.Close()
}
func (c *client) write() {
 for msg := range c.send {
 if err := c.socket.WriteJSON(msg); err != nil {
 break
 }
 }
 c.socket.Close()
}

When we receive a message from the browser, we will expect to populate only
the Message field, which is why we set the When and Name fields ourselves in the
preceding code.

You will notice that when you try to build the preceding code, it complains about a
few things. The main reason is that we are trying to send a *message object down
our forward and send chan []byte channels. This is not allowed until we change
the type of the channel. In room.go, change the forward field to be of type chan
*message, and do the same for the send chan type in client.go.

Adding Authentication

[172]

We must update the code that initializes our channels since the types have now
changed. Alternatively, you can wait for the compiler to raise these issues and fix
them as you go. In room.go, you need to make the following changes:

• Change forward: make(chan []byte) to forward: make(chan
*message)

• Change r.tracer.Trace("Message received: ", string(msg)) to
r.tracer.Trace("Message received: ", msg.Message)

• Change send: make(chan []byte, messageBufferSize) to send:
make(chan *message, messageBufferSize)

The compiler will also complain about the lack of user data on a client, which is a fair
point because the client type has no idea about the new user data we have added
to the cookie. Update the client struct to include a new map[string]interface{}
called userData:

// client represents a single chatting user.
type client struct {
 // socket is the web socket for this client.
 socket *websocket.Conn
 // send is a channel on which messages are sent.
 send chan *message
 // room is the room this client is chatting in.
 room *room
 // userData holds information about the user
 userData map[string]interface{}
}

The user data comes from the client cookie that we access through the http.Request
objects's Cookie method. In room.go, update ServeHTTP with the following changes:

func (r *room) ServeHTTP(w http.ResponseWriter, req *http.Request) {
 socket, err := upgrader.Upgrade(w, req, nil)
 if err != nil {
 log.Fatal("ServeHTTP:", err)
 return
 }

 authCookie, err := req.Cookie("auth")
 if err != nil {
 log.Fatal("Failed to get auth cookie:", err)
 return
 }

Chapter 2

[173]

 client := &client{
 socket: socket,
 send: make(chan *message, messageBufferSize),
 room: r,
 userData: objx.MustFromBase64(authCookie.Value),
 }
 r.join <- client
 defer func() { r.leave <- client }()
 go client.write()
 client.read()
}

We use the Cookie method on the http.Request type to get our user data before
passing it to the client. We are using the objx.MustFromBase64 method to convert
our encoded cookie value back into a usable map object.

Now that we have changed the type being sent and received on the socket from
[]byte to *message, we must tell our JavaScript client that we are sending JSON
instead of just a plain string. Also we must ask that it send JSON back to the server
when a user submits a message. In chat.html, first update the socket.send call:

socket.send(JSON.stringify({"Message": msgBox.val()}));

We are using JSON.stringify to serialize the specified JSON object (containing just
the Message field) into a string, which is then sent to the server. Our Go code will
decode (or unmarshal) the JSON string into a message object, matching the field
names from the client JSON object with those of our message type.

Finally, update the socket.onmessage callback function to expect JSON, and also
add the name of the sender to the page:

socket.onmessage = function(e) {
 var msg = eval("("+e.data+")");
 messages.append(
 $("").append(
 $("").text(msg.Name + ": "),
 $("").text(msg.Message)
)
);
}

In the preceding code snippet, we've used JavaScript's eval function to turn the
JSON string into a JavaScript object, and then access the fields to build up the
elements needed to properly display them.

Adding Authentication

[174]

Build and run the application, and if you can, log in with two different accounts in
two different browsers (or invite a friend to help you test it):

go build -o chat

./chat -host=":8080"

The following screenshot shows the chat application's browser chat screens:

Summary
In this chapter, we added a useful and necessary feature to our chat application
by asking users to authenticate themselves using OAuth2 service providers, before
allowing them to join the conversation. We made use of several open source packages
such as Objx and Gomniauth, which dramatically reduced the amount of multi-server
complexity we would otherwise need to deal with.

We implemented a pattern when we wrapped http.Handler types to allow us
to easily specify which paths require the user to be authenticated, and which were
available even without an auth cookie. Our MustAuth helper function allowed us
to generate the wrapper types in a fluent and simple way, without adding clutter
and confusion to our code.

Chapter 2

[175]

We saw how to use cookies and Base64-encoding to safely (although not securely)
store the state of particular users in their browser, and to make use of that data over
normal connections and through web sockets. We took more control of the data
available to our templates in order to provide the name of the user to the UI, and
saw how to only provide certain data under specific conditions.

Since we needed to send and receive additional information over the web socket, we
learned how easy it was to change channels of native types into channels that work
with types of our own such as our message type. We also learned how to transmit
JSON objects over the socket, rather than just slices of bytes. Thanks to the type safety
of Go, and the ability to specify types for channels, the compiler helps ensure that we
do not send anything other than message objects through chan *message. Attempting
to do so would result in a compiler error, alerting us to the fact right away.

To see the name of the person chatting is a great leap forward in usability from the
application we built in the previous chapter, but it's very formal and might not attract
modern users of the Web, who are used to a much more visual experience. We are
missing pictures of people chatting, and in the next chapter, we will explore different
ways in which we can allow users to better represent themselves in our application.

As an extra assignment, see if you can make use of the time.Time field that we put
into the message type to tell users when the messages were sent.

Three Ways to Implement
Profile Pictures

So far, our chat application has made use of the OAuth2 protocol to allow users to
sign in to our application so that we know who is saying what. In this chapter, we
are going to add profile pictures to make the chatting experience more engaging.

We will look at the following ways to add pictures or avatars alongside the messages
in our application:

• Using the avatar picture provided by the authentication server

• Using the Gravatar.com web service to look up a picture by the user's
e-mail address

• Allowing the user to upload their own picture and host it themselves

The first two options allow us to delegate the hosting of pictures to a third
party—either an authentication service or Gravatar.com—which is great
because it reduces the cost of hosting our application (in terms of storage costs
and bandwidth, since the user's browsers will actually download the pictures
from the servers of the authenticating service, not ours). The third option requires
us to host pictures ourselves at a location that is web accessible.

These options aren't mutually exclusive; you will most likely use some combination
of them in a real-world production application. Towards the end of the chapter, we
will see how the flexible design that emerges allows us to try each implementation
in turn, until we find an appropriate avatar.

Gravatar.com
Gravatar.com

Three Ways to Implement Profile Pictures

[178]

We are going to be agile with our design throughout this chapter, doing the minimum
work needed to accomplish each milestone. This means that at the end of each section,
we will have working implementations that are demonstrable in the browser. This also
means that we will refactor code as and when we need to and discuss the rationale
behind the decisions we make as we go.

Specifically, in this chapter, you will learn the following:

• What are good practices to get additional information from authentication
services, even when there are no standards in place

• When it is appropriate to build abstractions into our code

• How Go's zero-initialization pattern can save time and memory

• How reusing an interface allows us to work with collections and individual
objects in the same way as the existing interface did

• How to use the Gravatar.com web service

• How to do MD5 hashing in Go

• How to upload files over HTTP and store them on a server
• How to serve static files through a Go web server
• How to use unit tests to guide the refactoring of code

• How and when to abstract functionality from struct types into interfaces

Avatars from the authentication server
It turns out that most authentication servers already have images for their users,
and they make them available through the protected user resource that we already
know how to access in order to get our users' names. To use this avatar picture, we
need to get the URL from the provider, store it in the cookie for our user, and send
it through a web socket so that every client can render the picture alongside the
corresponding message.

Getting the avatar URL
The schema for user or profile resources is not part of the OAuth2 spec, which means
that each provider is responsible for deciding how to represent that data. Indeed,
providers do things differently, for example, the avatar URL in a GitHub user
resource is stored in a field called avatar_url, whereas in Google, the same field
is called picture. Facebook goes even further by nesting the avatar URL value in a
url field inside an object called picture. Luckily, Gomniauth abstracts this for us;
its GetUser call on a provider standardizes the interface to get common fields.

Gravatar.com

Chapter 3

[179]

In order to make use of the avatar URL field, we need to go back and store its
information in our cookie. In auth.go, look inside the callback action switch
case and update the code that creates the authCookieValue object as follows:

authCookieValue := objx.New(map[string]interface{}{
 "name": user.Name(),
 "avatar_url": user.AvatarURL(),
}).MustBase64()

The AvatarURL method called in the preceding code will return the appropriate URL
value which we then store in the avatar_url field which will be stored in the cookie.

Gomniauth defines a User type of interface and each provider
implements their own version. The generic map[string]interface{}
data returned from the authentication server is stored inside each object,
and the method calls access the appropriate value using the right field
name for that provider. This approach—describing the way information
is accessed without being strict about implementation details—is a great
use of interfaces in Go.

Transmitting the avatar URL
We need to update our message type so that it can also carry with it the avatar URL.
In message.go, add the AvatarURL string field:

type message struct {
 Name string
 Message string
 When time.Time
 AvatarURL string
}

So far, we have not actually assigned a value to AvatarURL like we do for the Name
field, so we must update our read method in client.go:

func (c *client) read() {
 for {
 var msg *message
 if err := c.socket.ReadJSON(&msg); err == nil {
 msg.When = time.Now()
 msg.Name = c.userData["name"].(string)
 if avatarUrl, ok := c.userData["avatar_url"]; ok {
 msg.AvatarURL = avatarUrl.(string)
 }
 c.room.forward <- msg
 } else {

Three Ways to Implement Profile Pictures

[180]

 break
 }
 }
 c.socket.Close()
}

All we have done here is we took the value from the userData field that represents
what we put into the cookie and assigned it to the appropriate field in message if
the value was present in the map. We will now take the additional step of checking
whether the value is present because we cannot guarantee that the authentication
service will provide a value for this field. And since it could be nil, it might cause
a panic to assign it to a string type if it's actually missing.

Adding the avatar to the user interface
Now that our JavaScript client gets an avatar URL value via the socket, we can use
it to display the image alongside the messages. We do this by updating the socket.
onmessage code in chat.html:

socket.onmessage = function(e) {
 var msg = eval("("+e.data+")");
 messages.append(
 $("").append(
 $("").css({
 width:50,
 verticalAlign:"middle"
 }).attr("src", msg.AvatarURL),
 $("").text(msg.Name + ": "),
 $("").text(msg.Message)
)
);
}

When we receive a message, we will insert an img tag with the source set to the
AvatarURL field from the message. We will use jQuery's css method to force a
width of 50 pixels. This protects us from massive pictures spoiling our interface
and allows us to align the image to the middle of the surrounding text.

If we build and run our application having logged in with a previous version,
you will find that the auth cookie that doesn't contain the avatar URL is still there.
We are not asked to sign in again (since we are already logged in), and the code
that adds the avatar_url field never gets a chance to run. We could delete our
cookie and refresh the page, but we would have to keep doing so whenever we
make changes during development. Let's solve this problem properly by adding
a logout feature.

Chapter 3

[181]

Logging out
The simplest way to log a user out is to get rid of the auth cookie and redirect the
user to the chat page, which will in turn cause a redirect to the login page since we
just removed the cookie. We do this by adding a new HandleFunc call to main.go:

http.HandleFunc("/logout", func(w http.ResponseWriter, r
*http.Request) {
 http.SetCookie(w, &http.Cookie{
 Name: "auth",
 Value: "",
 Path: "/",
 MaxAge: -1,
 })
 w.Header()["Location"] = []string{"/chat"}
 w.WriteHeader(http.StatusTemporaryRedirect)
})

The preceding handler function uses http.SetCookie to update the cookie setting
MaxAge to -1, which indicates that it should be deleted immediately by the browser.
Not all browsers are forced to delete the cookie, which is why we also provide a new
Value setting of an empty string, thus removing the user data that would previously
have been stored.

As an additional assignment, you can bulletproof your app a little by
updating the first line in ServeHTTP for your authHandler in auth.
go to make it cope with the empty-value case as well as the missing-
cookie case:

if cookie, err := r.Cookie("auth"); err ==
http.ErrNoCookie || cookie.Value == ""

Instead of ignoring the return of r.Cookie, we keep a reference to the
returned cookie (if there was actually one) and also add an additional
check to see whether the Value string of the cookie is empty or not.

Before we continue, let's add a Sign Out link to make it even easier to get rid of the
cookie, and also to allow our users to log out. In chat.html, update the chatbox
form to insert a simple HTML link to the new /logout handler:

<form id="chatbox">
 {{.UserData.name}}:

 <textarea></textarea>
 <input type="submit" value="Send" />
 or sign out
</form>

Three Ways to Implement Profile Pictures

[182]

Now build and run the application and open a browser to localhost:8080/chat:

go build –o chat

./chat –host=:8080

Log out if you need to and log back in. When you click on Send, you will see your
avatar picture appear next to your messages.

Making things prettier
Our application is starting to look a little ugly, and it's time to do something about
it. In the previous chapter, we implemented the Bootstrap library into our login page,
and we are now going to extend its use to our chat page. We will make three changes
in chat.html: include Bootstrap and tweak the CSS styles for our page, change the
markup for our form, and tweak how we render messages on the page.

First, let's update the style tag at the top of the page and insert a link tag above it
to include Bootstrap:

<link rel="stylesheet"
href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.
css">
<style>
 ul#messages { list-style: none; }
 ul#messages li { margin-bottom: 2px; }

Chapter 3

[183]

 ul#messages li img { margin-right: 10px; }
</style>

Next, let's replace the markup at the top of the body tag (before the script tags)
with the following code:

<div class="container">
 <div class="panel panel-default">
 <div class="panel-body">
 <ul id="messages">
 </div>
 </div>
 <form id="chatbox" role="form">
 <div class="form-group">
 <label for="message">Send a message as
 {{.UserData.name}}</label> or Sign
 out
 <textarea id="message" class="form-control"></textarea>
 </div>
 <input type="submit" value="Send" class="btn btn-default" />
 </form>
</div>

This markup follows Bootstrap standards of applying appropriate classes to various
items, for example, the form-control class neatly formats elements within form
(you can check out the Bootstrap documentation for more information on what
these classes do).

Finally, let's update our socket.onmessage JavaScript code to put the sender's
name as the title attribute for our image. This makes our app display the image
when you hover the mouse over it rather than displaying it next to every message:

socket.onmessage = function(e) {
 var msg = eval("("+e.data+")");
 messages.append(
 $("").append(
 $("").attr("title", msg.Name).css({
 width:50,
 verticalAlign:"middle"
 }).attr("src", msg.AvatarURL),
 $("").text(msg.Message)
)
);
}

Three Ways to Implement Profile Pictures

[184]

Build and run the application and refresh your browser to see whether a new
design appears:

go build –o chat

./chat –host=:8080

The preceding command shows the following output:

With relatively few changes to the code, we have dramatically improved the look
and feel of our application.

Implementing Gravatar
Gravatar is a web service that allows users to upload a single profile
picture and associate it with their e-mail address to make it available from
any website. Developers, like us, can access those images for our application,
just by performing a GET operation on a specific API endpoint. In this section,
we will see how to implement Gravatar rather than use the picture provided
by the authentication service.

Chapter 3

[185]

Abstracting the avatar URL process
Since we have three different ways of obtaining the avatar URL in our application,
we have reached the point where it would be sensible to learn how to abstract the
functionality in order to cleanly implement the options. Abstraction refers to a
process in which we separate the idea of something from its specific implementation.
http.Handler is a great example of how a handler will be used along with its ins
and outs, without being specific about what action is taken by each handler.

In Go, we start to describe our idea of getting an avatar URL by defining an interface.
Let's create a new file called avatar.go and insert the following code:

package main
import (
 "errors"
)
// ErrNoAvatar is the error that is returned when the
// Avatar instance is unable to provide an avatar URL.
var ErrNoAvatarURL = errors.New("chat: Unable to get an avatar
URL.")
// Avatar represents types capable of representing
// user profile pictures.
type Avatar interface {
 // GetAvatarURL gets the avatar URL for the specified client,
 // or returns an error if something goes wrong.
 // ErrNoAvatarURL is returned if the object is unable to get
 // a URL for the specified client.
 GetAvatarURL(c *client) (string, error)
}

The Avatar interface describes the GetAvatarURL method that a type must satisfy in
order to be able to get avatar URLs. We took the client as an argument so that we know
for which user to return the URL. The method returns two arguments: a string (which
will be the URL if things go well) and an error in case something goes wrong.

One of the things that could go wrong is simply that one of the specific
implementations of Avatar is unable to get the URL. In that case, GetAvatarURL
will return the ErrNoAvatarURL error as the second argument. The ErrNoAvatarURL
error therefore becomes a part of the interface; it's one of the possible returns from
the method and something that users of our code should probably explicitly handle.
We mention this in the comments part of the code for the method, which is the only
way to communicate such design decisions in Go.

Three Ways to Implement Profile Pictures

[186]

Because the error is initialized immediately using errors.New and
stored in the ErrNoAvatarURL variable, only one of these objects
will ever be created; passing the pointer of the error as a return is very
inexpensive. This is unlike Java's checked exceptions—which serve a
similar purpose—where expensive exception objects are created and
used as part of the control flow.

The authentication service and avatar's
implementation
The first implementation of Avatar we write will replace the existing functionality
where we hardcoded the avatar URL obtained from the authentication service. Let's
use a Test-driven Development (TDD) approach so we can be sure our code works
without having to manually test it. Let's create a new file called avatar_test.go in
the chat folder:

package main
import "testing"
func TestAuthAvatar(t *testing.T) {
 var authAvatar AuthAvatar
 client := new(client)
 url, err := authAvatar.GetAvatarURL(client)
 if err != ErrNoAvatarURL {
 t.Error("AuthAvatar.GetAvatarURL should return ErrNoAvatarURL
when no value present")
 }
 // set a value
 testUrl := "http://url-to-gravatar/"
 client.userData = map[string]interface{}{"avatar_url": testUrl}
 url, err = authAvatar.GetAvatarURL(client)
 if err != nil {
 t.Error("AuthAvatar.GetAvatarURL should return no error when
value present")
 } else {
 if url != testUrl {
 t.Error("AuthAvatar.GetAvatarURL should return correct URL")
 }
 }
}

Chapter 3

[187]

This test file contains a test for our as-of-yet nonexistent AuthAvatar type's
GetAvatarURL method. First, it uses a client with no user data and ensures that
the ErrNoAvatarURL error is returned. After setting a suitable value, our test calls
the method again—this time to assert that it returns the correct value. However,
building this code fails because the AuthAvatar type doesn't exist, so we'll declare
authAvatar next.

Before we write our implementation, it's worth noticing that we only declare the
authAvatar variable as the AuthAvatar type, but never actually assign anything to
it so its value remains nil. This is not a mistake; we are actually making use of Go's
zero-initialization (or default initialization) capabilities. Since there is no state needed
for our object (we will pass client as an argument), there is no need to waste time and
memory on initializing an instance of it. In Go, it is acceptable to call a method on a nil
object, provided that the method doesn't try to access a field. When we actually come
to writing our implementation, we will look at a way in which we can ensure this is
the case.

Let's head back over to avatar.go and make our test pass. Add the following code
to the bottom of the file:

type AuthAvatar struct{}
var UseAuthAvatar AuthAvatar
func (_ AuthAvatar) GetAvatarURL(c *client) (string, error) {
 if url, ok := c.userData["avatar_url"]; ok {
 if urlStr, ok := url.(string); ok {
 return urlStr, nil
 }
 }
 return "", ErrNoAvatarURL
}

Here, we define our AuthAvatar type as an empty struct and define the
implementation of the GetAvatarURL method. We also create a handy variable
called UseAuthAvatar that has the AuthAvatar type but which remains of nil
value. We can later assign the UseAuthAvatar variable to any field looking for
an Avatar interface type.

Normally, the receiver of a method (the type defined in parentheses before the
name) will be assigned to a variable so that it can be accessed in the body of the
method. Since, in our case, we assume the object can have nil value, we can use
an underscore to tell Go to throw away the reference. This serves as an added
reminder to ourselves that we should avoid using it.

Three Ways to Implement Profile Pictures

[188]

The body of our implementation is otherwise relatively simple: we are safely looking
for the value of avatar_url and ensuring it is a string before returning it. If anything
fails along the way, we return the ErrNoAvatarURL error as defined in the interface.

Let's run the tests by opening a terminal and then navigating to the chat folder and
typing the following:

go test

All being well, our tests will pass and we will have successfully created our first
Avatar implementation.

Using an implementation
When we use an implementation, we could refer to either the helper variables
directly or create our own instance of the interface whenever we need the functionality.
However, this would defeat the very object of the abstraction. Instead, we use the
Avatar interface type to indicate where we need the capability.

For our chat application, we will have a single way to obtain an avatar URL per chat
room. So let's update the room type so it can hold an Avatar object. In room.go, add
the following field definition to the type room struct:

// avatar is how avatar information will be obtained.
avatar Avatar

Update the newRoom function so we can pass in an Avatar implementation for use;
we will just assign this implementation to the new field when we create our room
instance:

// newRoom makes a new room that is ready to go.
func newRoom(avatar Avatar) *room {
 return &room{
 forward: make(chan *message),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
 tracer: trace.Off(),
 avatar: avatar,
 }
}

Building the project now will highlight the fact that the call to newRoom in main.go is
broken because we have not provided an Avatar argument; let's update it by passing
in our handy UseAuthAvatar variable as follows:

r := newRoom(UseAuthAvatar)

Chapter 3

[189]

We didn't have to create an instance of AuthAvatar, so no memory was allocated.
In our case, this doesn't result in great savings (since we only have one room for our
whole application), but imagine the size of the potential savings if our application
has thousands of rooms. The way we named the UseAuthAvatar variable means that
the preceding code is very easy to read and it also makes our intention obvious.

Thinking about code readability is important when designing
interfaces. Consider a method that takes a Boolean input—just passing
in true or false hides the real meaning if you don't know the argument
names. Consider defining a couple of helper constants as in the
following short example:

func move(animated bool) { /* ... */ }

const Animate = true

const DontAnimate = false

Think about which of the following calls to move are easier to
understand:

move(true)

move(false)

move(Animate)
move(DontAnimate)

All that is left now is to change client to use our new Avatar interface. In client.
go, update the read method as follows:

func (c *client) read() {
 for {
 var msg *message
 if err := c.socket.ReadJSON(&msg); err == nil {
 msg.When = time.Now()
 msg.Name = c.userData["name"].(string)
 msg.AvatarURL, _ = c.room.avatar.GetAvatarURL(c)
 c.room.forward <- msg
 } else {
 break
 }
 }
 c.socket.Close()
}

Here, we are asking the avatar instance on room to get the avatar URL for us instead
of extracting it from userData ourselves.

Three Ways to Implement Profile Pictures

[190]

When you build and run the application, you will notice that (although we have
refactored things a little) the behavior and user experience hasn't changed at all.
This is because we told our room to use the AuthAvatar implementation.

Now let's add another implementation to the room.

Gravatar implementation
The Gravatar implementation in Avitar will do the same job as the AuthAvatar
implementation, except it will generate a URL for a profile picture hosted on
Gravatar.com. Let's start by adding a test to our avatar_test.go file:

func TestGravatarAvatar(t *testing.T) {
 var gravatarAvitar GravatarAvatar
 client := new(client)
 client.userData = map[string]interface{}{"email":
"MyEmailAddress@example.com"}
 url, err := gravatarAvitar.GetAvatarURL(client)
 if err != nil {
 t.Error("GravatarAvitar.GetAvatarURL should not return an
error")
 }
 if url !=
"//www.gravatar.com/avatar/0bc83cb571cd1c50ba6f3e8a78ef1346" {
 t.Errorf("GravatarAvitar.GetAvatarURL wrongly returned %s",
url)
 }
}

Gravatar uses a hash of the e-mail address to generate a unique ID for each profile
picture, so we set up a client and ensure userData contains an e-mail address. Next,
we call the same GetAvatarURL method, but this time on an object that has the
GravatarAvatar type. We then assert that a correct URL was returned. We already
know this is the appropriate URL for the specified e-mail address because it is listed
as an example in the Gravatar documentation—a great strategy to ensure our code is
doing what it should be.

Recall that all the source code for this book is available on GitHub.
You can save time on building the preceding core by copying and
pasting bits and pieces from https://github.com/matryer/
goblueprints. Hardcoding things such as the base URL is not
usually a good idea; we have hardcoded throughout the book to
make the code snippets easier to read and more obvious, but you
are welcome to extract them as you go along if you like.

Gravatar.com
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Chapter 3

[191]

Running these tests (with go test) obviously causes errors because we haven't
defined our types yet. Let's head back to avatar.go and add the following code
while being sure to import the io package:

type GravatarAvatar struct{}
var UseGravatar GravatarAvatar
func (_ GravatarAvatar) GetAvatarURL(c *client) (string, error) {
 if email, ok := c.userData["email"]; ok {
 if emailStr, ok := email.(string); ok {
 m := md5.New()
 io.WriteString(m, strings.ToLower(emailStr))
 return fmt.Sprintf("//www.gravatar.com/avatar/%x",
m.Sum(nil)), nil
 }
 }
 return "", ErrNoAvatarURL
}

We used the same pattern as we did for AuthAvatar: we have an empty struct, a
helpful UseGravatar variable, and the GetAvatarURL method implementation itself.
In this method, we follow Gravatar's guidelines to generate an MD5 hash from the
e-mail address (after we ensured it was lowercase) and append it to the hardcoded
base URL.

It is very easy to achieve hashing in Go, thanks to the hard work put in by the
writers of the Go standard library. The crypto package has an impressive array of
cryptography and hashing capabilities—all very easy to use. In our case, we create
a new md5 hasher; because the hasher implements the io.Writer interface, we can
use io.WriteString to write a string of bytes to it. Calling Sum returns the current
hash for the bytes written.

You might have noticed that we end up hashing the e-mail address every
time we need the avatar URL. This is pretty inefficient, especially at scale,
but we should prioritize getting stuff done over optimization. If we need
to, we can always come back later and change the way this works.

Running the tests now shows us that our code is working, but we haven't yet
included an e-mail address in the auth cookie. We do this by locating the code where
we assign to the authCookieValue object in auth.go and updating it to grab the
Email value from Gomniauth:

authCookieValue := objx.New(map[string]interface{}{
 "name": user.Name(),

Three Ways to Implement Profile Pictures

[192]

 "avatar_url": user.AvatarURL(),
 "email": user.Email(),
}).MustBase64()

The final thing we must do is tell our room to use the Gravatar implementation
instead of the AuthAvatar implementation. We do this by calling newRoom in main.
go and making the following change:

r := newRoom(UseGravatar)

Build and run the chat program once again and head to the browser. Remember,
since we have changed the information stored in the cookie, we must sign out and
sign back in again in order to see our changes take effect.

Assuming you have a different image for your Gravatar account, you will notice
that the system is now pulling the image from Gravatar instead of the authentication
provider. Using your browser's inspector or debug tool will show you that the src
attribute of the img tag has indeed changed.

If you don't have a Gravatar account, you'll likely see a default placeholder image
in place of your profile picture.

Chapter 3

[193]

Uploading an avatar picture
In the third and final approach of uploading a picture, we will look at how to allow
users to upload an image from their local hard drive to use as their profile picture
when chatting. We will need a way to associate a file with a particular user to ensure
that we associate the right picture with the corresponding messages.

User identification
In order to uniquely identify our users, we are going to copy Gravatar's approach by
hashing their e-mail address and using the resulting string as an identifier. We will
store the user ID in the cookie along with the rest of the user-specific data. This will
actually have the added benefit of removing from GravatarAuth the inefficiency
associated with continuous hashing.

In auth.go, replace the code that creates the authCookieValue object with the
following code:

m := md5.New()
io.WriteString(m, strings.ToLower(user.Name()))
userId := fmt.Sprintf("%x", m.Sum(nil))
// save some data
authCookieValue := objx.New(map[string]interface{}{
 "userid": userId,
 "name": user.Name(),
 "avatar_url": user.AvatarURL(),
 "email": user.Email(),
}).MustBase64()

Here we have hashed the e-mail address and stored the resulting value in the userid
field at the point at which the user logs in. Henceforth, we can use this value in our
Gravatar code instead of hashing the e-mail address for every message. To do this,
first we update the test by removing the following line from avatar_test.go:

client.userData = map[string]interface{}{"email":
"MyEmailAddress@example.com"}

We then replace the preceding line with this line:

client.userData = map[string]interface{}{"userid":
"0bc83cb571cd1c50ba6f3e8a78ef1346"}

Three Ways to Implement Profile Pictures

[194]

We no longer need to set the email field since it is not used; instead, we just have
to set an appropriate value to the new userid field. However, if you run go test
in a terminal, you will see this test fail.

To make the test pass, in avatar.go, update the GetAvatarURL method for the
GravatarAuth type:

func (_ GravatarAvatar) GetAvatarURL(c *client) (string, error) {
 if userid, ok := c.userData["userid"]; ok {
 if useridStr, ok := userid.(string); ok {
 return "//www.gravatar.com/avatar/" + useridStr, nil
 }
 }
 return "", ErrNoAvatarURL
}

This won't change the behavior, but it allows us to make an unexpected
optimization, which is a great example of why you shouldn't optimize code
too early—the inefficiencies that you spot early on may not last long enough
to warrant the effort required to fix them.

An upload form
If our users are to upload a file as their avatar, they need a way to browse their
local hard drive and submit the file to the server. We facilitate this by adding a
new template-driven page. In the chat/templates folder, create a file called
upload.html:

<html>
 <head>
 <title>Upload</title>
 <link rel="stylesheet"
 href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/
 bootstrap.min.css">
 </head>
 <body>
 <div class="container">
 <div class="page-header">
 <h1>Upload picture</h1>
 </div>
 <form role="form" action="/uploader"
 enctype="multipart/form-data" method="post">
 <input type="hidden" name="userid"
 value="{{.UserData.userid}}" />

Chapter 3

[195]

 <div class="form-group">
 <label for="message">Select file</label>
 <input type="file" name="avatarFile" />
 </div>
 <input type="submit" value="Upload" class="btn " />
 </form>
 </div>
 </body>
</html>

We used Bootstrap again to make our page look nice and also to make it fit in with the
other pages. However, the key point to note here is the HTML form that will provide
the user interface necessary for uploading files. The action points to /uploader, the
handler for which we have yet to implement, and the enctype attribute must be
multipart/form-data so the browser can transmit binary data over HTTP. Then,
there is an input element of the type file, which will contain the reference to the
file we want to upload. Notice also that we have included the userid value from the
UserData map as a hidden input—this will tell us which user is uploading a file. It is
important that the name attributes are correct, as this is how we will refer to the data
when we implement our handler on the server.

Let's now map the new template to the /upload path in main.go:

http.Handle("/upload", &templateHandler{filename: "upload.html"})

Handling the upload
When the user clicks on Upload after selecting a file, the browser will send the
data for the file as well as the user ID to /uploader, but right now, that data doesn't
actually go anywhere. We will implement a new HandlerFunc that is capable of
receiving the file, reading the bytes that are streamed through the connection, and
saving it as a new file on the server. In the chat folder, let's create a new folder
called avatars—this is where we will save the avatar image files.

Next, create a new file called upload.go and insert the following code—make sure
to add the appropriate package name and imports (which are ioutils, net/http,
io, and path):

func uploaderHandler(w http.ResponseWriter, req *http.Request) {
 userId := req.FormValue("userid")
 file, header, err := req.FormFile("avatarFile")
 if err != nil {
 io.WriteString(w, err.Error())
 return
 }

Three Ways to Implement Profile Pictures

[196]

 data, err := ioutil.ReadAll(file)
 if err != nil {
 io.WriteString(w, err.Error())
 return
 }
 filename := path.Join("avatars", userId+path.Ext(header.Filename))
 err = ioutil.WriteFile(filename, data, 0777)
 if err != nil {
 io.WriteString(w, err.Error())
 return
 }
 io.WriteString(w, "Successful")
}

Here, first uploaderHandler uses the FormValue method on http.Request
to get the user ID that we placed in the hidden input in our HTML form. Then it
gets an io.Reader type capable of reading the uploaded bytes by calling req.
FormFile, which returns three arguments. The first argument represents the file
itself with the multipart.File interface type, which is also an io.Reader. The
second is a multipart.FileHeader object that contains metadata about the file,
such as the filename. And finally, the third argument is an error that we hope
will have a nil value.

What do we mean when we say that the multipart.File interface type is also
an io.Reader? Well, a quick glance at the documentation at http://golang.org/
pkg/mime/multipart/#File makes it clear that the type is actually just a wrapper
interface for a few other more general interfaces. This means that a multipart.
File type can be passed to methods that require io.Reader, since any object
that implements multipart.File must therefore implement io.Reader.

Embedding standard library interfaces to describe new concepts
is a great way to make sure your code works in as many contexts
as possible. Similarly, you should try to write code that uses the
simplest interface type you can find, ideally from the standard
library. For example, if you wrote a method that needed to read the
contents of a file, you could ask the user to provide an argument of
the type multipart.File. However, if you ask for io.Reader
instead, your code will become significantly more flexible because
any type that has the appropriate Read method can be passed in,
which includes user-defined types too.

http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File

Chapter 3

[197]

The ioutil.ReadAll method will just keep reading from the specified io.Reader
until all of the bytes have been received, so this is where we actually receive the
stream of bytes from the client. We then use path.Join and path.Ext to build a
new filename using userid, and copy the extension from the original filename
that we can get from multipart.FileHeader.

We then use the ioutil.WriteFile method to create a new file in the avatars
folder. We use userid in the filename to associate the image with the correct user,
much in the same way as Gravatar does. The 0777 value specifies that the new file
we create has full file permissions, which is a good default setting if you're not sure
what other permissions should be set.

If an error occurs at any stage, our code will write it out to the response, which will
help us debug it, or it will write Successful if everything went well.

In order to map this new handler function to /uploader, we need to head back to
main.go and add the following line to func main:

http.HandleFunc("/uploader", uploaderHandler)

Now build and run the application and remember to log out and log back in again
to give our code a chance to upload the auth cookie.

go build -o chat

./chat -host=:8080

Open http://localhost:8080/upload and click on Choose File, then select a file
from your hard drive and click on Upload. Navigate to your chat/avatars folder
and you will notice that the file was indeed uploaded and renamed to the value of
your userid field.

Serving the images
Now that we have a place to keep our users' avatar images on the server, we need
a way to make them accessible to the browser. We do this by using the net/http
package's built-in file server. In main.go, add the following code:

http.Handle("/avatars/",
 http.StripPrefix("/avatars/",
 http.FileServer(http.Dir("./avatars"))))

Three Ways to Implement Profile Pictures

[198]

This is actually a single line of code that has been broken up to improve readability.
The http.Handle call should feel familiar: we are specifying that we want to map
the /avatars/ path with the specified handler—this is where things get interesting.
Both http.StripPrefix and http.FileServer return Handler, and they make use
of the decorator pattern we learned about in the previous chapter. The StripPrefix
function takes Handler in, modifies the path by removing the specified prefix, and
passes functionality onto an inner handler. In our case, the inner handler is an http.
FileServer handler that will simply serve static files, provide index listings, and
generate the 404 Not Found error if it cannot find the file. The http.Dir function
allows us to specify which folder we want to expose publicly.

If we didn't strip the /avatars/ prefix from the requests with http.StripPrefix,
the file server would look for another folder called avatars inside the actual avatars
folder, that is, /avatars/avatars/filename instead of /avatars/filename.

Let's build the program and run it before opening http://localhost:8080/
avatars/ in a browser. You'll notice that the file server has generated a listing of
the files inside our avatars folder. Clicking on a file will either download the file,
or in the case of an image, simply display it. If you haven't done so already, go to
http://localhost:8080/upload and upload a picture, then head back to the
listing page and click on it to see it in the browser.

The Avatar implementation for local files
The final piece to making filesystem avatars work is to write an implementation
of our Avatar interface that generates URLs that point to the filesystem endpoint
we created in the last section.

Let's add a test function to our avatar_test.go file:

func TestFileSystemAvatar(t *testing.T) {

 // make a test avatar file
 filename := path.Join("avatars", "abc.jpg")
 ioutil.WriteFile(filename, []byte{}, 0777)
 defer func() { os.Remove(filename) }()

 var fileSystemAvatar FileSystemAvatar
 client := new(client)
 client.userData = map[string]interface{}{"userid": "abc"}
 url, err := fileSystemAvatar.GetAvatarURL(client)
 if err != nil {
 t.Error("FileSystemAvatar.GetAvatarURL should not return an
error")

Chapter 3

[199]

 }
 if url != "/avatars/abc.jpg" {
 t.Errorf("FileSystemAvatar.GetAvatarURL wrongly returned %s",
url)
 }
}

This test is similar to, but slightly more involved than, the GravatarAvatar test
because we are also creating a test file in our avatars folder and deleting it afterwards.

The defer keyword is a great way to ensure the code runs regardless
of what happens in the rest of the function. Even if our test code
panics, the deferred functions will still be called.

The rest of the test is simple: we set a userid field in client.userData and call
GetAvatarURL to ensure we get back the right value. Of course, running this test
will fail, so let's go and add the following code to make it pass in avatar.go:

type FileSystemAvatar struct{}
var UseFileSystemAvatar FileSystemAvatar
func (_ FileSystemAvatar) GetAvatarURL(c *client) (string, error) {
 if userid, ok := c.userData["userid"]; ok {
 if useridStr, ok := userid.(string); ok {
 return "/avatars/" + useridStr + ".jpg", nil
 }
 }
 return "", ErrNoAvatarURL
}

As we see here, to generate the correct URL, we simply get the userid value and
build the final string by adding the appropriate segments together. You may have
noticed that we have hardcoded the file extension to .jpg, which means that the
initial version of our chat application will only support JPEGs.

Supporting only JPEGs might seem like a half-baked solution, but
following Agile methodologies, this is perfectly fine; after all, custom
JPEG profile pictures are better than no custom profile pictures at all.

Let's see our new code in action by updating main.go to use our new Avatar
implementation:

r := newRoom(UseFileSystemAvatar)

Three Ways to Implement Profile Pictures

[200]

Now build and run the application as usual and go to http://localhost:8080/
upload and use a web form to upload a JPEG image to use as your profile picture.
To make sure it's working correctly, choose a unique image that isn't your Gravatar
picture or the image from the authentication service. Once you see the successful
message after clicking on Upload, go to http://localhost:8080/chat and post
a message. You will notice that the application has indeed used the profile picture
that you uploaded.

To change your profile picture, go back to the /upload page and upload a different
picture, then jump back to the /chat page and post more messages.

Supporting different file types
To support different file types, we have to make our GetAvatarURL method for the
FileSystemAvatar type a little smarter.

Instead of just blindly building the string, we will use the very useful ioutil.
ReadDir method to get a listing of the files. The listing also includes directories,
so we will use the IsDir method to determine whether we should skip it or not.

We will then check to see whether each file starts with the userid field (remember
that we named our files in this way) by a call to path.Match. If the filename matches
the userid field, then we have found the file for that user and we return the path. If
anything goes wrong or if we can't find the file, we return the ErrNoAvatarURL error
as usual.

Update the appropriate method in avatar.go with the following code:

func (_ FileSystemAvatar) GetAvatarURL(c *client) (string, error) {
 if userid, ok := c.userData["userid"]; ok {
 if useridStr, ok := userid.(string); ok {
 if files, err := ioutil.ReadDir("avatars"); err == nil {
 for _, file := range files {
 if file.IsDir() {
 continue
 }
 if match, _ := path.Match(useridStr+"*", file.Name());
match {
 return "/avatars/" + file.Name(), nil
 }
 }
 }
 }
 }
 return "", ErrNoAvatarURL
}

Chapter 3

[201]

Delete all the files in the avatar folder to prevent confusion and rebuild the program.
This time upload an image of a different type and notice that our application has no
difficulty handling it.

Refactoring and optimizing our code
When we look back at how our Avatar type is used, you will notice that every
time someone sends a message, the application makes a call to GetAvatarURL. In our
latest implementation, each time the method is called, we iterate over all the files in
the avatars folder. For a particularly chatty user, this could mean that we end up
iterating over and over again many times a minute. This is an obvious waste of
resources and would, at some point very soon, become a scaling problem.

Instead of getting the avatar URL for every message, we will get it only once when the
user first logs in and cache it in the auth cookie. Unfortunately, our Avatar interface
type requires that we pass in a client object to the GetAvatarURL method and we do
not have such an object at the point at which we are authenticating the user.

So did we make a mistake when we designed our Avatar interface?
While this is a natural conclusion to come to, in fact we did the right
thing. We designed the solution with the best information we had
available at the time and therefore had a working chat application
much sooner than if we'd tried to design for every possible future case.
Software evolves and almost always changes during the development
process and will definitely change throughout the lifetime of the code.

Replacing concrete types with interfaces
We have concluded that our GetAvatarURL method depends on a type that is not
available to us at the point we need it, so what would be a good alternative? We
could pass each required field as a separate argument but this would make our
interface brittle, since as soon as an Avatar implementation needs a new piece of
information, we'd have to change the method signature. Instead, we will create a
new type that will encapsulate the information our Avatar implementations need
while conceptually remaining decoupled from our specific case.

In auth.go, add the following code to the top of the page (underneath the package
keyword of course):

import gomniauthcommon "github.com/stretchr/gomniauth/common"
type ChatUser interface {
 UniqueID() string
 AvatarURL() string
}

Three Ways to Implement Profile Pictures

[202]

type chatUser struct {
 gomniauthcommon.User
 uniqueID string
}
func (u chatUser) UniqueID() string {
 return u.uniqueID
}

Here, the import statement imported the common package from Gomniauth
and at the same time gave it a specific name through which it will be accessed:
gomniauthcommon. This isn't entirely necessary since we have no package name
conflicts. However, it makes the code easier to understand.

In the preceding code snippet, we also defined a new interface type called ChatUser,
which exposes the information needed in order for our Avatar implementations
to generate the correct URLs. Then, we defined an actual implementation called
chatUser (notice the lowercase starting letter) that implements the interface. It also
makes use of a very interesting feature in Go: type embedding. We actually embedded
the interface type gomniauth/common.User, which means that our struct implements
the interface automatically.

You may have noticed that we only actually implemented one of the two required
methods to satisfy our ChatUser interface. We got away with this because the
Gomniauth User interface happens to define the same AvatarURL method. In practice,
when we instantiate our chatUser struct—provided we set an appropriate value for
the implied Gomniauth User field—our object implements both Gomniauth's User
interface and our own ChatUser interface at the same time.

Changing interfaces in a test-driven way
Before we can use our new type, we must update the Avatar interface and
appropriate implementations to make use of it. As we will follow TDD practices,
we are going to make these changes in our test file, see compiler errors when we
try to build our code, and see failing tests once we fix those errors before finally
making the tests pass.

Open avatar_test.go and replace TestAuthAvatar with the following code:

func TestAuthAvatar(t *testing.T) {
 var authAvatar AuthAvatar
 testUser := &gomniauthtest.TestUser{}
 testUser.On("AvatarURL").Return("", ErrNoAvatarURL)

Chapter 3

[203]

 testChatUser := &chatUser{User: testUser}
 url, err := authAvatar.GetAvatarURL(testChatUser)
 if err != ErrNoAvatarURL {
 t.Error("AuthAvatar.GetAvatarURL should return ErrNoAvatarURL
when no value present")
 }
 testUrl := "http://url-to-gravatar/"
 testUser = &gomniauthtest.TestUser{}
 testChatUser.User = testUser
 testUser.On("AvatarURL").Return(testUrl, nil)
 url, err = authAvatar.GetAvatarURL(testChatUser)
 if err != nil {
 t.Error("AuthAvatar.GetAvatarURL should return no error when
value present")
 } else {
 if url != testUrl {
 t.Error("AuthAvatar.GetAvatarURL should return correct URL")
 }
 }
}

You will also need to import the gomniauth/test package as
gomniauthtest like we did in the last section.

Using our new interface before we have defined it is a good way to check the sanity
of our thinking, which is another advantage of practicing TDD. In this new test, we
create TestUser provided by Gomniauth and embed it into a chatUser type. We
then pass the new chatUser type into our GetAvatarURL calls and make the same
assertions about output as we always have done.

Gomniauth's TestUser type is interesting as it makes use of the
Testify package's mocking capabilities. See https://github.
com/stretchr/testify for more information.

The On and Return methods allow us to tell TestUser what to
do when specific methods are called. In the first case, we tell the
AvatarURL method to return the error, and in the second case,
we ask it to return the testUrl value, which simulates the two
possible outcomes we are covering in this test.

https://github.com/stretchr/testify
https://github.com/stretchr/testify

Three Ways to Implement Profile Pictures

[204]

Updating the TestGravatarAvatar and TestFileSystemAvatar tests is much
simpler because they rely only on the UniqueID method, the value of which we
can control directly.

Replace the other two tests in avatar_test.go with the following code:

func TestGravatarAvatar(t *testing.T) {
 var gravatarAvitar GravatarAvatar
 user := &chatUser{uniqueID: "abc"}
 url, err := gravatarAvitar.GetAvatarURL(user)
 if err != nil {
 t.Error("GravatarAvitar.GetAvatarURL should not return an
error")
 }
 if url != "//www.gravatar.com/avatar/abc" {
 t.Errorf("GravatarAvitar.GetAvatarURL wrongly returned %s",
url)
 }
}
func TestFileSystemAvatar(t *testing.T) {
 // make a test avatar file
 filename := path.Join("avatars", "abc.jpg")
 ioutil.WriteFile(filename, []byte{}, 0777)
 defer func() { os.Remove(filename) }()
 var fileSystemAvatar FileSystemAvatar
 user := &chatUser{uniqueID: "abc"}
 url, err := fileSystemAvatar.GetAvatarURL(user)
 if err != nil {
 t.Error("FileSystemAvatar.GetAvatarURL should not return an
error")
 }
 if url != "/avatars/abc.jpg" {
 t.Errorf("FileSystemAvatar.GetAvatarURL wrongly returned %s",
url)
 }
}

Of course, this test code won't even compile because we are yet to update our Avatar
interface. In avatar.go, update the GetAvatarURL signature in the Avatar interface
type to take a ChatUser type rather than a client type:

GetAvatarURL(ChatUser) (string, error)

Note that we are using the ChatUser interface (uppercase starting letter)
rather than our internal chatUser implementation struct—after all, we
want to be flexible about the types our GetAvatarURL methods accept.

Chapter 3

[205]

Trying to build this will reveal that we now have broken implementations because
all the GetAvatarURL methods are still asking for a client object.

Fixing existing implementations
Changing an interface like the one we have is a good way to automatically find the
parts of our code that have been affected because they will cause compiler errors.
Of course, if we were writing a package that other people would use, we would
have to be far stricter towards changing the interfaces.

We are now going to update the three implementation signatures to satisfy the new
interface and change the method bodies to make use of the new type. Replace the
implementation for FileSystemAvatar with the following:

func (_ FileSystemAvatar) GetAvatarURL(u ChatUser) (string, error) {
 if files, err := ioutil.ReadDir("avatars"); err == nil {
 for _, file := range files {
 if file.IsDir() {
 continue
 }
 if match, _ := path.Match(u.UniqueID()+"*", file.Name());
match {
 return "/avatars/" + file.Name(), nil
 }
 }
 }
 return "", ErrNoAvatarURL
}

The key change here is that we no longer access the userData field on the client,
and instead just call UniqueID directly on the ChatUser interface.

Next, we update the AuthAvatar implementation with the following code:

func (_ AuthAvatar) GetAvatarURL(u ChatUser) (string, error) {
 url := u.AvatarURL()
 if len(url) > 0 {
 return url, nil
 }
 return "", ErrNoAvatarURL
}

Our new design is proving to be much simpler; it's always a good thing if we can
reduce the amount of code needed. The preceding code makes a call to get the
AvatarURL value, and provided it isn't empty (or len(url) > 0), we return it;
else, we return the ErrNoAvatarURL error instead.

Three Ways to Implement Profile Pictures

[206]

Finally, update the GravatarAvatar implementation:

func (_ GravatarAvatar) GetAvatarURL(u ChatUser) (string, error) {
 return "//www.gravatar.com/avatar/" + u.UniqueID(), nil
}

Global variables versus fields
So far, we have assigned the Avatar implementation to the room type, which enables
us to use different avatars for different rooms. However, this has exposed an issue:
when our users sign in, there is no concept of which room they are headed to so we
cannot know which Avatar implementation to use. Because our application only
supports a single room, we are going to look at another approach toward selecting
implementations: the use of global variables.

A global variable is simply a variable that is defined outside any type definition
and is accessible from every part of the package (and from outside the package
if it's exported). For a simple configuration, such as which type of Avatar
implementation to use, they are an easy and simple solution. Underneath the
import statements in main.go, add the following line:

// set the active Avatar implementation
var avatars Avatar = UseFileSystemAvatar

This defines avatars as a global variable that we can use when we need to get
the avatar URL for a particular user.

Implementing our new design
We need to change the code that calls GetAvatarURL for every message to just
access the value that we put into the userData cache (via the auth cookie).
Change the line where msg.AvatarURL is assigned, as follows:

if avatarUrl, ok := c.userData["avatar_url"]; ok {
 msg.AvatarURL = avatarUrl.(string)
}

Find the code inside loginHandler in auth.go where we call provider.GetUser
and replace it down to where we set the authCookieValue object with the
following code:

user, err := provider.GetUser(creds)
if err != nil {
 log.Fatalln("Error when trying to get user from", provider, "-",
err)
}

Chapter 3

[207]

chatUser := &chatUser{User: user}
m := md5.New()
io.WriteString(m, strings.ToLower(user.Name()))
chatUser.uniqueID = fmt.Sprintf("%x", m.Sum(nil))
avatarURL, err := avatars.GetAvatarURL(chatUser)
if err != nil {
 log.Fatalln("Error when trying to GetAvatarURL", "-", err)
}

Here, we created a new chatUser variable while setting the User field (which
represents the embedded interface) to the User value returned from Gomniauth.
We then saved the userid MD5 hash to the uniqueID field.

The call to avatars.GetAvatarURL is where all of our hard work has paid off,
as we now get the avatar URL for the user far earlier in the process. Update the
authCookieValue line in auth.go to cache the avatar URL in the cookie and
remove the e-mail address since it is no longer needed:

authCookieValue := objx.New(map[string]interface{}{
 "userid": chatUser.uniqueID,
 "name": user.Name(),
 "avatar_url": avatarURL,
}).MustBase64()

However expensive the work that the Avatar implementation needs to do, like
iterating over files on the filesystem, it is mitigated by the fact that the implementation
only does so when the user first logs in, and not every time they send a message.

Tidying up and testing
Finally, we get to snip away some of the fat that has accumulated during our
refactoring process.

Since we no longer store the Avatar implementation in room, let's remove the
field and all references to it from the type. In room.go, delete the avatar Avatar
definition from the room struct and update the newRoom method:

func newRoom() *room {
 return &room{
 forward: make(chan *message),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
 tracer: trace.Off(),
 }
}

Three Ways to Implement Profile Pictures

[208]

Remember to use the compiler as your to-do list where possible, and
follow the errors to find where you have impacted other code.

In main.go, remove the parameter passed into the newRoom function call since we
are using our global variable instead of this one.

After this exercise, the end user experience remains unchanged. Usually, when
refactoring the code, it is the internals that are modified while the public-facing
interface remains stable and unchanged.

It's usually a good idea to run tools such as golint and go vet
against your code as well to make sure it follows good practices and
doesn't contain any Go faux pas such as missing comments or badly
named functions.

Combining all three implementations
To close this chapter off with a bang, we will implement a mechanism in which
each Avatar implementation takes a turn in trying to get the value. If the first
implementation returns the ErrNoAvatarURL error, we will try the next and so
on until we find a useable value.

In avatar.go, underneath the Avatar type, add the following type definition:

type TryAvatars []Avatar

The TryAvatars type is simply a slice of Avatar objects; therefore, we will add
the following GetAvatarURL method:

func (a TryAvatars) GetAvatarURL(u ChatUser) (string, error) {
 for _, avatar := range a {
 if url, err := avatar.GetAvatarURL(u); err == nil {
 return url, nil
 }
 }
 return "", ErrNoAvatarURL
}

Chapter 3

[209]

This means that TryAvatars is now a valid Avatar implementation and can be used
in place of any specific implementation. In the preceding method, we iterated over
the slice of Avatar objects in an order, calling GetAvatarURL for each one. If no error
is returned, we return the URL; otherwise, we carry on looking. Finally, if we are
unable to find a value, we just return ErrNoAvatarURL as per the interface design.

Update the avatars global variable in main.go to use our new implementation:

var avatars Avatar = TryAvatars{
 UseFileSystemAvatar,
 UseAuthAvatar,
 UseGravatar}

Here we created a new instance of our TryAvatars slice type while putting the other
Avatar implementations inside it. The order matters since it iterates over the objects
in the order in which they appear in the slice. So, first our code will check to see
whether the user has uploaded a picture; if they haven't, the code will check whether
the authentication service has a picture for us to use. If both the approaches fail, a
Gravatar URL will be generated, which in the worst case (for example, if the user
hasn't added a Gravatar picture), will render a default placeholder image.

To see our new functionality in action, perform the following steps:

1. Build and rerun the application:
go build –o chat

./chat –host=:8080

2. Log out by visiting http://localhost:8080/logout.

3. Delete all the pictures from the avatars folder.

4. Log back in by navigating to http://localhost:8080/chat.

5. Send some messages and take note of your profile picture.
6. Visit http://localhost:8080/upload and upload a new profile picture.
7. Log out again and log back in as before.

8. Send some more messages and notice that your profile picture has updated.

Three Ways to Implement Profile Pictures

[210]

Summary
In this chapter, we added three different implementations of profile pictures to our
chat application. First we asked the authentication service to provide a URL for us to
use. We did this by using Gomniauth's abstraction of the user resource data, which we
then included as part of the user interface every time a user would send a message.
Using Go's zero (or default) initialization pattern, we were able to refer to different
implementations of our Avatar interface without actually creating any instances.

We stored data in a cookie for when the user would log in. Therefore, and also given
the fact that cookies persist between builds of our code, we added a handy logout
feature to help us validate our changes, which we also exposed to our users so that
they could log out too. Other small changes to the code and the inclusion of Bootstrap
on our chat page dramatically improved the look and feel of our application.

We used MD5 hashing in Go to implement the Gravatar.com API by hashing the
e-mail address that the authentication service provided. If the e-mail address is not
known to Gravatar, they will deliver a nice default placeholder image for us, which
means our user interface will never be broken due to missing images.

We then built and completed an upload form and associated the server functionality
that saved uploaded pictures in the avatars folder. We saw how to expose the saved
uploaded pictures to users via the standard library's http.FileServer handler. As
this introduced inefficiencies in our design by causing too much filesystem access, we
refactored our solution with the help of our unit tests. By moving the GetAvatarURL
call to the point at which users log in, rather than every time a message is sent, we
made our code significantly more scalable.

Our special ErrNoAvatarURL error type was used as part of our interface design to
allow us to inform the calling code when it was not possible to obtain an appropriate
URL—this became particularly useful when we created our Avatars slice type. By
implementing the Avatar interface on a slice of Avatar types, we were able to make
a new implementation that took turns trying to get a valid URL from each of the
different options available, starting with the filesystem, then the authentication service,
and finally Gravatar. We achieved this with zero impact on how the user would
interact with the interface. If an implementation returned ErrNoAvatarURL, we
tried the next one.

Our chat application is ready to go live so we can invite our friends and have a real
conversation. But first we need to choose a domain name to host it at, something
we will look at in the next chapter.

Gravatar.com

Command-line Tools to Find
Domain Names

The chat application we built in the previous chapters is ready to take the world by
storm, but not before we give it a home on the Internet. Before we invite our friends
to join the conversation, we need to pick a valid, catchy, and available domain name
that we can point to the server running our Go code. Instead of sitting in front of our
favorite domain name provider for hours on end trying different names, we are going
to develop a few command-line tools that will help us find the right one. As we do so,
we will see how the Go standard library allows us to interface with the terminal and
other executing applications, as well as explore some patterns and practices to build
command-line programs.

In this chapter, you will learn:

• How to build complete command-line applications with as little as
a single code file

• How to ensure that the tools we build can be composed with other
tools using standard streams

• How to interact with a simple third-party JSON RESTful API
• How to utilize the standard in and out pipes in Go code

• How to read from a streaming source one line at a time

• How to build a WHOIS client to look up domain information
• How to store and use sensitive or deployment-specific information

in environment variables

Command-line Tools to Find Domain Names

[212]

Pipe design for command-line tools
We are going to build a series of command-line tools that use the standard streams
(stdin and stdout) to communicate with the user and with other tools. Each tool
will take input line by line via the standard in pipe, process it in some way, and then
print the output line by line to the standard out pipe for the next tool or for the user.

By default, the standard input is connected to the user's keyboard, and the standard
output is printed to the terminal from which the command was run; however, both can
be redirected using redirection metacharacters. It's possible to throw the output away
by redirecting it to NUL on Windows or /dev/null on Unix machines, or redirecting
it to a file, which will cause the output to be saved to the disk. Alternatively, you can
pipe (using the | pipe character) the output of one program into the input of another;
it is this feature that we will make use of in order to connect our various tools together.
For example, you could pipe the output from one program to the input of another
program in a terminal by using this code:

one | two

Our tools will work with lines of strings where each line (separated by a linefeed
character) represents one string. When run without any pipe redirection, we will be
able to interact directly with the programs using the default in and out, which will
be useful when testing and debugging our code.

Five simple programs
In this chapter, we will build five small programs that we will combine together at
the end. The key features of the programs are as follows:

• Sprinkle: This program will add some web-friendly sprinkle words to
increase the chances of finding available domain names

• Domainify: This program will ensure words are acceptable for a domain
name by removing unacceptable characters and replacing spaces with
hyphens and adding an appropriate top-level domain (such as .com and
.net) to the end

• Coolify: This program will make a boring old normal word into Web 2.0
by fiddling around with vowels

• Synonyms: This program will use a third-party API to find synonyms
• Available: This program will check to see whether the domain is available

or not using an appropriate WHOIS server

Five programs might seem like a lot for one chapter, but don't forget how small
entire programs can be in Go.

Chapter 4

[213]

Sprinkle
Our first program augments incoming words with some sugar terms in order to
improve the odds of finding available names. Many companies use this approach
to keep the core messaging consistent while being able to afford the .com domain.
For example, if we pass in the word chat, it might pass out chatapp; alternatively,
if we pass in talk, we may get back talk time.

Go's math/rand package allows us to break away from the predictability of
computers to give a chance or opportunity to get involved in our program's
process and make our solution feel a little more intelligent than it actually is.

To make our Sprinkle program work, we will:

• Define an array of transformations using a special constant to indicate
where the original word will appear

• Use the bufio package to scan input from stdin and fmt.Println to write
output to stdout

• Use the math/rand package to randomly select which transformation to
apply to the word, such as appending "app" or prefixing the term with "get"

All of our programs will reside in the $GOPATH/src directory. For
example, if your GOPATH is ~/Work/projects/go, you would create
your program folders in the ~/Work/projects/go/src folder.

In the $GOPATH/src directory, create a new folder called sprinkle and add a main.
go file containing the following code:

package main
import (
 "bufio"
 "fmt"
 "math/rand"
 "os"
 "strings"
 "time"
)
const otherWord = "*"
var transforms = []string{
 otherWord,
 otherWord,
 otherWord,
 otherWord,
 otherWord + "app",
 otherWord + "site",

Command-line Tools to Find Domain Names

[214]

 otherWord + "time",
 "get" + otherWord,
 "go" + otherWord,
 "lets " + otherWord,
}
func main() {
 rand.Seed(time.Now().UTC().UnixNano())
 s := bufio.NewScanner(os.Stdin)
 for s.Scan() {
 t := transforms[rand.Intn(len(transforms))]
 fmt.Println(strings.Replace(t, otherWord, s.Text(), -1))
 }
}

From now on, it is assumed that you will sort out the appropriate import statements
yourself.

The preceding code represents our complete Sprinkle program. It defines three
things: a constant, a variable, and the obligatory main function, which serves as
the entry point to Sprinkle. The otherWord constant string is a helpful token that
allows us to specify where the original word should occur in each of our possible
transformations. It lets us write code such as otherWord+"extra", which makes it
clear that, in this particular case, we want to add the word extra to the end of the
original word.

The possible transformations are stored in the transforms variable that we
declare as a slice of strings. In the preceding code, we defined a few different
transformations such as adding app to the end of a word or lets before it. Feel
free to add some more in there; the more creative, the better.

In the main function, the first thing we do is use the current time as a random seed.
Computers can't actually generate random numbers, but changing the seed number
for the random algorithms gives the illusion that it can. We use the current time in
nanoseconds because it's different each time the program is run (provided the
system clock isn't being reset before each run).

We then create a bufio.Scanner object (called bufio.NewScanner) and tell it to
read input from os.Stdin, which represents the standard in stream. This will be
a common pattern in our five programs since we are always going to read from
standard in and write to standard out.

Chapter 4

[215]

The bufio.Scanner object actually takes io.Reader as its input
source, so there is a wide range of types that we could use here. If
you were writing unit tests for this code, you could specify your own
io.Reader for the scanner to read from, removing the need for you
to worry about simulating the standard input stream.

As the default case, the scanner allows us to read, one at a time, blocks of bytes
separated by defined delimiters such as a carriage return and linefeed characters.
We can specify our own split function for the scanner or use one of the options
built in the standard library. For example, there is bufio.ScanWords that scans
individual words by breaking on whitespace rather than linefeeds. Since our
design specifies that each line must contain a word (or a short phrase), the default
line-by-line setting is ideal.

A call to the Scan method tells the scanner to read the next block of bytes (the next
line) from the input, and returns a bool value indicating whether it found anything
or not. This is how we are able to use it as the condition for the for loop. While there
is content to work on, Scan returns true and the body of the for loop is executed,
and when Scan reaches the end of the input, it returns false, and the loop is broken.
The bytes that have been selected are stored in the Bytes method of the scanner, and
the handy Text method that we use converts the []byte slice into a string for us.

Inside the for loop (so for each line of input), we use rand.Intn to select a random
item from the transforms slice, and use strings.Replace to insert the original
word where the otherWord string appears. Finally, we use fmt.Println to print
the output to the default standard output stream.

Let's build our program and play with it:

go build –o sprinkle
./sprinkle

Once the program is running, since we haven't piped any content in, or specified a
source for it to read from, we will use the default behavior where it reads the user
input from the terminal. Type in chat and hit return. The scanner in our code notices
the linefeed character at the end of the word and runs the code that transforms it,
outputting the result. For example, if you type chat a few times, you might see
output like:

chat
go chat
chat
lets chat
chat
chat app

Command-line Tools to Find Domain Names

[216]

Sprinkle never exits (meaning the Scan method never returns false to break the loop)
because the terminal is still running; in normal execution, the in pipe will be closed by
whatever program is generating the input. To stop the program, hit Ctrl + C.

Before we move on, let's try running Sprinkle specifying a different input source,
we are going to use the echo command to generate some content, and pipe it into
our Sprinkle program using the pipe character:

echo "chat" | ./sprinkle

The program will randomly transform the word, print it out, and exit since the echo
command generates only one line of input before terminating and closing the pipe.

We have successfully completed our first program, which has a very simple but
useful function, as we will see.

Exercise – configurable transformations
As an extra assignment, rather than hardcoding the transformations array as we
have done, see if you can externalize it into a text file or database.

Domainify
Some of the words that output from Sprinkle contain spaces and perhaps other
characters that are not allowed in domains, so we are going to write a program, called
Domainify, that converts a line of text into an acceptable domain segment and add
an appropriate Top-level Domain (TLD) to the end. Alongside the sprinkle folder,
create a new one called domainify, and add a main.go file with the following code:

package main
var tlds = []string{"com", "net"}
const allowedChars = "abcdefghijklmnopqrstuvwxyz0123456789_-"
func main() {
 rand.Seed(time.Now().UTC().UnixNano())
 s := bufio.NewScanner(os.Stdin)
 for s.Scan() {
 text := strings.ToLower(s.Text())
 var newText []rune
 for _, r := range text {
 if unicode.IsSpace(r) {
 r = '-'
 }
 if !strings.ContainsRune(allowedChars, r) {
 continue
 }

Chapter 4

[217]

 newText = append(newText, r)
 }
 fmt.Println(string(newText) + "." +
 tlds[rand.Intn(len(tlds))])
 }
}

You will notice a few similarities between the Domainify and Sprinkle programs:
we set the random seed using rand.Seed, generate a NewScanner method
wrapping the os.Stdin reader, and scan each line until there is no more input.

We then convert the text to lowercase and build up a new slice of rune types called
newText. The rune types consist only of characters that appear in the allowedChars
string, which strings.ContainsRune lets us know. If rune is a space that we
determine by calling unicode.IsSpace, we replace it with a hyphen, which is an
acceptable practice in domain names.

Ranging over a string returns the index of each character and a rune
type, which is a numerical value (specifically int32) representing
the character itself. For more information about runes, characters,
and strings, refer to http://blog.golang.org/strings.

Finally, we convert newText from a []rune slice to a string and add either .com
or .net to the end before printing it out using fmt.Println.

Build and run Domainify:

go build –o domainify

./domainify

Type in some of these options to see how domainify reacts:

• Monkey

• Hello Domainify

• "What's up?"

• One (two) three!

You can see that, for example, One (two) three! might yield one-two-three.com.

We are now going to compose Sprinkle and Domainify to see them work together.
In your terminal, navigate to the parent folder (probably $GOPATH/src) of sprinkle
and domainify, and run the following command:

./sprinkle/sprinkle | ./domainify/domainify

http://blog.golang.org/strings

Command-line Tools to Find Domain Names

[218]

Here we ran the Sprinkle program and piped the output into the Domainify
program. By default, sprinkle uses the terminal as the input and domanify outputs
to the terminal. Try typing in chat a few times again, and notice the output is similar
to what Sprinkle was outputting previously, except now the words are acceptable
for domain names. It is this piping between programs that allows us to compose
command-line tools together.

Exercise – making top-level domains configurable
Only supporting .com and .net top-level domains is fairly limiting. As an additional
assignment, see if you can accept a list of TLDs via a command-line flag.

Coolify
Often domain names for common words such as chat are already taken and a
common solution is to play around with the vowels in the words. For example,
we might remove the a leaving cht (which is actually less likely to be available),
or add an a to produce chaat. While this clearly has no actual effect on coolness, it
has become a popular, albeit slightly dated, way to secure domain names that still
sound like the original word.

Our third program, Coolify, will allow us to play with the vowels of words that
come in via the input, and write the modified versions to the output.

Create a new folder called coolify alongside sprinkle and domainify, and create
the main.go code file with the following code:

package main
const (
 duplicateVowel bool = true
 removeVowel bool = false
)
func randBool() bool {
 return rand.Intn(2) == 0
}
func main() {
 rand.Seed(time.Now().UTC().UnixNano())
 s := bufio.NewScanner(os.Stdin)
 for s.Scan() {
 word := []byte(s.Text())
 if randBool() {
 var vI int = -1

Chapter 4

[219]

 for i, char := range word {
 switch char {
 case 'a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U':
 if randBool() {
 vI = i
 }
 }
 }
 if vI >= 0 {
 switch randBool() {
 case duplicateVowel:
 word = append(word[:vI+1], word[vI:]...)
 case removeVowel:
 word = append(word[:vI], word[vI+1:]...)
 }
 }
 }
 fmt.Println(string(word))
 }
}

While the preceding Coolify code looks very similar to the codes of Sprinkle and
Domainify, it is slightly more complicated. At the very top of the code we declare
two constants, duplicateVowel and removeVowel, that help make Coolify code
more readable. The switch statement decides whether we duplicate or remove a
vowel. Also, using these constants, we are able to express our intent very clearly,
rather than using just true or false.

We then define the randBool helper function that just randomly returns true
or false by asking the rand package to generate a random number, and checking
whether if that number comes out as zero. It will be either 0 or 1, so there's a 50/50
chance of it being true.

The main function for Coolify starts the same way as the main functions for Sprinkle
and Domainify—by setting the rand.Seed method and creating a scanner of the
standard input stream before executing the loop body for each line of input. We
call randBool first to decide whether we are even going to mutate a word or not,
so Coolify will only affect half of the words passed through it.

We then iterate over each rune in the string and look for a vowel. If our randBool
method returns true, we keep the index of the vowel character in the vI variable.
If not, we keep looking through the string for another vowel, which allows us to
randomly select a vowel from the words rather than always modifying the same one.

Command-line Tools to Find Domain Names

[220]

Once we have selected a vowel, we then use randBool again to randomly decide
what action to take.

This is where the helpful constants come in; consider the following
alternative switch statement:

switch randBool() {

case true:

 word = append(word[:vI+1], word[vI:]...)

case false:

 word = append(word[:vI], word[vI+1:]...)

}

In the preceding code snippet, it's difficult to tell what is going on
because true and false don't express any context. On the other
hand, using duplicateVowel and removeVowel tells anyone
reading the code what we mean by the result of randBool.

The three dots following the slices cause each item to pass as a separate argument
to the append function. This is an idiomatic way of appending one slice to another.
Inside the switch case, we do some slice manipulation to either duplicate the vowel
or remove it altogether. We are reslicing our []byte slice and using the append
function to build a new one made up of sections of the original word. The following
diagram shows which sections of the string we access in our code:

Chapter 4

[221]

If we take the value blueprints as an example word, and assume that our code
selected the first e character as the vowel (so that vI is 3), we can see what each
new slice of word represents in this table:

Code Value Description

word[:vI+1] blue Describes a slice from the beginning of the word slice to
the selected vowel. The +1 is required because the value
following the colon does not include the specified index;
rather it slices up to that value.

word[vI:] eprints Describes a slice starting at and including the selected
vowel to the end of the slice.

word[:vI] blu Describes a slice from the beginning of the word slice up
to, but not including, the selected vowel.

word[vI+1:] prints Describes a slice from the item following the selected
vowel to the end of the slice.

After we modify the word, we print it out using fmt.Println.

Let's build Coolify and play with it to see what it can do:

go build –o coolify

./coolify

When Coolify is running, try typing blueprints to see what sort of modifications it
comes up with:

blueprnts

bleprints

bluepriints

blueprnts

blueprints

bluprints

Let's see how Coolify plays with Sprinkle and Domainify by adding their names to
our pipe chain. In the terminal, navigate back (using the cd command) to the parent
folder and run the following commands:

./coolify/coolify | ./sprinkle/sprinkle | ./domainify/domainify

Command-line Tools to Find Domain Names

[222]

We will first spice up a word with extra pieces and make it cooler by tweaking
the vowels before finally transforming it into a valid domain name. Play around
by typing in a few words and seeing what suggestions our code makes.

Synonyms
So far, our programs have only modified words, but to really bring our solution to life,
we need to be able to integrate a third-party API that provides word synonyms. This
allows us to suggest different domain names while retaining the original meaning.
Unlike Sprinkle and Domainify, Synonyms will write out more than one response
for each word given to it. Our architecture of piping programs together means this
is no problem; in fact we do not even have to worry about it since each of the three
programs is capable of reading multiple lines from the input source.

The Big Hugh Thesaurus at bighughlabs.com has a very clean and simple API that
allows us to make a single HTTP GET request in order to look up synonyms.

If in the future the API we are using changes or disappears (after
all, this is the Internet!), you will find some options at https://
github.com/matryer/goblueprints.

Before you can use the Big Hugh Thesaurus, you'll need an API key, which you
can get by signing up to the service at http://words.bighugelabs.com/.

Using environment variables for configuration
Your API key is a sensitive piece of configuration information that you won't want
to share with others. We could store it as const in our code, but that would not only
mean we couldn't share our code without sharing our key (not good, especially if
you love open source projects), but also, and perhaps more importantly, you would
have to recompile your project if the key expires or if you want to use a different one.

A better solution is using an environment variable to store the key, as this will allow
you to easily change it if you need to. You could also have different keys for different
deployments; perhaps you have one key for development or testing and another for
production. This way, you can set a specific key for a particular execution of code,
so you can easily switch keys without having to change your system-level settings.
Either way, different operating systems deal with environment variables in similar
ways, so they are a perfect choice if you are writing cross-platform code.

bighughlabs.com
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
http://words.bighugelabs.com/

Chapter 4

[223]

Create a new environment variable called BHT_APIKEY and set your API key as
its value.

For machines running a bash shell, you can modify your ~/.bashrc
file or similar to include export commands such as:
export BHT_APIKEY=abc123def456ghi789jkl

On Windows machines, you can navigate to the properties of your
computer and look for Environment Variables in the Advanced section.

Consuming a web API
Making a request for http://words.bighugelabs.com/apisample.
php?v=2&format=json in a web browser shows us what the structure of JSON
response data looks like when finding synonyms for the word love:

{
 "noun":{
 "syn":[
 "passion",
 "beloved",
 "dear"
]
 },
 "verb":{
 "syn":[
 "love",
 "roll in the hay",
 "make out"
],
 "ant":[
 "hate"
]
 }
}

The real API returns a lot more actual words than what is printed here, but the
structure is the important thing. It represents an object where the keys describe the
types of words (verbs, nouns, and so on) and values are objects that contain arrays
of strings keyed on syn or ant (for synonym and antonym respectively); it is the
synonyms we are interested in.

http://words.bighugelabs.com/apisample.php?v=2&format=json
http://words.bighugelabs.com/apisample.php?v=2&format=json

Command-line Tools to Find Domain Names

[224]

To turn this JSON string data into something we can use in our code, we must
decode it into structures of our own using capabilities found in the encoding/
json package. Because we're writing something that could be useful outside the
scope of our project, we will consume the API in a reusable package rather than
directly in our program code. Create a new folder called thesaurus alongside your
other program folders (in $GOPATH/src) and insert the following code into a new
bighugh.go file:

package thesaurus
import (
 "encoding/json"
 "errors"
 "net/http"
)
type BigHugh struct {
 APIKey string
}
type synonyms struct {
 Noun *words `json:"noun"`
 Verb *words `json:"verb"`
}
type words struct {
 Syn []string `json:"syn"`
}
func (b *BigHugh) Synonyms(term string) ([]string, error) {
 var syns []string
 response, err := http.Get("http://words.bighugelabs.com/api/2/"
+ b.APIKey + "/" + term + "/json")
 if err != nil {
 return syns, errors.New("bighugh: Failed when looking for
synonyms for \"" + term + "\"" + err.Error())
 }
 var data synonyms
 defer response.Body.Close()
 if err := json.NewDecoder(response.Body).Decode(&data); err !=
nil {
 return syns, err
 }
 syns = append(syns, data.Noun.Syn...)
 syns = append(syns, data.Verb.Syn...)
 return syns, nil
}

Chapter 4

[225]

In the preceding code, the BigHugh type we define houses the necessary API key
and provides the Synonyms method that will be responsible for doing the work of
accessing the endpoint, parsing the response, and returning the results. The most
interesting parts of this code are the synonyms and words structures. They describe
the JSON response format in Go terms, namely an object containing noun and verb
objects, which in turn contain a slice of strings in a variable called Syn. The tags
(strings in backticks following each field definition) tell the encoding/json package
which fields to map to which variables; this is required since we have given them
different names.

Typically, JSON keys have lowercase names, but we have to use
capitalized names in our structures so that the encoding/json
package knows that the fields exist. If we didn't, the package
would simply ignore the fields. However, the types themselves
(synonyms and words) do not need to be exported.

The Synonyms method takes a term argument and uses http.Get to make a web
request to the API endpoint in which the URL contains not only the API key value,
but also the term value itself. If the web request fails for some reason, we will make
a call to log.Fatalln, which writes the error out to the standard error stream
and exits the program with a non-zero exit code (actually an exit code of 1)—this
indicates that an error has occurred.

If the web request is successful, we pass the response body (another io.Reader) to
the json.NewDecoder method and ask it to decode the bytes into the data variable
that is of our synonyms type. We defer the closing of the response body in order to
keep memory clean before using Go's built-in append function to concatenate both
noun and verb synonyms to the syns slice that we then return.

Although we have implemented the BigHugh thesaurus, it isn't the only option
out there, and we can express this by adding a Thesaurus interface to our package.
In the thesaurus folder, create a new file called thesaurus.go, and add the
following interface definition to the file:

package thesaurus
type Thesaurus interface {
 Synonyms(term string) ([]string, error)
}

This simple interface just describes a method that takes a term string and returns
either a slice of strings containing the synonyms, or an error (if something goes
wrong). Our BigHugh structure already implements this interface, but now other
users could add interchangeable implementations for other services, such as
Dictionary.com or the Merriam-Webster Online service.

Dictionary.com

Command-line Tools to Find Domain Names

[226]

Next we are going to use this new package in a program. Change directory in terminal
by backing up a level to $GOPATH/src, create a new folder called synonyms, and insert
the following code into a new main.go file you will place in that folder:

func main() {
 apiKey := os.Getenv("BHT_APIKEY")
 thesaurus := &thesaurus.BigHugh{APIKey: apiKey}
 s := bufio.NewScanner(os.Stdin)
 for s.Scan() {
 word := s.Text()
 syns, err := thesaurus.Synonyms(word)
 if err != nil {
 log.Fatalln("Failed when looking for synonyms for
\""+word+"\"", err)
 }
 if len(syns) == 0 {
 log.Fatalln("Couldn't find any synonyms for \"" + word +
"\"")
 }
 for _, syn := range syns {
 fmt.Println(syn)
 }
 }
}

When you manage your imports again, you will have written a complete
program capable of looking up synonyms for words by integrating the Big
Huge Thesaurus API.

In the preceding code, the first thing our main function does is get the BHT_APIKEY
environment variable value via the os.Getenv call. To bullet proof your code, you
might consider double-checking to ensure this value is properly set, and report an
error if it is not. For now, we will assume that everything is configured properly.

Next, the preceding code starts to look a little familiar since it scans each line of
input again from os.Stdin and calls the Synonyms method to get a list of
replacement words.

Let's build a program and see what kind of synonyms the API comes back with
when we input the word chat:

go build –o synonyms

./synonyms

chat

confab

Chapter 4

[227]

confabulation

schmooze

New World chat

Old World chat

conversation

thrush

wood warbler

chew the fat

shoot the breeze

chitchat

chatter

The results you get will most likely differ from what we have listed here since we're
hitting a live API, but the important aspect here is that when we give a word or term
as input to the program, it returns a list of synonyms as output, one per line.

Try chaining your programs together in various orders to see what
result you get. Regardless, we will do this together later in the chapter.

Getting domain suggestions
By composing the four programs we have built so far in this chapter, we already
have a useful tool for suggesting domain names. All we have to do now is run
the programs while piping the output into input in the appropriate way. In a
terminal, navigate to the parent folder and run the following single line:

./synonyms/synonyms | ./sprinkle/sprinkle | ./coolify/coolify |

./domainify/domainify

Because the synonyms program is first in our list, it will receive the input from the
terminal (whatever the user decides to type in). Similarly, because domainify is last
in the chain, it will print its output to the terminal for the user to see. At each step,
the lines of words will be piped through the other programs, giving them each a
chance to do their magic.

Type in some words to see some domain suggestions, for example, if you type chat
and hit return, you might see:

getcnfab.com

confabulationtim.com

getschmoozee.net

Command-line Tools to Find Domain Names

[228]

schmosee.com

neew-world-chatsite.net

oold-world-chatsite.com

conversatin.net

new-world-warblersit.com

gothrush.net

lets-wood-wrbler.com

chw-the-fat.com

The number of suggestions you get will actually depend on the number of synonyms,
since it is the only program that generates more lines of output than we give it.

We still haven't solved our biggest problem—the fact that we have no idea whether
the suggested domain names are actually available or not, so we still have to sit and
type each of them into a website. In the next section, we will address this issue.

Available
Our final program, Available, will connect to a WHOIS server to ask for details about
domains passed into it—of course, if no details are returned, we can safely assume
that the domain is available for purchase. Unfortunately, the WHOIS specification (see
http://tools.ietf.org/html/rfc3912) is very small and contains no information
about how a WHOIS server should reply when you ask it for details about a domain.
This means programmatically parsing the response becomes a messy endeavor. To
address this issue for now, we will integrate with only a single WHOIS server that
we can be sure will have No match somewhere in the response when it has no records
for the domain.

A more robust solution might be to have a WHOIS interface
with well-defined structures for the details, and perhaps an
error message for the cases when the domain doesn't exist—with
different implementations for different WHOIS servers. As you
can imagine, it's quite a project; perfect for an open source effort.

Create a new folder called available alongside the others in $GOPATH/src and
add a main.go file
in it containing the following function code:

func exists(domain string) (bool, error) {
 const whoisServer string = "com.whois-servers.net"
 conn, err := net.Dial("tcp", whoisServer+":43")
 if err != nil {
 return false, err

http://tools.ietf.org/html/rfc3912

Chapter 4

[229]

 }
 defer conn.Close()
 conn.Write([]byte(domain + "\r\n"))
 scanner := bufio.NewScanner(conn)
 for scanner.Scan() {
 if strings.Contains(strings.ToLower(scanner.Text()), "no
match") {
 return false, nil
 }
 }
 return true, nil
}

The exists function implements what little there is in the WHOIS specification by
opening a connection to port 43 on the specified whoisServer instance with a call to
net.Dial. We then defer the closing of the connection, which means that however
the function exits (successfully or with an error, or even a panic), Close() will still
be called on the connection conn. Once the connection is open, we simply write the
domain followed by \r\n (the carriage return and line feed characters). This is all
the specification tells us, so we are on our own from now on.

Essentially, we are looking for some mention of no match in the response, and that
is how we will decide whether a domain exists or not (exists in this case is actually
just asking the WHOIS server if it has a record for the domain we specified). We use
our favorite bufio.Scanner method to help us iterate over the lines in the response.
Passing the connection into NewScanner works because net.Conn is actually an
io.Reader too. We use strings.ToLower so we don't have to worry about case
sensitivity, and strings.Contains to see if any of the lines contains the no match text.
If it does, we return false (since the domain doesn't exist), otherwise we return true.

The com.whois-servers.net WHOIS service supports domain names for .com
and .net, which is why the Domainify program only adds these types of domains.
If you used a server that had WHOIS information for a wider selection of domains,
you could add support for additional TLDs.

Let's add a main function that uses our exists function to check to see whether the
incoming domains are available or not. The check mark and cross mark symbols in
the following code are optional—if your terminal doesn't support them you are free
to substitute them with simple Yes and No strings.

Add the following code to main.go:

var marks = map[bool]string{true: "ü", false: "û"}
func main() {
 s := bufio.NewScanner(os.Stdin)

Command-line Tools to Find Domain Names

[230]

 for s.Scan() {
 domain := s.Text()
 fmt.Print(domain, " ")
 exist, err := exists(domain)
 if err != nil {
 log.Fatalln(err)
 }
 fmt.Println(marks[!exist])
 time.Sleep(1 * time.Second)
 }
}

In the preceding code for the main function, we simply iterate over each line coming
in via os.Stdin, printing out the domain with fmt.Print (but not fmt.Println,
as we do not want the linefeed yet), calling our exists function to see whether the
domain exists or not, and printing out the result with fmt.Println (because we do
want a linefeed at the end).

Finally, we use time.Sleep to tell the process to do nothing for 1 second in order
to make sure we take it easy on the WHOIS server.

Most WHOIS servers will be limited in various ways in order to prevent
you from taking up too much resources. So slowing things down is a
sensible way to make sure we don't make the remote servers angry.

Consider what this also means for unit tests. If a unit test was actually
making real requests to a remote WHOIS server, every time your tests
run, you will be clocking up stats against your IP address. A much
better approach would be to stub the WHOIS server to simulate real
responses.

The marks map at the top of the preceding code is a nice way to map the Boolean
response from exists to human-readable text, allowing us to just print the response
in a single line using fmt.Println(marks[!exist]). We are saying not exist because
our program is checking whether the domain is available or not (logically the opposite
of whether it exists in the WHOIS server or not).

We can use the check and cross characters in our code happily because
all Go code files are UTF-8 compliant—the best way to actually get
these characters is to search the Web for them, and use copy and paste
to bring them into code; else there are platform-dependent ways to get
such special characters.

Chapter 4

[231]

After fixing the import statements for the main.go file, we can try out Available to
see whether domain names are available or not:

go build –o available

./available

Once Available is running, type in some domain names:

packtpub.com

packtpub.com û

google.com

google.com û

madeupdomain1897238746234.net

madeupdomain1897238746234.net ü

As you can see, for domains that are obviously not available, we get our little cross
mark, but when we make up a domain name using random numbers, we see that it
is indeed available.

Composing all five programs
Now that we have completed all five of our programs, it's time to put them all
together so that we can use our tool to find an available domain name for our chat
application. The simplest way to do this is to use the technique we have been using
throughout this chapter: using pipes in a terminal to connect the output and input.

In the terminal, navigate to the parent folder of the five programs and run the
following single line of code:

./synonyms/synonyms | ./sprinkle/sprinkle | ./coolify/coolify |

./domainify/domainify | ./available/available

Once the programs are running, type in a starting word and see how it generates
suggestions before checking their availability.

For example, typing in chat might cause the programs to take the following actions:

1. The word chat goes into synonyms and out comes a series of synonyms:

 ° confab

 ° confabulation

 ° schmooze

Command-line Tools to Find Domain Names

[232]

2. The synonyms flow into sprinkle where they are augmented with
web-friendly prefixes and suffixes such as:

 ° confabapp

 ° goconfabulation

 ° schmooze time

3. These new words flow into coolify, where the vowels are potentially
tweaked:

 ° confabaapp

 ° goconfabulatioon

 ° schmoooze time

4. The modified words then flow into domainify where they are turned into
valid domain names:

 ° confabaapp.com

 ° goconfabulatioon.net

 ° schmooze-time.com

5. Finally, the domain names flow into available where they are checked
against the WHOIS server to see whether somebody has already taken
the domain or not:

 ° confabaapp.com û

 ° goconfabulatioon.net ü

 ° schmooze-time.com ü

One program to rule them all
Running our solution by piping programs together is an elegant architecture, but
it doesn't have a very elegant interface. Specifically, whenever we want to run our
solution, we have to type the long messy line where each program is listed separated
by pipe characters. In this section, we are going to write a Go program that uses the
os/exec package to run each subprogram while piping the output from one into the
input of the next as per our design.

Create a new folder called domainfinder alongside the other five programs, and
create another new folder called lib inside that folder. The lib folder is where we
will keep builds of our subprograms, but we don't want to be copying and pasting
them every time we make a change. Instead, we will write a script that builds the
subprograms and copies the binaries to the lib folder for us.

Chapter 4

[233]

Create a new file called build.sh on Unix machines or build.bat for Windows
and insert the following code:

#!/bin/bash
echo Building domainfinder...
go build -o domainfinder
echo Building synonyms...
cd ../synonyms
go build -o ../domainfinder/lib/synonyms
echo Building available...
cd ../available
go build -o ../domainfinder/lib/available
cd ../build
echo Building sprinkle...
cd ../sprinkle
go build -o ../domainfinder/lib/sprinkle
cd ../build
echo Building coolify...
cd ../coolify
go build -o ../domainfinder/lib/coolify
cd ../build
echo Building domainify...
cd ../domainify
go build -o ../domainfinder/lib/domainify
cd ../build
echo Done.

The preceding script simply builds all of our subprograms (including domainfinder,
which we are yet to write) telling go build to place them in our lib folder. Be sure
to give the new script execution rights by doing chmod +x build.sh, or something
similar. Run this script from a terminal and look inside the lib folder to ensure that
it has indeed placed the binaries for our subprograms in there.

Don't worry about the no buildable Go source files error for
now, it's just Go telling us that the domainfinder program doesn't
have any .go files to build.

Create a new file called main.go inside domainfinder and insert the following
code in the file:

package main
var cmdChain = []*exec.Cmd{
 exec.Command("lib/synonyms"),
 exec.Command("lib/sprinkle"),

Command-line Tools to Find Domain Names

[234]

 exec.Command("lib/coolify"),
 exec.Command("lib/domainify"),
 exec.Command("lib/available"),
}
func main() {

 cmdChain[0].Stdin = os.Stdin
 cmdChain[len(cmdChain)-1].Stdout = os.Stdout

 for i := 0; i < len(cmdChain)-1; i++ {
 thisCmd := cmdChain[i]
 nextCmd := cmdChain[i+1]
 stdout, err := thisCmd.StdoutPipe()
 if err != nil {
 log.Fatalln(err)
 }
 nextCmd.Stdin = stdout
 }

 for _, cmd := range cmdChain {
 if err := cmd.Start(); err != nil {
 log.Fatalln(err)
 } else {
 defer cmd.Process.Kill()
 }
 }

 for _, cmd := range cmdChain {
 if err := cmd.Wait(); err != nil {
 log.Fatalln(err)
 }
 }

}

The os/exec package gives us everything we need to work with running external
programs or commands from within Go programs. First, our cmdChain slice contains
*exec.Cmd commands in the order in which we want to join them together.

At the top of the main function, we tie the Stdin (standard in stream) of the first
program to the os.Stdin stream for this program, and the Stdout (standard out
stream) of the last program to the os.Stdout stream for this program. This means
that, like before, we will be taking input through the standard input stream and
writing output to the standard output stream.

Chapter 4

[235]

Our next block of code is where we join the subprograms together by iterating
over each item and setting its Stdin to the Stdout of the program before it.

The following table shows each program, with a description of where it gets its
input from, and where its output goes:

Program Input (Stdin) Output (Stdout)

synonyms The same Stdin as
domainfinder

sprinkle

sprinkle synonyms coolify

coolify sprinkle domainify

domainify coolify available

available domainify The same Stdout as
domainfinder

We then iterate over each command calling the Start method, which runs the
program in the background (as opposed to the Run method which will block our
code until the subprogram exits—which of course is no good since we have to run
five programs at the same time). If anything goes wrong, we bail with log.Fatalln,
but if the program starts successfully, we then defer a call to kill the process. This
helps us ensure the subprograms exit when our main function exits, which will be
when the domainfinder program ends.

Once all of the programs are running, we then iterate over every command again
and wait for it to finish. This is to ensure that domainfinder doesn't exit early and
kill off all the subprograms too soon.

Run the build.sh or build.bat script again and notice that the domainfinder
program has the same behavior as we have seen before, with a much more
elegant interface.

Summary
In this chapter, we learned how five small command-line programs can, when
composed together, produce powerful results while remaining modular. We
avoided tightly coupling our programs so they are still useful in their own right.
For example, we can use our available program just to check if domain names we
manually enter are available or not, or we can use our synonyms program just as
a command-line thesaurus.

We learned how standard streams could be used to build different flows of these
types of programs, and how redirection of the standard input and the standard
output lets us play around with different flows very easily.

Command-line Tools to Find Domain Names

[236]

We learned how simple it is in Go to consume a JSON RESTful APIs web service when
we needed to get synonyms from the Big Hugh Thesaurus. We kept it simple at first
by coding it inline and later refactoring the code to abstract the Thesaurus type into
its own package, which is ready to share. We also consumed a non-HTTP API when
we opened a connection to the WHOIS server and wrote data over raw TCP.

We saw how the math/rand package can bring a little variety and unpredictability,
by allowing us to use pseudo random numbers and decisions in our code, which
meant that each time we run our program, we get different results.

Finally, we built our domainfinder super program that composes all the subprograms
together giving our solution a simple, clean, and elegant interface.

Building Distributed
Systems and Working

with Flexible Data
In this chapter, we will explore transferrable skills that allow us to use schemaless
data and distributed technologies to solve big data problems. The system we will
build in this chapter will prepare us for a future where democratic elections all
happen online—on Twitter of course. Our solution will collect and count votes
by querying Twitter's streaming API for mentions of specific hashtags, and each
component will be capable of horizontally scaling to meet demand. Our use case is
a fun and interesting one, but the core concepts we'll learn and specific technology
choices we'll make are the real focus of this chapter. The ideas discussed here are
directly applicable to any system that needs true-scale capabilities.

Horizontal scaling refers to adding nodes, such as physical machines,
to a system in order to improve its availability, performance, and/
or capacity. Big data companies such as Google can scale by adding
affordable and easy-to-obtain hardware (commonly referred to as
commodity hardware) due to the way they write their software
and architect their solutions. Vertical scaling is synonymous with
increasing the resource available to a single node, such as adding
additional RAM to a box, or a processor with more cores.

In this chapter, you will:

• Learn about distributed NoSQL datastores; specifically how to interact with
MongoDB

• Learn about distributed messaging queues; specifically Bit.ly's NSQ and how
to use the go-nsq package to easily publish and subscribe to events

Building Distributed Systems and Working with Flexible Data

[238]

• Stream live tweet data through Twitter's streaming APIs and manage long
running net connections

• Learn about how to properly stop programs with many internal goroutines

• Learn how to use low memory channels for signaling

System design
Having a basic design sketched out is often useful, especially in distributed systems
where many components will be communicating with each other in different ways.
We don't want to spend too long on this stage because our design is likely to evolve
as we get stuck into the details, but we will look at a high-level outline so we can
discuss the constituents and how they fit together.

The preceding image shows the basic overview of the system we are going to build:

• Twitter is the social media network we all know and love.

• Twitter's streaming API allows long-running connections where tweet data
is streamed as quickly as possible.

• twittervotes is a program we will write that reads tweets and pushes the
votes into the messaging queue. twittervotes pulls the relevant tweet data,
figures out what is being voted for (or rather, which options are mentioned),
and pushes the vote into NSQ.

• NSQ is an open source, real-time distributed messaging platform designed
to operate at scale, built and maintained by Bit.ly. NSQ carries the message
across its instances making it available to anyone who has expressed an
interest in the vote data.

Chapter 5

[239]

• counter is a program we will write that listens out for votes on the messaging
queue, and periodically saves the results in the MongoDB database. counter
receives the vote messages from NSQ and keeps an in-memory tally of the
results, periodically pushing an update to persist the data.

• MongoDB is an open source document database designed to operate at scale.
• web is a web server program that will expose the live results that we will

write in the next chapter.

It could be argued that a single Go program could be written that reads the tweets,
counts the votes, and pushes them to a user interface but such a solution, while being
a great proof of concept, would be very limited in scale. In our design, any one of the
components can be horizontally scaled as the demand for that particular capability
increases. If we have relatively few polls, but lots of people viewing the data, we
can keep the twittervotes and counter instances down and add more web and
MongoDB nodes, or vice versa if the situation is reversed.

Another key advantage to our design is redundancy; since we can have many
instances of our components working at the same time, if one of our boxes disappears
(due to a system crash or power cut, for example) the others can pick up the slack.
Modern architectures often distribute such a system over the geographical expanse
to protect from local natural disasters too. All of these options are available to use if
we build our solution in this way.

We chose the specific technologies in this chapter because of their links to Go (NSQ,
for example, is written entirely in Go), and the availability of well-tested drivers and
packages. Conceptually, however, you can drop in a variety of alternatives as you
see fit.

Database design
We will call our MongoDB database ballots. It will contain a single collection
called polls which is where we will store the poll details, such as the title, the
options, and the results (in a single JSON document). The code for a poll will
look something like this:

{
 "_id": "???",
 "title": "Poll title",
 "options": ["one", "two", "three"],
 "results": {
 "one": 100,
 "two": 200,
 "three": 300
 }
}

Building Distributed Systems and Working with Flexible Data

[240]

The _id field is automatically generated by MongoDB and will be how we identify
each poll. The options field contains an array of string options; these are the hashtags
we will look for on Twitter. The results field is a map where the key represents the
option, and the value represents the total number of votes for each item.

Installing the environment
The code we write in this chapter has real external dependencies that we need to
get set up before we can start to build our system.

Be sure to check out the chapter notes at https://github.com/
matryer/goblueprints if you get stuck on installing any of the
dependencies.

In most cases, services such as mongod and nsqd will have to be started before we
can run our programs. Since we are writing components of a distributed system,
we will have to run each program at the same time, which is as simple as opening
many terminal windows.

NSQ
NSQ is a messaging queue that allows one program to send messages or events to
another, or to many other programs running either locally on the same machine,
or on different nodes connected by a network. NSQ guarantees the delivery of
messages, which means it keeps undelivered messages cached until all interested
parties have received them. This means that, even if we stop our counter program,
we won't miss any votes. You can contrast this capability with fire-and-forget
message queues where information is deemed out-of-date, and therefore is forgotten
if it isn't delivered in time, and where the sender of the messages doesn't care if
the consumer received them or not.

A message queue abstraction allows you to have different components of a system
running in different places, provided they have network connectivity to the queue.
Your programs are decoupled from others; instead, your designs start to care about
the ins and outs of specialized micro-services, rather than the flow of data through a
monolithic program.

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Chapter 5

[241]

NSQ transfers raw bytes, which means it is up to us how we encode data into those
bytes. For example, we could encode the data as JSON or in a binary format depending
on our needs. In our case, we are going to send the vote option as a string without any
additional encoding, since we are only sharing a single data field.

Open http://nsq.io/deployment/installing.html in a browser (or search
install nsq) and follow the instructions for your environment. You can either
download pre-compiled binaries or build your own from the source. If you have
homebrew installed, installing NSQ is as simple as typing:

brew install nsq

Once you have installed NSQ, you will need to add the bin folder to your PATH
environment variable so that the tools are available in a terminal.

To validate that NSQ is properly installed, open a terminal and run nsqlookupd; if the
program successfully starts, you should see some output similar to the following:

nsqlookupd v0.2.27 (built w/go1.3)

TCP: listening on [::]:4160

HTTP: listening on [::]:4161

We are going to use the default ports to interact with NSQ so take note of the TCP and
HTTP ports listed in the output, as we will be referring to them in our code.

Press Ctrl + C to stop the process for now; we'll start them properly later.

The key tools from the NSQ install that we are going to use are nsqlookupd and
nsqd. The nsqlookupd program is a daemon that manages topology information
about the distributed NSQ environment; it keeps track of all the nsqd producers for
specific topics and provides interfaces for clients to query such information. The nsqd
program is a daemon that does the heavy lifting for NSQ such as receiving, queuing,
and delivering messages from and to interested parties. For more information and
background on NSQ, visit http://nsq.io/.

NSQ driver for Go
The NSQ tools themselves are written in Go, so it is logical that the Bit.ly team
already has a Go package that makes interacting with NSQ very easy. We will
need to use it, so in a terminal, get it using go get:

go get github.com/bitly/go-nsq

http://nsq.io/deployment/installing.html
http://nsq.io/

Building Distributed Systems and Working with Flexible Data

[242]

MongoDB
MongoDB is a document database, which basically allows you to store and query
JSON documents and the data within them. Each document goes into a collection
that can be used to group the documents together without enforcing any schema on
the data inside them. Unlike rows in a traditional RDBMS such as Oracle, Microsoft
SQL Server, or MySQL, it is perfectly acceptable for documents to have a different
shape. For example, a people collection can contain the following three JSON
documents at the same time:

{"name":"Mat","lang":"en","points":57}
{"name":"Laurie","position":"Scrum Master"}
{"position":"Traditional Manager","exists":false}

This flexibility allows data with varying structure to coexist without impacting
performance or wasting space. It is also extremely useful if you expect your
software to evolve over time, as we really always should.

MongoDB was designed to scale while also remaining very easy to work with on
single-box install such as our development machine. When we host our application
for production, we would likely install a more complex multi-sharded, replicated
system, which is distributed across many nodes and locations, but for now, just
running mongod will do.

Head over to http://www.mongodb.org/downloads to grab the latest version
of MongoDB and install it, making sure to register the bin folder with your PATH
environment variable as usual.

To validate that MongoDB is successfully installed, run the mongod command, then
hit Ctrl + C to stop it for now.

MongoDB driver for Go
Gustavo Niemeyer has done a great job in simplifying interactions with MongoDB
with his mgo (pronounced "mango") package hosted at http://labix.org/mgo,
which is go gettable with the following command:

go get gopkg.in/mgo.v2

http://www.mongodb.org/downloads
http://labix.org/mgo

Chapter 5

[243]

Starting the environment
Now that we have all the pieces we need installed, we need to start our environment.
In this section, we are going to:

• Start nsqlookupd so that our nsqd instances are discoverable

• Start nsqd and tell it which nsqlookupd to use

• Start mongod for data services

Each of these daemons should run in their own terminal window, which will make
it easy for us to stop them by just hitting Ctrl + C.

Remember the page number for this section as you will likely revisit
it a few times as you work through this chapter.

In a terminal window, run:

nsqlookupd

Take note of the TCP port, which by default is 4160, and in another terminal
window, run:

nsqd --lookupd-tcp-address=localhost:4160

Make sure the port number in the --lookupd-tcp-address flag matches the TCP
port of the nsqlookupd instance. Once you start nsqd, you will notice some output is
printed to the terminal from both nsqlookupd and nsqd; this indicates that the two
processes are talking to each other.

In yet another window or tab, start MongoDB by running:

mongod --dbpath ./db

The dbpath flag tells MongoDB where to store the data files for our database. You
can pick any location you like, but you'll have to make sure the folder exists before
mongod will run.

By deleting the dbpath folder at any time, you can effectively erase all
data and start afresh. This is especially useful during development.

Now that our environment is running, we are ready to start building our components.

Building Distributed Systems and Working with Flexible Data

[244]

Votes from Twitter
In your $GOPATH/src folder, alongside other projects, create a new folder called
socialpoll for this chapter. This folder won't be a Go package or program by
itself, but will contain our three component programs. Inside socialpoll, create
a new folder called twittervotes and add the obligatory main.go template
(this is important as main packages without a main function won't compile):

package main
func main(){}

Our twittervotes program is going to:

• Load all polls from the MongoDB database using mgo, and collect all options
from the options array in each document

• Open and maintain a connection to Twitter's streaming APIs looking for
any mention of the options

• For each tweet that matches the filter, figure out which option is mentioned
and push that option through to NSQ

• If the connection to Twitter is dropped (which is common in long-running
connections as it is actually part of Twitter's streaming API specification)
after a short delay (so we do not bombard Twitter with connection requests),
reconnect and continue

• Periodically re-query MongoDB for the latest polls and refresh the connection
to Twitter to make sure we are always looking out for the right options

• When the user terminates the program by hitting Ctrl + C, it will gracefully
stop itself

Authorization with Twitter
In order to use the streaming API, we will need authentication credentials from
Twitter's Application Management console, much in the same way we did for our
Gomniauth service providers in Chapter 3, Three Ways to Implement Profile Pictures.
Head over to https://apps.twitter.com and create a new app called something
like SocialPoll (the names have to be unique, so you can have some fun here; the
choice of name doesn't affect the code either way). When your app has been created,
visit the API Keys tab and locate the Your access token section where you need to
create a new access token. After a short delay, refresh the page and notice that you in
fact have two sets of keys and secrets; an API key and a secret, and an access token
and the corresponding secret. Following good coding practices, we are going to set
these values as environment variables so that our program can have access to them
without us having to hardcode them in our source files.

https://apps.twitter.com

Chapter 5

[245]

The keys we will use in this chapter are:

• SP_TWITTER_KEY

• SP_TWITTER_SECRET

• SP_TWITTER_ACCESSTOKEN

• SP_TWITTER_ACCESSSECRET

You can set the environment variables however you like, but since the app relies
on them in order to work, creating a new file called setup.sh (for bash shells) or
setup.bat (on Windows) is a good idea since you can check such files into your
source code repository. Insert the following code in setup.sh or setup.bat by
copying the appropriate values from the Twitter app page:

#!/bin/bash
export SP_TWITTER_KEY=yCwwKKnuBnUBrelyTN...
export SP_TWITTER_SECRET=6on0YRYniT1sI3f...
export SP_TWITTER_ACCESSTOKEN=2427-13677...
export SP_TWITTER_ACCESSSECRET=SpnZf336u...

Run the file with the source or call commands to have the values appropriately
set, or add them to your .bashrc or C:\cmdauto.cmd files to save you running
them every time you open a new terminal window.

Extracting the connection
The Twitter streaming API supports HTTP connections that stay open for a long time,
and given the design of our solution, we are going to need to access the net.Conn
object in order to close it from outside of the goroutine in which requests occur. We
can achieve this by providing our own dial method to an http.Transport object
that we will create.

Create a new file called twitter.go inside twittervotes (which is where all things
Twitter-related will live), and insert the following code:

var conn net.Conn
func dial(netw, addr string) (net.Conn, error) {
 if conn != nil {
 conn.Close()
 conn = nil
 }
 netc, err := net.DialTimeout(netw, addr, 5*time.Second)
 if err != nil {

Building Distributed Systems and Working with Flexible Data

[246]

 return nil, err
 }
 conn = netc
 return netc, nil
}

Our bespoke dial function first ensures conn is closed, and then opens a new
connection keeping the conn variable updated with the current connection. If a
connection dies (Twitter's API will do this from time to time) or is closed by us,
we can redial without worrying about zombie connections.

We will periodically close the connection ourselves and initiate a new one, because
we want to reload the options from the database at regular intervals. To do this, we
need a function that closes the connection, and also closes an io.ReadCloser that we
will use to read the body of the responses. Add the following code to twitter.go:

var reader io.ReadCloser
func closeConn() {
 if conn != nil {
 conn.Close()
 }
 if reader != nil {
 reader.Close()
 }
}

Now we can call closeConn at any time to break the ongoing connection with Twitter
and tidy things up. In most cases, our code will load the options from the database
again and open a new connection right away, but if we're shutting the program down
(in response to a Ctrl + C hit) then we can call closeConn just before we exit.

Reading environment variables
Next we are going to write a function that will read the environment variables and
set up the OAuth objects we'll need in order to authenticate the requests. Add the
following code in the twitter.go file:

var (
 authClient *oauth.Client
 creds *oauth.Credentials
)

Chapter 5

[247]

func setupTwitterAuth() {
 var ts struct {
 ConsumerKey string `env:"SP_TWITTER_KEY,required"`
 ConsumerSecret string `env:"SP_TWITTER_SECRET,required"`
 AccessToken string `env:"SP_TWITTER_ACCESSTOKEN,required"`
 AccessSecret string `env:"SP_TWITTER_ACCESSSECRET,required"`
 }
 if err := envdecode.Decode(&ts); err != nil {
 log.Fatalln(err)
 }
 creds = &oauth.Credentials{
 Token: ts.AccessToken,
 Secret: ts.AccessSecret,
 }
 authClient = &oauth.Client{
 Credentials: oauth.Credentials{
 Token: ts.ConsumerKey,
 Secret: ts.ConsumerSecret,
 },
 }
}

Here we define a struct type to store the environment variables that we need to
authenticate with Twitter. Since we don't need to use the type elsewhere, we define it
inline and creating a variable called ts of this anonymous type (that's why we have the
somewhat unusual var ts struct… code). We then use Joe Shaw's elegant envdecode
package to pull in those environment variables for us. You will need to run go get
github.com/joeshaw/envdecode and also import the log package. Our program
will try to load appropriate values for all the fields marked required, and return an
error if it fails to do so, which reminds people that the program won't work without
Twitter credentials.

The strings inside the back ticks alongside each field in struct are called tags, and
are available through a reflection interface, which is how envdecode knows which
variables to look for. Tyler Bunnell and I added the required argument to this package,
which indicates that it is an error for any of the environment variables to be missing
(or empty).

Once we have the keys, we use them to create oauth.Credentials and an oauth.
Client object from Gary Burd's go-oauth package, which will allow us to authorize
requests with Twitter.

Building Distributed Systems and Working with Flexible Data

[248]

Now that we have the ability to control the underlying connection and authorize
requests, we are ready to write the code that will actually build the authorized
request, and return the response. In twitter.go, add the following code:

var (
 authSetupOnce sync.Once
 httpClient *http.Client
)
func makeRequest(req *http.Request, params url.Values) (*http.
Response, error) {
 authSetupOnce.Do(func() {
 setupTwitterAuth()
 httpClient = &http.Client{
 Transport: &http.Transport{
 Dial: dial,
 },
 }
 })
 formEnc := params.Encode()
 req.Header.Set("Content-Type", "application/x-www-form-
urlencoded")
 req.Header.Set("Content-Length", strconv.Itoa(len(formEnc)))
 req.Header.Set("Authorization",
authClient.AuthorizationHeader(creds, "POST", req.URL, params))
 return httpClient.Do(req)
}

We use sync.Once to ensure our initialization code only gets run once despite the
number of times we call makeRequest. After calling the setupTwitterAuth method,
we create a new http.Client using an http.Transport that uses our custom dial
method. We then set the appropriate headers needed for authorization with Twitter by
encoding the specified params object that will contain the options we are querying for.

Reading from MongoDB
In order to load the polls, and therefore the options to search Twitter for, we need
to connect to and query MongoDB. In main.go, add the two functions dialdb
and closedb:

var db *mgo.Session
func dialdb() error {
 var err error
 log.Println("dialing mongodb: localhost")
 db, err = mgo.Dial("localhost")
 return err

Chapter 5

[249]

}
func closedb() {
 db.Close()
 log.Println("closed database connection")
}

These two functions will connect to and disconnect from the locally running
MongoDB instance using the mgo package, and store mgo.Session (the database
connection object) in a global variable called db.

As an additional assignment, see if you can find an elegant way to
make the location of the MongoDB instance configurable so that you
don't need to run it locally.

Assuming MongoDB is running and our code is able to connect, we need to load the
poll objects and extract all the options from the documents, which we will then use
to search Twitter. Add the following Options function to main.go:

type poll struct {
 Options []string
}
func loadOptions() ([]string, error) {
 var options []string
 iter := db.DB("ballots").C("polls").Find(nil).Iter()
 var p poll
 for iter.Next(&p) {
 options = append(options, p.Options...)
 }
 iter.Close()
 return options, iter.Err()
}

Our poll document contains more than just Options, but our program doesn't care
about anything else, so there's no need for us to bloat our poll struct. We use the db
variable to access the polls collection from the ballots database, and call the mgo
package's fluent Find method, passing nil (meaning no filtering).

A fluent interface (first coined by Eric Evans and Martin Fowler) refers
to an API design that aims to make the code more readable by allowing
you to chain together method calls. This is achieved by each method
returning the context object itself, so that another method can be called
directly afterwards. For example, mgo allows you to write queries such
as this:

query := col.Find(q).Sort("field").Limit(10).Skip(10)

Building Distributed Systems and Working with Flexible Data

[250]

We then get an iterator by calling the Iter method, which allows us to access each
poll one by one. This is a very memory-efficient way of reading the poll data, because
it only ever uses a single poll object. If we were to use the All method instead, the
amount of memory we'd use would depend on the number of polls we had in our
database, which would be out of our control.

When we have a poll, we use the append method to build up the options slice. Of
course, with millions of polls in the database, this slice too would grow large and
unwieldy. For that kind of scale, we would probably run multiple twittervotes
programs, each dedicated to a portion of the poll data. A simple way to do this
would be to break polls into groups based on the letters the titles begin with, such
as group A-N and O-Z. A somewhat more sophisticated approach would be to add
a field to the poll document grouping it up in a more controlled manner, perhaps
based on the stats for the other groups so that we are able to balance the load across
many twittervotes instances.

The append built-in function is actually a variadic function, which
means you can pass multiple elements for it to append. If you have a
slice of the correct type, you can add ... to the end, which simulates
the passing of each item of the slice as a different argument.

Finally, we close the iterator and clean up any used memory before returning the
options and any errors that occurred while iterating (by calling the Err method on
the mgo.Iter object).

Reading from Twitter
Now we are able to load the options and make authorized requests to the Twitter
API. We are thus ready to write the code that initiates the connection, and
continuously reads from the stream until either we call our closeConn method, or
Twitter closes the connection for one reason or another. The structure contained in
the stream is a complex one containing all kinds of information about the tweet—
who made it and when, and even what links or mentions of users occur in the body
(see Twitter's API documentation for more details). However, we are only interested
in the tweet text itself so you need not worry about all the other noise; add the
following structure to twitter.go:

type tweet struct {
 Text string
}

Chapter 5

[251]

This may feel incomplete, but think about how clear it makes our
intentions to other programmers who might see our code: a tweet
has some text, and that is all we care about.

Using this new structure, in twitter.go, add the following readFromTwitter
function that takes a send-only channel called votes; this is how this function will
inform the rest of our program that it has noticed a vote on twitter:

func readFromTwitter(votes chan<- string) {
 options, err := loadOptions()
 if err != nil {
 log.Println("failed to load options:", err)
 return
 }
 u, err := url.Parse("https://stream.twitter.com/1.1/statuses/filter.
json")
 if err != nil {
 log.Println("creating filter request failed:", err)
 return
 }
 query := make(url.Values)
 query.Set("track", strings.Join(options, ","))
 req, err := http.NewRequest("POST", u.String(), strings.
NewReader(query.Encode()))
 if err != nil {
 log.Println("creating filter request failed:", err)
 return
 }
 resp, err := makeRequest(req, query)
 if err != nil {
 log.Println("making request failed:", err)
 return
 }
 reader := resp.Body
 decoder := json.NewDecoder(reader)
 for {
 var tweet tweet
 if err := decoder.Decode(&tweet); err != nil {
 break
 }
 for _, option := range options {
 if strings.Contains(
 strings.ToLower(tweet.Text),

Building Distributed Systems and Working with Flexible Data

[252]

 strings.ToLower(option),
) {
 log.Println("vote:", option)
 votes <- option
 }
 }
 }
}

In the preceding code, after loading the options from all the polls data (by calling the
loadOptions function), we use url.Parse to create a url.URL object describing the
appropriate endpoint on Twitter. We build a url.Values object called query, and set
the options as a comma-separated list. As per the API, we make a new POST request
using the encoded url.Values object as the body, and pass it to makeRequest along
with the query object itself. All being well, we make a new json.Decoder from the
body of the request, and keep reading inside an infinite for loop by calling the Decode
method. If there is an error (probably due to the connection being closed), we simply
break the loop and exit the function. If there is a tweet to read, it will be decoded into
the tweet variable, which will give us access to the Text property (the 140 characters
of the tweet itself). We then iterate over all possible options, and if the tweet has
mentioned it, we send it on the votes channel. This technique also allows a tweet to
contain many votes at the same time, something you may or may not decide to change
based on the rules of the election.

The votes channel is send-only (which means we cannot receive on it),
since it is of the type chan<- string. Think of the little "arrow" telling
us which way messages will flow: either into the channel or out of it.
This is a great way to express intent—it's clear that we never intend to
read votes using our readFromTwitter function; rather we will only
send them on that channel.

Terminating the program whenever Decode returns an error doesn't provide a
very robust solution. This is because the Twitter API documentation states that
the connection will drop from time to time, and clients should consider this when
consuming the services. And remember, we are going to terminate the connection
periodically too, so we need to think about a way to reconnect once the connection
is dropped.

Signal channels
A great use of channels in Go is to signal events between code running in different
goroutines. We are going to see a real-world example of this when we write our
next function.

Chapter 5

[253]

The purpose of the function is to start a goroutine that continually calls the
readFromTwitter function (with the specified votes channel to receive the votes
on), until we signal that we want it to stop. And once it has stopped, we want to be
notified through another signal channel. The return of the function will be a channel
of struct{}; a signal channel.

Signal channels have some interesting properties that are worth taking a closer
look at. Firstly, the type sent down the channels is an empty struct{}, instances
of which actually take up zero bytes, since it has no fields. So struct{}{} is a great
memory-efficient option for signaling events. Some people use bool types, which
is also fine, although true and false both take up a byte of memory.

Head over to http://play.golang.org and try this out for yourself.

The size of a bool is 1:
fmt.Println(reflect.TypeOf(true).Size())
= 1

Whereas the size of struct{}{} is 0:
fmt.Println(reflect.TypeOf(struct{}{}).Size())
= 0

The signal channels also have a buffer size of 1, which means that execution will
not block until something reads the signal from the channel.

We are going to employ two signal channels in our code, one that we pass into our
function that tells our goroutine that it should stop, and another (provided by the
function) that signals once stopping is complete.

In twitter.go, add the following function:

func startTwitterStream(stopchan <-chan struct{}, votes chan<- string)
<-chan struct{} {
 stoppedchan := make(chan struct{}, 1)
 go func() {
 defer func() {
 stoppedchan <- struct{}{}
 }()
 for {
 select {
 case <-stopchan:
 log.Println("stopping Twitter...")
 return
 default:

http://play.golang.org

Building Distributed Systems and Working with Flexible Data

[254]

 log.Println("Querying Twitter...")
 readFromTwitter(votes)
 log.Println(" (waiting)")
 time.Sleep(10 * time.Second) // wait before reconnecting
 }
 }
 }()
 return stoppedchan
}

In the preceding code, the first argument stopchan is a channel of type <-chan
struct{}, a receive-only signal channel. It is this channel that, outside the code,
will signal on, which will tell our goroutine to stop. Remember that it's receive-only
inside this function, the actual channel itself will be capable of sending. The second
argument is the votes channel on which votes will be sent. The return type of our
function is also a signal channel of type <-chan struct{}; a receive-only channel
that we will use to indicate that we have stopped.

These channels are necessary because our function triggers its own goroutine,
and immediately returns, so without this, calling code would have no idea if the
spawned code were still running or not.

The first thing we do in the startTwitterStream function is make our stoppedchan,
and defer the sending of a struct{}{} to indicate that we have finished when our
function exits. Notice that stoppedchan is a normal channel so even though it is
returned as a receive-only, we will be able to send on it from within this function.

We then start an infinite for loop in which we select from one of two channels. The
first is the stopchan (the first argument), which would indicate that it was time to
stop, and return (thus triggering the deferred signaling on stoppedchan). If that hasn't
happened, we will call readFromTwitter (passing in the votes channel), which will
go and load the options from the database and open the connection to Twitter.

When the Twitter connection dies, our code will return here where we sleep for ten
seconds using the time.Sleep function. This is to give the Twitter API a rest in case
it closed the connection due to overuse. Once we've rested, we re-enter the loop and
check again on the stopchan channel to see if the calling code wants us to stop or not.

To make this flow clear, we are logging out key statements that will not only help
us debug our code, but also let us peek into the inner workings of this somewhat
complicated mechanism.

Chapter 5

[255]

Publishing to NSQ
Once our code is successfully noticing votes on Twitter and sending them down the
votes channel, we need a way to publish them into an NSQ topic; after all, this is the
point of the twittervotes program.

We will write a function called publishVotes that will take the votes channel, this
time of type <-chan string (a receive-only channel) and publish each string that is
received from it.

In our previous functions, the votes channel was of type chan<-
string, but this time it's of the type <-chan string. You might
think this is a mistake, or even that it means we cannot use the same
channel for both but you would be wrong. The channel we create later
will be made with make(chan string), neither receive or only send,
and can act in both cases. The reason for using the <- operator on a
channel in arguments is to make clear the intent of what the channel
will be used for; or in the case where it is the return type, to prevent
users from accidentally sending on channels intended for receiving or
vice versa. The compiler will actually produce an error if they use such
a channel incorrectly.

Once the votes channel is closed (this is how external code will tell our function to
stop working), we will stop publishing and send a signal down the returned stop
signal channel.

Add the publishVotes function to main.go:

func publishVotes(votes <-chan string) <-chan struct{} {
 stopchan := make(chan struct{}, 1)
 pub, _ := nsq.NewProducer("localhost:4150", nsq.NewConfig())
 go func() {
 for vote := range votes {
 pub.Publish("votes", []byte(vote)) // publish vote
 }
 log.Println("Publisher: Stopping")
 pub.Stop()
 log.Println("Publisher: Stopped")
 stopchan <- struct{}{}
 }()
 return stopchan
}

Building Distributed Systems and Working with Flexible Data

[256]

Again the first thing we do is to create the stopchan, which we later return,
this time not deferring the signaling but doing it inline by sending a struct{}{}
down stopchan.

The difference is to show alternative options: within one codebase you
should pick a style you like and stick with it, until a standard emerges
within the community; in which case we should all go with that.

We then create an NSQ producer by calling NewProducer and connecting to the
default NSQ port on localhost, using a default configuration. We start a goroutine,
which uses another great built-in feature of the Go language that lets us continually
pull values from a channel (in our case the votes channel) just by doing a normal
for…range operation on it. Whenever the channel has no values, execution will be
blocked until a value comes down the line. If the votes channel is closed, the for
loop will exit.

To learn more about the power of channels in Go, it is highly
recommended that you seek out blog posts and videos by John
Graham-Cumming, in particular one entitled A Channel Compendium
that he presented at Gophercon 2014 and which contains a brief
history of channels, including their origin. (Interestingly, John was
also the guy who successfully petitioned the British Government to
officially apologize for its treatment of Alan Turing.)

When the loop exits (after the votes channel is closed) the publisher is stopped,
following which the stopchan signal is sent.

Gracefully starting and stopping
When our program is terminated, we want to do a few things before actually exiting;
namely closing our connection to Twitter and stopping the NSQ publisher (which
actually deregisters its interest in the queue). To achieve this, we have to override
the default Ctrl + C behavior.

The upcoming code blocks all go inside the main function; they are
broken up so we can discuss each section before continuing.

Add the following code inside the main function:

var stoplock sync.Mutex
stop := false
stopChan := make(chan struct{}, 1)

Chapter 5

[257]

signalChan := make(chan os.Signal, 1)
go func() {
 <-signalChan
 stoplock.Lock()
 stop = true
 stoplock.Unlock()
 log.Println("Stopping...")
 stopChan <- struct{}{}
 closeConn()
}()
signal.Notify(signalChan, syscall.SIGINT, syscall.SIGTERM)

Here we create a stop bool with an associated sync.Mutex so that we can access it
from many goroutines at the same time. We then create two more signal channels,
stopChan and signalChan, and use signal.Notify to ask Go to send the signal
down the signalChan when someone tries to halt the program (either with the
SIGINT interrupt, or the SIGTERM termination POSIX signals). The stopChan is how
we indicate that we want our processes to terminate, and we pass it as an argument
to startTwitterStream later.

We then run a goroutine that blocks waiting for the signal by trying to read from
signalChan; this is what the <- operator does in this case (it's trying to read from
the channel). Since we don't care about the type of signal, we don't bother capturing
the object returned on the channel. Once a signal is received, we set stop to true,
and close the connection. Only when one of the specified signals is sent will the
rest of the goroutine code run, which is how we are able to perform teardown code
before exiting the program.

Add the following piece of code (inside the main function) to open and defer the
closing of the database connection:

if err := dialdb(); err != nil {
 log.Fatalln("failed to dial MongoDB:", err)
}
defer closedb()

Since the readFromTwitter method reloads the options from the database each
time, and because we want to keep our program updated without having to restart
it, we are going to introduce one final goroutine. This goroutine will simply call
closeConn every minute, causing the connection to die, and cause readFromTwitter
to be called over again. Insert the following code at the bottom of the main function
to start all of these processes, and then wait for them to gracefully stop:

// start things
votes := make(chan string) // chan for votes

Building Distributed Systems and Working with Flexible Data

[258]

publisherStoppedChan := publishVotes(votes)
twitterStoppedChan := startTwitterStream(stopChan, votes)
go func() {
 for {
 time.Sleep(1 * time.Minute)
 closeConn()
 stoplock.Lock()
 if stop {
 stoplock.Unlock()
 break
 }
 stoplock.Unlock()
 }
}()
<-twitterStoppedChan
close(votes)
<-publisherStoppedChan

First we make the votes channel that we have been talking about throughout this
section, which is a simple channel of string. Notice that it is neither a send (chan<-
) or receive (<-chan) channel; in fact, making such channels makes little sense. We
then call publishVotes, passing in the votes channel for it to receive from, and
capturing the returned stop signal channel as publisherStoppedChan. Similarly, we
call startTwitterStream passing in our stopChan from the beginning of the main
function, and the votes channel for it to send to, while capturing the resulting stop
signal channel as twitterStoppedChan.

We then start our refresher goroutine, which immediately enters an infinite for loop
before sleeping for a minute and closing the connection via the call to closeConn.
If the stop bool has been set to true (in that previous goroutine), we will break the
loop and exit, otherwise we will loop around and wait another minute before closing
the connection again. The use of the stoplock is important because we have two
goroutines that might try to access the stop variable at the same time but we want
to avoid collisions.

Once the goroutine has started, we then block on the twitterStoppedChan by
attempting to read from it. When successful (which means the signal was sent on the
stopChan), we close the votes channel which will cause the publisher's for…range
loop to exit, and the publisher itself to stop, after which the signal will be sent on the
publisherStoppedChan, which we wait for before exiting.

Chapter 5

[259]

Testing
To make sure our program works, we need to do two things: first we need to create
a poll in the database, and second, we need to peer inside the messaging queue to
see if the messages are indeed being generated by twittervotes.

In a terminal, run the mongo command to open a database shell that allows us to
interact with MongoDB. Then enter the following commands to add a test poll:

> use ballots

switched to db ballots

> db.polls.insert({"title":"Test poll","options":["happy","sad","fail","w
in"]})

The preceding commands add a new item to the polls collection in the ballots
database. We are using some common words for options that are likely to be
mentioned by people on Twitter so that we can observe real tweets being translated
into messages. You might notice that our poll object is missing the results field;
this is fine since we are dealing with unstructured data where documents do not
have to adhere to a strict schema. The counter program we are going to write in
the next section will add and maintain the results data for us later.

Press Ctrl + C to exit the MongoDB shell and type the following command:

nsq_tail --topic="votes" --lookupd-http-address=localhost:4161

The nsq_tail tool connects to the specified messaging queue topic and outputs
any messages that it notices. This is where we will validate that our twittervotes
program is sending messages.

In a separate terminal window, let's build and run the twittervotes program:

go build –o twittervotes

./twittervotes

Now switch back to the window running nsq_tail and notice that messages are
indeed being generated in response to live Twitter activity.

If you aren't seeing much activity, try looking up trending hashtags on
Twitter and adding another poll containing those options.

Building Distributed Systems and Working with Flexible Data

[260]

Counting votes
The second program we are going to implement is the counter tool, which will
be responsible for watching out for votes in NSQ, counting them, and keeping
MongoDB up to date with the latest numbers.

Create a new folder called counter alongside twittervotes, and add the
following code to a new main.go file:

package main
import (
 "flag"
 "fmt"
 "os"
)
var fatalErr error
func fatal(e error) {
 fmt.Println(e)
 flag.PrintDefaults()
 fatalErr = e
}
func main() {
 defer func() {
 if fatalErr != nil {
 os.Exit(1)
 }
 }()
}

Normally when we encounter an error in our code, we use a call like log.Fatal or
os.Exit, which immediately terminates the program. Exiting the program with a non-
zero exit code is important, because it is our way of telling the operating system that
something went wrong, and we didn't complete our task successfully. The problem
with the normal approach is that any deferred functions we have scheduled (and
therefore any tear down code we need to run), won't get a chance to execute.

The pattern employed in the preceding code snippet lets us call the fatal function
to record that an error occurred. Note that only when our main function exits will
the deferred function run, which in turn calls os.Exit(1) to exit the program with
an exit code of 1. Because the deferred statements are run in LIFO (last in, first out)
order, the first function we defer will be the last function to be executed, which
is why the first thing we do in the main function is to defer the exiting code. This
allows us to be sure that other functions we defer will be called before the program
exits. We'll use this feature to ensure our database connection gets closed regardless
of any errors.

Chapter 5

[261]

Connecting to the database
The best time to think about cleaning up resources, such as database connections, is
immediately after you have successfully obtained the resource; Go's defer keyword
makes this easy. At the bottom of the main function, add the following code:

log.Println("Connecting to database...")
db, err := mgo.Dial("localhost")
if err != nil {
 fatal(err)
 return
}
defer func() {
 log.Println("Closing database connection...")
 db.Close()
}()
pollData := db.DB("ballots").C("polls")

This code uses the familiar mgo.Dial method to open a session to the locally running
MongoDB instance and immediately defers a function that closes the session. We can
be sure that this code will run before our previously deferred statement containing
the exit code (because deferred functions are run in the reverse order in which
they were called). Therefore, whatever happens in our program, we know that the
database session will definitely and properly close.

The log statements are optional, but will help us see what's going
on when we run and exit our program.

At the end of the snippet, we use the mgo fluent API to keep a reference of the
ballots.polls data collection in the pollData variable, which we will use later
to make queries.

Consuming messages in NSQ
In order to count the votes, we need to consume the messages on the votes topic
in NSQ, and we'll need a place to store them. Add the following variables to the
main function:

var counts map[string]int
var countsLock sync.Mutex

Building Distributed Systems and Working with Flexible Data

[262]

A map and a lock (sync.Mutex) is a common combination in Go, because we
will have multiple goroutines trying to access the same map and we need to
avoid corrupting it by trying to modify or read it at the same time.

Add the following code to the main function:

log.Println("Connecting to nsq...")
q, err := nsq.NewConsumer("votes", "counter", nsq.NewConfig())
if err != nil {
 fatal(err)
 return
}

The NewConsumer function allows us to set up an object that will listen on the votes
NSQ topic, so when twittervotes publishes a vote on that topic, we can handle it
in this program. If NewConsumer returns an error, we'll use our fatal function to
record it and return.

Next we are going to add the code that handles messages (votes) from NSQ:

q.AddHandler(nsq.HandlerFunc(func(m *nsq.Message) error {
 countsLock.Lock()
 defer countsLock.Unlock()
 if counts == nil {
 counts = make(map[string]int)
 }
 vote := string(m.Body)
 counts[vote]++
 return nil
}))

We call the AddHandler method on nsq.Consumer and pass it a function that will
be called for every message received on the votes topic.

When a vote comes in, the first thing we do is lock the countsLock mutex. Next we
defer the unlocking of the mutex for when the function exits. This allows us to be sure
that while NewConsumer is running, we are the only ones allowed to modify the map;
others will have to wait until our function exits before they can use it. Calls to the Lock
method block execution while the lock is in place, and it only continues when the lock
is released by a call to Unlock. This is why it's vital that every Lock call has an Unlock
counterpart, otherwise we will deadlock our program.

Every time we receive a vote, we check if counts is nil and make a new map if it is,
because once the database has been updated with the latest results, we want to reset
everything and start at zero. Finally we increase the int value by one for the given
key, and return nil indicating no errors.

Chapter 5

[263]

Although we have created our NSQ consumer, and added our handler function,
we still need to connect to the NSQ service, which we will do by adding the
following code:

if err := q.ConnectToNSQLookupd("localhost:4161"); err != nil {
 fatal(err)
 return
}

It is important to note that we are actually connecting to the HTTP port of the
nsqlookupd instance, rather than NSQ instances; this abstraction means that our
program doesn't need to know where the messages are coming from in order to
consume them. If we fail to connect to the server (for instance if we forget to start it),
we'll get an error, which we report to our fatal function before immediately returning.

Keeping the database updated
Our code will listen out for votes, and keep a map of the results in memory, but that
information is so far trapped inside our program. Next, we need to add the code that
will periodically push the results to the database:

log.Println("Waiting for votes on nsq...")
var updater *time.Timer
updater = time.AfterFunc(updateDuration, func() {
 countsLock.Lock()
 defer countsLock.Unlock()
 if len(counts) == 0 {
 log.Println("No new votes, skipping database update")
 } else {
 log.Println("Updating database...")
 log.Println(counts)
 ok := true
 for option, count := range counts {
 sel := bson.M{"options": bson.M{"$in": []string{option}}}
 up := bson.M{"$inc": bson.M{"results." + option: count}}
 if _, err := pollData.UpdateAll(sel, up); err != nil {
 log.Println("failed to update:", err)
 ok = false
 }
 }
 if ok {
 log.Println("Finished updating database...")

Building Distributed Systems and Working with Flexible Data

[264]

 counts = nil // reset counts
 }
 }
 updater.Reset(updateDuration)
})

The time.AfterFunc function calls the function after the specified duration in a
goroutine of its own. At the end we call Reset, which starts the process again; this
allows us to schedule our update code to run at regular intervals.

When our update function runs, the first thing we do is lock the countsLock, and
defer its unlocking. We then check to see if there are any values in the counts map.
If there aren't, we just log that we're skipping the update and wait for next time.

If there are some votes, we iterate over the counts map pulling out the option and
number of votes (since the last update), and use some MongoDB magic to update
the results.

MongoDB stores BSON (short for Binary JSON) documents internally,
which are easier to traverse than normal JSON documents, and is why
the mgo package comes with mgo/bson encoding package. When
using mgo, we will often use bson types, such as the bson.M map to
describe concepts for MongoDB.

We first create the selector for our update operation using the bson.M shortcut type,
which is similar to creating map[string]interface{} types. The selector we create
will look something like this:

{
 "options": {
 "$in": ["happy"]
 }
}

In MongoDB, the preceding BSON specifies that we want to select polls where
"happy" is one of the items in the options array.

Next, we use the same technique to generate the update operation, which looks
something like this:

{
 "$inc": {
 "results.happy": 3
 }
}

Chapter 5

[265]

In MongoDB, the preceding BSON specifies that we want to increase the results.
happy field by 3. If there is no results map in the poll, one will be created, and if
there is no happy key inside results, 0 will be assumed.

We then call the UpdateAll method on our pollsData query to issue the command
to the database, which will in turn update every poll that matches the selector
(contrast this to the Update method, which will update only one). If something
goes wrong, we report it and set the ok Boolean to false. If all goes well, we set
the counts map to nil, since we want to reset the counter.

We are going to specify the updateDuration as a constant at the top of the file,
which will make it easy for us to change when we are testing our program. Add
the following code above the main function:

const updateDuration = 1 * time.Second

Responding to Ctrl + C
The last thing to do before our program is ready is to make sure our main function
waits for operations to complete before exiting, like we did in our twittervotes
program. Add the following code at the end of the main function:

termChan := make(chan os.Signal, 1)
signal.Notify(termChan, syscall.SIGINT, syscall.SIGTERM, syscall.
SIGHUP)
for {
 select {
 case <-termChan:
 updater.Stop()
 q.Stop()
 case <-q.StopChan:
 // finished
 return
 }
}

Here we have employed a slightly different tactic than before. We trap the
termination event, which will cause a signal to go down termChan when we
hit Ctrl + C. Next we start an infinite loop, inside which we use Go's select
structure to allow us to run code if we receive something on either termChan,
or the StopChan of the consumer.

Building Distributed Systems and Working with Flexible Data

[266]

In fact, we will only ever get a termChan signal first in response to a Ctrl+C-press,
at which point we stop the updater timer and ask the consumer to stop listening for
votes. Execution then re-enters the loop and will block until the consumer reports that
it has indeed stopped by signaling on its StopChan. When that happens, we're done
and we exit, at which point our deferred statement runs, which, if you remember,
tidies up the database session.

Running our solution
It's time to see our code in action. Be sure to have nsqlookupd, nsqd, and mongod
running in separate terminal windows with:

nsqlookupd

nsqd --lookupd-tcp-address=127.0.0.1:4160

mongod --dbpath ./db

If you haven't already done so, make sure the twittervotes program is running
too. Then in the counter folder, build and run our counting program:

go build -o counter

./counter

You should see periodic output describing what work counter is doing, such as:

No new votes, skipping database update

Updating database...

map[win:2 happy:2 fail:1]

Finished updating database...

No new votes, skipping database update

Updating database...

map[win:3]

Finished updating database...

The output will of course vary since we are actually responding to real
live activity on Twitter.

Chapter 5

[267]

We can see that our program is receiving vote data from NSQ, and reports to
be updating the database with the results. We can confirm this by opening the
MongoDB shell and querying the poll data to see if the results map is being
updated. In another terminal window, open the MongoDB shell:

mongo

Ask it to use the ballots database:

> use ballots

switched to db ballots

Use the find method with no arguments to get all polls (add the pretty method to
the end to get nicely formatted JSON):

> db.polls.find().pretty()

{

 "_id" : ObjectId("53e2a3afffbff195c2e09a02"),

 "options" : [

 "happy","sad","fail","win"

],

 "results" : {

 "fail" : 159, "win" : 711,

 "happy" : 233, "sad" : 166,

 },

 "title" : "Test poll"

}

The results map is indeed being updated, and at any point in time contains the
total number of votes for each option.

Summary
In this chapter we covered a lot of ground. We learned different techniques for
gracefully shutting down programs using signaling channels, which is especially
important when our code has some work to do before it can exit. We saw that
deferring the reporting of fatal errors at the start of our program can give our
other deferred functions a chance to execute before the process ends.

Building Distributed Systems and Working with Flexible Data

[268]

We also discovered how easy it is to interact with MongoDB using the mgo package,
and how to use BSON types when describing concepts for the database. The bson.M
alternative to map[string]interface{} helps us keep our code more concise,
while still providing all the flexibility we need when working with unstructured
or schemaless data.

We learned about message queues and how they allow us to break apart the
components of a system into isolated and specialized micro-services. We started
an instance of NSQ by first running the lookup daemon nsqlookupd, before running
a single nsqd instance and connecting them together via a TCP interface. We were
then able to publish votes to the queue in twittervotes, and connect to the lookup
daemon to run a handler function for every vote sent in our counter program.

While our solution is actually performing a pretty simple task, the architecture we
have put together in this chapter is capable of doing some pretty great things.

• We eliminated the need for our twittervotes and counter programs to run
on the same machine—as long as they can both connect to the appropriate
NSQ, they will function as expected regardless of where they are running.

• We can distribute our MongoDB and NSQ nodes across many
physical machines which would mean our system is capable of gigantic
scale—whenever resources start running low, we can add new boxes to
cope with the demand.

• When we add other applications that need to query and read the results
from polls, we can be sure that our database services are highly available
and capable of delivering.

• We can spread our database across geographical expanses replicating
data for backup so we don't lose anything when disaster strikes.

• We can build a multi-node, fault tolerant NSQ environment, which means
when our twittervotes program learns of interesting tweets, there will
always be somewhere to send the data.

• We could write many more programs that generate votes from different
sources; the only requirement is that they know how to put messages
into NSQ.

• In the next chapter, we will build a RESTful data service of our own,
through which we will expose the functionality of our social polling
application. We will also build a web interface that lets users create their
own polls, and visualize the results.

Exposing Data and
Functionality through
a RESTful Data Web

Service API
In the previous chapter, we built a service that reads tweets from Twitter, counts
the hashtag votes, and stores the results in a MongoDB database. We also used the
MongoDB shell to add polls and see the poll results. This approach is fine if we are
the only ones using our solution, but it would be madness if we released our project
and expected users to connect directly to our MongoDB instance in order to use the
service we built.

Therefore, in this chapter, we are going to build a RESTful data service through which
the data and functionality will be exposed. We will also put together a simple website
that consumes the new API. Users may then either use our website to create and
monitor polls or build their own application on top of the web services we release.

The code in this chapter depends on the code in Chapter 5, Building
Distributed Systems and Working with Flexible Data, so it is recommended
that you complete that chapter first, especially since it covers setting up
the environment that the code in this chapter runs on.

Specifically, you will learn:

• How wrapping http.HandlerFunc types can give us a simple but powerful
pipeline of execution for our HTTP requests

• How to safely share data between HTTP handlers

Exposing Data and Functionality through a RESTful Data Web Service API

[270]

• Best practices for writing handlers responsible for exposing data

• Where small abstractions can allow us to write the simplest possible
implementations now, but leave room to improve them later without
changing the interface

• How adding simple helper functions and types to our project will prevent
us from (or at least defer) adding dependencies on external packages

RESTful API design
For an API to be considered RESTful, it must adhere to a few principles that stay
true to the original concepts behind the Web, and are already known to most
developers. Such an approach allows us to make sure we aren't building anything
strange or unusual into our API while also giving our users a head start towards
consuming it, since they are already familiar with its concepts.

Some of the most important RESTful design concepts are:

• HTTP methods describe the kind of action to take, for example, GET methods
will only ever read data, while POST requests will create something

• Data is expressed as a collection of resources
• Actions are expressed as changes to data
• URLs are used to refer to specific data
• HTTP headers are used to describe the kind of representation coming into

and going out of the server

For an in-depth overview of these and other details of RESTful designs,
see the Wikipedia article at http://en.wikipedia.org/wiki/
Representational_state_transfer.

The following table shows the HTTP methods and URLs that represent the actions
that we will support in our API, along with a brief description and an example use
case of how we intend the call to be used:

Request Description Use case

GET /polls/ Read all polls Show a list of polls to the users
GET /polls/{id} Read the poll Show details or results of a specific poll
POST /polls/ Create a poll Create a new poll
DELETE /polls/{id} Delete a poll Delete a specific poll

The {id} placeholder represents where in the path the unique ID for a poll will go.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 6

[271]

Sharing data between handlers
If we want to keep our handlers as pure as the http.Handler interface from the
Go standard library, while still extracting common functionality into our own
methods, we need a way of sharing data between handlers. The HandlerFunc
signature that follows tells us that we are only allowed to pass in an http.
ResponseWriter object and an http.Request object, and nothing else:

type HandlerFunc func(http.ResponseWriter, *http.Request)

This means that we cannot create and manage database session objects in one
place and pass them into our handlers, which is ideally what we want to do.

Instead, we are going to implement an in-memory map of per-request data,
and provide an easy way for handlers to access it. Alongside the twittervotes
and counter folders, create a new folder called api and create a new file called
vars.go inside it. Add the following code to the file:

package main
import (
 "net/http"
 "sync"
)
var vars map[*http.Request]map[string]interface{}
var varsLock sync.RWMutex

Here we declare a vars map that has a pointer to an http.Request type as its key,
and another map as the value. We will store the map of variables keyed with the
request instances that the variables belong to. The varsLock mutex is important,
as our handlers will all be trying to access and change the vars map at the same
time as handling many concurrent HTTP requests, and we need to ensure that
they do this safely.

Next we are going to add the OpenVars function that allows us to prepare the vars
map to hold variables for a particular request:

func OpenVars(r *http.Request) {
 varsLock.Lock()
 if vars == nil {
 vars = map[*http.Request]map[string]interface{}{}
 }
 vars[r] = map[string]interface{}{}
 varsLock.Unlock()
}

Exposing Data and Functionality through a RESTful Data Web Service API

[272]

This function first locks the mutex so that we can safely modify the map, before
ensuring that vars contains a non-nil map, which would otherwise cause a panic when
we try to access its data. Finally, it assigns a new empty map value using the specified
http.Request pointer as the key, before unlocking the mutex and therefore freeing
other handlers to interact with it.

Once we have finished handling the request, we need a way to clean up the
memory that we are using here; otherwise the memory footprint of our code would
continuously increase (also known as a memory leak). We do this by adding a
CloseVars function:

func CloseVars(r *http.Request) {
 varsLock.Lock()
 delete(vars, r)
 varsLock.Unlock()
}

This function safely deletes the entry in the vars map for the request. As long as
we call OpenVars before we try to interact with the variables, and CloseVars when
we have finished, we will be free to safely store and retrieve data for each request.
However, we don't want our handler code to have to worry about locking and
unlocking the map whenever it needs to get or set some data, so let's add two
helper functions, GetVar and SetVar:

func GetVar(r *http.Request, key string) interface{} {
 varsLock.RLock()
 value := vars[r][key]
 varsLock.RUnlock()
 return value
}
func SetVar(r *http.Request, key string, value interface{}) {
 varsLock.Lock()
 vars[r][key] = value
 varsLock.Unlock()
}

The GetVar function will make it easy for us to get a variable from the map for the
specified request, and SetVar allows us to set one. Notice that the GetVar function
calls RLock and RUnlock rather than Lock and Unlock; this is because we're using
sync.RWMutex, which means it's safe for many reads to occur at the same time, as
long as a write isn't happening. This is good for performance on items that are safe to
concurrently read from. With a normal mutex, Lock would block execution—waiting
for the thing that has locked it to unlock it—while RLock will not.

Chapter 6

[273]

Wrapping handler functions
One of the most valuable patterns to learn when building web services and
websites in Go is one we already utilized in Chapter 2, Adding Authentication, where
we decorated http.Handler types by wrapping them with other http.Handler
types. For our RESTful API, we are going to apply this same technique to http.
HandlerFunc functions, to deliver an extremely powerful way of modularizing
our code without breaking the standard func(w http.ResponseWriter, r *http.
Request) interface.

API key
Most web APIs require clients to register an API key for their application, which they
are asked to send along with every request. Such keys have many purposes, ranging
from simply identifying which app the requests are coming from to addressing
authorization concerns in situations where some apps are only able to do limited
things based on what a user has allowed. While we don't actually need to implement
API keys for our application, we are going to ask clients to provide one, which will
allow us to add an implementation later while keeping the interface constant.

Add the essential main.go file inside your api folder:

package main
func main(){}

Next we are going to add our first HandlerFunc wrapper function called
withAPIKey to the bottom of main.go:

func withAPIKey(fn http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 if !isValidAPIKey(r.URL.Query().Get("key")) {
 respondErr(w, r, http.StatusUnauthorized, "invalid API key")
 return
 }
 fn(w, r)
 }
}

Exposing Data and Functionality through a RESTful Data Web Service API

[274]

As you can see, our withAPIKey function both takes an http.HandlerFunc type
as an argument and returns one; this is what we mean by wrapping in this context.
The withAPIKey function relies on a number of other functions that we are yet to
write, but you can clearly see what's going on. Our function immediately returns a
new http.HandlerFunc type that performs a check for the query parameter key by
calling isValidAPIKey. If the key is deemed invalid (by the return of false), we
respond with an invalid API key error. To use this wrapper, we simply pass an
http.HandlerFunc type into this function to enable the key parameter check. Since
it returns an http.HandlerFunc type too, the result can then be passed into other
wrappers or given directly to the http.HandleFunc function to actually register it
as the handler for a particular path pattern.

Let's add our isValidAPIKey function next:

func isValidAPIKey(key string) bool {
 return key == "abc123"
}

For now, we are simply going to hardcode the API key as abc123; anything else
will return false and therefore be considered invalid. Later we could modify
this function to consult a configuration file or database to check the authenticity
of a key without affecting how we use the isValidAPIKey method, or indeed the
withAPIKey wrapper.

Database session
Now that we can be sure a request has a valid API key, we must consider how
handlers will connect to the database. One option is to have each handler dial its
own connection, but this isn't very DRY (Don't Repeat Yourself), and leaves room
for potentially erroneous code, such as code that forgets to close a database session
once it is finished with it. Instead, we will create another HandlerFunc wrapper
that manages the database session for us. In main.go, add the following function:

func withData(d *mgo.Session, f http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 thisDb := d.Copy()
 defer thisDb.Close()

Chapter 6

[275]

 SetVar(r, "db", thisDb.DB("ballots"))
 f(w, r)
 }
}

The withData function takes a MongoDB session representation using the mgo
package, and another handler as per the pattern. The returned http.HandlerFunc
type will copy the database session, defer the closing of that copy, and set a reference
to the ballots database as the db variable using our SetVar helper, before finally
calling the next HandlerFunc. This means that any handlers that get executed after this
one will have access to a managed database session via the GetVar function. Once the
handlers have finished executing, the deferred closing of the session will occur, which
will clean up any memory used by the request without the individual handlers having
to worry about it.

Per request variables
Our pattern allows us to very easily perform common tasks on behalf of our actual
handlers. Notice that one of the handlers is calling OpenVars and CloseVars so that
GetVar and SetVar may be used without individual handlers having to concern
themselves with setting things up and tearing them down. The function will return
an http.HandlerFunc that first calls OpenVars for the request, defers the calling of
CloseVars, and calls the specified handler function. Any handlers wrapped with
withVars will be able to use GetVar and SetVar.

Add the following code to main.go:

func withVars(fn http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 OpenVars(r)
 defer CloseVars(r)
 fn(w, r)
 }
}

There are lots of other problems that can be addressed using this pattern; and
whenever you find yourself duplicating common tasks inside handlers, it's worth
considering whether a handler wrapper function could help simplify code.

Exposing Data and Functionality through a RESTful Data Web Service API

[276]

Cross-browser resource sharing
The same-origin security policy mandates that AJAX requests in web browsers be
only allowed for services hosted on the same domain, which would make our API
fairly limited since we won't be necessarily hosting all of the websites that use our
web service. The CORS technique circumnavigates the same-origin policy, allowing
us to build a service capable of serving websites hosted on other domains. To do this,
we simply have to set the Access-Control-Allow-Origin header in response to *.
While we're at it—since we're using the Location header in our create poll call—we'll
allow that header to be accessible by the client too, which can be done by listing it in
the Access-Control-Expose-Headers header. Add the following code to main.go:

func withCORS(fn http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Access-Control-Allow-Origin", "*")
 w.Header().Set("Access-Control-Expose-Headers", "Location")
 fn(w, r)
 }
}

This is the simplest wrapper function yet; it just sets the appropriate header on the
ResponseWriter type and calls the specified http.HandlerFunc type.

In this chapter, we are handling CORS explicitly so we can understand
exactly what is going on; for real production code, you should consider
employing an open source solution such as https://github.com/
fasterness/cors.

Responding
A big part of any API is responding to requests with a combination of status codes,
data, errors, and sometimes headers—the net/http package makes all of this very
easy to do. One option we have, which remains the best option for tiny projects
or even the early stages of big projects, is to just build the response code directly
inside the handler. As the number of handlers grows, however, we would end up
duplicating a lot of code and sprinkling representation decisions all over our project.
A more scalable approach is to abstract the response code into helper functions.

For the first version of our API, we are going to speak only JSON, but we want the
flexibility to add other representations later if we need to.

https://github.com/fasterness/cors
https://github.com/fasterness/cors

Chapter 6

[277]

Create a new file called respond.go, and add the following code:

func decodeBody(r *http.Request, v interface{}) error {
 defer r.Body.Close()
 return json.NewDecoder(r.Body).Decode(v)
}
func encodeBody(w http.ResponseWriter, r *http.Request, v
interface{}) error {
 return json.NewEncoder(w).Encode(v)
}

These two functions abstract the decoding and encoding of data from and to the
Request and ResponseWriter objects respectively. The decoder also closes the request
body, which is recommended. Although we haven't added much functionality here,
it means that we do not need to mention JSON anywhere else in our code, and if we
decide to add support for other representations or switch to a binary protocol instead,
we need only touch these two functions.

Next we are going to add a few more helpers that will make responding even easier.
In respond.go, add the following code:

func respond(w http.ResponseWriter, r *http.Request,
 status int, data interface{},
) {
 w.WriteHeader(status)
 if data != nil {
 encodeBody(w, r, data)
 }
}

This function makes it easy to write the status code and some data to the
ResponseWriter object using our encodeBody helper.

Handling errors is another important aspect that is worth abstracting. Add the
following respondErr helper:

func respondErr(w http.ResponseWriter, r *http.Request,
 status int, args ...interface{},
) {
 respond(w, r, status, map[string]interface{}{
 "error": map[string]interface{}{
 "message": fmt.Sprint(args...),
 },
 })
}

Exposing Data and Functionality through a RESTful Data Web Service API

[278]

This method gives us an interface similar to the respond function, but the data written
will be enveloped in an error object, to make it clear that something went wrong.
Finally, we can add an HTTP error-specific helper that will generate the correct
message for us by using the http.StatusText function from the Go standard library:

func respondHTTPErr(w http.ResponseWriter, r *http.Request,
 status int,
) {
 respondErr(w, r, status, http.StatusText(status))
}

Notice that these functions are all dogfooding, which means they use each other (as
in, eating your own dog food), which is important since we want actual responding
to only happen in one place, for if (or more likely, when) we need to make changes.

Understanding the request
The http.Request object gives us access to every piece of information we might
need about the underlying HTTP request, and therefore it is worth glancing through
the net/http documentation to really get a feel for its power. Examples include,
but are not limited to:

• URL, path and query string

• HTTP method

• Cookies

• Files

• Form values

• Referrer and user agent of requester

• Basic authentication details

• Request body

• Header information

There are a few things it doesn't address, which we need to either solve ourselves
or look to an external package to help us with. URL path parsing is one such
example—while we can access a path (such as /people/1/books/2) as a string
via the http.Request type's URL.Path field, there is no easy way to pull out the
data encoded in the path such as the people ID of 1, or the books ID of 2.

Chapter 6

[279]

A few projects do a good job of addressing this problem, such as Goweb
or Gorillz's mux package. They let you map path patterns that contain
placeholders for values that they then pull out of the original string and
make available to your code. For example, you can map a pattern of /
users/{userID}/comments/{commentID}, which will map paths
such as /users/1/comments/2. In your handler code, you can then
get the values by the names placed inside the curly braces, rather than
having to parse the path yourself.

Since our needs are simple, we are going to knock together a simple path-parsing
utility; we can always use a different package later if we have to, but that would
mean adding a dependency to our project.

Create a new file called path.go, and insert the following code:

package main
import (
 "strings"
)
const PathSeparator = "/"
type Path struct {
 Path string
 ID string
}
func NewPath(p string) *Path {
 var id string
 p = strings.Trim(p, PathSeparator)
 s := strings.Split(p, PathSeparator)
 if len(s) > 1 {
 id = s[len(s)-1]
 p = strings.Join(s[:len(s)-1], PathSeparator)
 }
 return &Path{Path: p, ID: id}
}
func (p *Path) HasID() bool {
 return len(p.ID) > 0
}

Exposing Data and Functionality through a RESTful Data Web Service API

[280]

This simple parser provides a NewPath function that parses the specified path string
and returns a new instance of the Path type. Leading and trailing slashes are trimmed
(using strings.Trim) and the remaining path is split (using strings.Split) by the
PathSeparator constant that is just a forward slash. If there is more than one segment
(len(s) > 1), the last one is considered to be the ID. We re-slice the slice of strings
to select the last item for the ID using s[len(s)-1], and the rest of the items for the
remainder of the path using s[:len(s)-1]. On the same lines, we also re-join the path
segments with the PathSeparator constant to form a single string containing the path
without the ID.

This supports any collection/id pair, which is all we need for our API. The
following table shows the state of the Path type for the given original path string:

Original path string Path ID HasID

/ / nil false

/people/ people nil false

/people/1/ people 1 true

A simple main function to serve our API
A web service is nothing more than a simple Go program that binds to a specific
HTTP address and port and serves requests, so we get to use all our command-line
tool-writing knowledge and techniques.

We also want to ensure that our main function is as simple and modest
as possible, which is always a goal of coding, especially in Go.

Before we write our main function, let's look at a few design goals of our
API program:

• We should be able to specify the HTTP address and port to which our
API listens and the address of the MongoDB instances without having
to recompile the program (through command-line flags)

• We want the program to gracefully shut down when we terminate it,
allowing the in-flight requests (requests that are still being processed
when the termination signal is sent to our program) to complete

• We want the program to log out status updates and report errors properly

Chapter 6

[281]

Atop the main.go file, replace the main function placeholder with the following code:

func main() {
 var (
 addr = flag.String("addr", ":8080", "endpoint address")
 mongo = flag.String("mongo", "localhost", "mongodb address")
)
 flag.Parse()
 log.Println("Dialing mongo", *mongo)
 db, err := mgo.Dial(*mongo)
 if err != nil {
 log.Fatalln("failed to connect to mongo:", err)
 }
 defer db.Close()
 mux := http.NewServeMux()
 mux.HandleFunc("/polls/", withCORS(withVars(withData(db,
withAPIKey(handlePolls)))))
 log.Println("Starting web server on", *addr)
 graceful.Run(*addr, 1*time.Second, mux)
 log.Println("Stopping...")
}

This function is the entirety of our API main function, and even as our API grows,
there is just a little bloat we would need to add to this.

The first thing we do is to specify two command-line flags, addr and mongo, with
some sensible defaults, and to ask the flag package to parse them. We then attempt
to dial the MongoDB database at the specified address. If we are unsuccessful, we
abort with a call to log.Fatalln. Assuming the database is running and we are able
to connect, we store the reference in the db variable before deferring the closing of
the connection. This ensures our program properly disconnects and tidies up after
itself when it ends.

We then create a new http.ServeMux object, which is a request multiplexer provided
by the Go standard library, and register a single handler for all requests that begin with
the path /polls/.

Finally, we make use of Tyler Bunnell's excellent Graceful package, which can be
found at https://github.com/stretchr/graceful to start the server. This package
allows us to specify time.Duration when running any http.Handler (such as our
ServeMux handler), which will allow any in-flight requests some time to complete
before the function exits. The Run function will block until the program is terminated
(for example, when someone presses Ctrl + C).

https://github.com/stretchr/graceful

Exposing Data and Functionality through a RESTful Data Web Service API

[282]

Using handler function wrappers
It is when we call HandleFunc on the ServeMux handler that we are making use of
our handler function wrappers, with the line:

withCORS(withVars(withData(db, withAPIKey(handlePolls)))))

Since each function takes an http.HandlerFunc type as an argument and also
returns one, we are able to chain the execution just by nesting the function calls
as we have done previously. So when a request comes in with a path prefix of /
polls/, the program will take the following execution path:

1. withCORS is called, which sets the appropriate header.

2. withVars is called, which calls OpenVars and defers CloseVars for the
request.

3. withData is then called, which copies the database session provided as
the first argument and defers the closing of that session.

4. withAPIKey is called next, which checks the request for an API key and
aborts if it's invalid, or else calls the next handler function.

5. handlePolls is then called, which has access to variables and a database
session, and which may use the helper functions in respond.go to write
a response to the client.

6. Execution goes back to withAPIKey that just exits.

7. Execution goes back to withData that exits, therefore calling the deferred
session Close function and clearing up the database session.

8. Execution goes back to withVars that exits, therefore calling CloseVars
and tidying that up too.

9. Execution finally goes back to withCORS that just exits.

The order that we nest the wrapper functions in is important,
because withData puts the database session for each request in
that request's variables map using SetVar. So withVars must
be outside withData. If this isn't respected, the code will likely
panic and you may want to add a check so that the panic is more
meaningful to other developers.

Chapter 6

[283]

Handling endpoints
The final piece of the puzzle is the handlePolls function that will use the helpers to
understand the incoming request and access the database, and generate a meaningful
response that will be sent back to the client. We also need to model the poll data that
we were working with in the previous chapter.

Create a new file called polls.go, and add the following code:

package main
import "gopkg.in/mgo.v2/bson"
type poll struct {
 ID bson.ObjectId `bson:"_id" json:"id"`
 Title string `json":"title""`
 Options []string `json:"options"`
 Results map[string]int `json:"results,omitempty"`
}

Here we define a structure called poll that has three fields that in turn describe
the polls being created and maintained by the code we wrote in the previous chapter.
Each field also has a tag (two in the ID case), which allows us to provide some
extra metadata.

Using tags to add metadata to structs
Tags are strings that follow a field definition within a struct type on the same
line of code. We use the back tick character to denote literal strings, which means
we are free to use double quotes within the tag string itself. The reflect package
allows us to pull out the value associated with any key; in our case, both bson and
json are examples of keys, and they are each key/value-pair-separated by a space
character. Both the encoding/json and gopkg.in/mgo.v2/bson packages allow
you to use tags to specify the field name that will be used with encoding and
decoding (along with some other properties), rather than having it infer the
values from the name of the fields themselves. We are using BSON to talk with
the MongoDB database and JSON to talk to the client, so we can actually specify
different views of the same struct type. For example, consider the ID field:

ID bson.ObjectId `bson:"_id" json:"id"`

The name of the field in Go is ID, the JSON field is id, and the BSON field is _id,
which is the special identifier field used in MongoDB.

Exposing Data and Functionality through a RESTful Data Web Service API

[284]

Many operations with a single handler
Because our simple path-parsing solution cares only about the path, we have to do
some extra work when looking at the kind of RESTful operation the client is making.
Specifically, we need to consider the HTTP method so we know how to handle the
request. For example, a GET call to our /polls/ path should read polls, where a POST
call would create a new one. Some frameworks solve this problem for you, by allowing
you to map handlers based on more than the path, such as the HTTP method or the
presence of specific headers in the request. Since our case is ultra simple, we are going
to use a simple switch case. In polls.go, add the handlePolls function:

func handlePolls(w http.ResponseWriter, r *http.Request) {
 switch r.Method {
 case "GET":
 handlePollsGet(w, r)
 return
 case "POST":
 handlePollsPost(w, r)
 return
 case "DELETE":
 handlePollsDelete(w, r)
 return
 }
 // not found
 respondHTTPErr(w, r, http.StatusNotFound)
}

We switch on the HTTP method and branch our code depending on whether it is
GET, POST, or DELETE. If the HTTP method is something else, we just respond with
a 404 http.StatusNotFound error. To make this code compile, you can add the
following function stubs underneath the handlePolls handler:

func handlePollsGet(w http.ResponseWriter, r *http.Request) {
 respondErr(w, r, http.StatusInternalServerError, errors.New("not
implemented"))
}
func handlePollsPost(w http.ResponseWriter, r *http.Request) {
 respondErr(w, r, http.StatusInternalServerError, errors.New("not
implemented"))
}
func handlePollsDelete(w http.ResponseWriter, r *http.Request) {
 respondErr(w, r, http.StatusInternalServerError, errors.New("not
implemented"))
}

Chapter 6

[285]

In this section, we learned how to manually parse elements of the
requests (the HTTP method) and make decisions in code. This is great
for simple cases, but it's worth looking at packages such as Goweb or
Gorilla's mux package for some more powerful ways of solving these
problems. Nevertheless, keeping external dependencies to a minimum
is a core philosophy of writing good and contained Go code.

Reading polls
Now it's time to implement the functionality of our web service. Inside the GET case,
add the following code:

func handlePollsGet(w http.ResponseWriter, r *http.Request) {
 db := GetVar(r, "db").(*mgo.Database)
 c := db.C("polls")
 var q *mgo.Query
 p := NewPath(r.URL.Path)
 if p.HasID() {
 // get specific poll
 q = c.FindId(bson.ObjectIdHex(p.ID))
 } else {
 // get all polls
 q = c.Find(nil)
 }
 var result []*poll
 if err := q.All(&result); err != nil {
 respondErr(w, r, http.StatusInternalServerError, err)
 return
 }
 respond(w, r, http.StatusOK, &result)
}

The very first thing we do in each of our subhandler functions is to use GetVar
to get the mgo.Database object that will allow us to interact with MongoDB. Since
this handler was nested inside both withVars and withData, we know that the
database will be available by the time execution reaches our handler. We then
use mgo to create an object referring to the polls collection in the database—if
you remember, this is where our polls live.

We then build up an mgo.Query object by parsing the path. If an ID is present, we
use the FindId method on the polls collection, otherwise we pass nil to the Find
method, which indicates that we want to select all the polls. We are converting the
ID from a string to a bson.ObjectId type with the ObjectIdHex method so that
we can refer to the polls with their numerical (hex) identifiers.

Exposing Data and Functionality through a RESTful Data Web Service API

[286]

Since the All method expects to generate a collection of poll objects, we define the
result as []*poll, or a slice of pointers to poll types. Calling the All method on
the query will cause mgo to use its connection to MongoDB to read all the polls and
populate the result object.

For small scale projects, such as a small number of polls, this approach
is fine, but as the number of polls grow, we would need to consider
paging the results or even iterating over them using the Iter method
on the query, so we do not try to load too much data into memory.

Now that we have added some functionality, let's try out our API for the first time.
If you are using the same MongoDB instance that we set up in the previous chapter,
you should already have some data in the polls collection; to see our API working
properly, you should ensure there are at least two polls in the database.

If you need to add other polls to the database, in a terminal, run the
mongo command to open a database shell that will allow you to interact
with MongoDB. Then enter the following commands to add some test
polls:
> use ballots

switched to db ballots

> db.polls.insert({"title":"Test
poll","options":["one","two","three"]})

> db.polls.insert({"title":"Test poll
two","options":["four","five","six"]})

In a terminal, navigate to your api folder, and build and run the project:
go build –o api

./api

Now make a GET request to the /polls/ endpoint by navigating in your browser
to http://localhost:8080/polls/?key=abc123; remember to include the trailing
slash. The result will be an array of polls in JSON format.

Copy and paste one of the IDs from the polls list, and insert it before the ?
character in the browser to access the data for a specific poll; for example,
http://localhost:8080/polls/5415b060a02cd4adb487c3ae?key=abc123.
Notice that instead of returning all the polls, it only returns one.

Test the API key functionality by removing or changing the key
parameter to see what the error looks like.

Chapter 6

[287]

You might have also noticed that although we are only returning a single poll, this poll
value is still nested inside an array. This is a deliberate design decision made for two
reasons: the first and most important reason is that nesting makes it easier for users
of the API to write code to consume the data. If users are always expecting a JSON
array, they can write strong types that describe that expectation, rather than having
one type for single polls and another for collections of polls. As an API designer, this
is your decision to make. The second reason we left the object nested in an array is that
it makes the API code simpler, allowing us to just change the mgo.Query object and to
leave the rest of the code the same.

Creating a poll
Clients should be able to make a POST request to /polls/ to create a poll. Let's add
the following code inside the POST case:

func handlePollsPost(w http.ResponseWriter, r *http.Request) {
 db := GetVar(r, "db").(*mgo.Database)
 c := db.C("polls")
 var p poll
 if err := decodeBody(r, &p); err != nil {
 respondErr(w, r, http.StatusBadRequest, "failed to read poll
from request", err)
 return
 }
 p.ID = bson.NewObjectId()
 if err := c.Insert(p); err != nil {
 respondErr(w, r, http.StatusInternalServerError, "failed to
insert poll", err)
 return
 }
 w.Header().Set("Location", "polls/"+p.ID.Hex())
 respond(w, r, http.StatusCreated, nil)
}

Here we first attempt to decode the body of the request that, according to RESTful
principles, should contain a representation of the poll object the client wants to
create. If an error occurs, we use the respondErr helper to write the error to the user,
and immediately return the function. We then generate a new unique ID for the poll,
and use the mgo package's Insert method to send it into the database. As per HTTP
standards, we then set the Location header of the response and respond with a 201
http.StatusCreated message, pointing to the URL from which the newly created
poll maybe accessed.

Exposing Data and Functionality through a RESTful Data Web Service API

[288]

Deleting a poll
The final piece of functionality we are going to include in our API is the capability
to delete polls. By making a request with the DELETE HTTP method to the URL of a
poll (such as /polls/5415b060a02cd4adb487c3ae), we want to be able to remove
the poll from the database and return a 200 Success response:

func handlePollsDelete(w http.ResponseWriter, r *http.Request) {
 db := GetVar(r, "db").(*mgo.Database)
 c := db.C("polls")
 p := NewPath(r.URL.Path)
 if !p.HasID() {
 respondErr(w, r, http.StatusMethodNotAllowed, "Cannot delete
all polls.")
 return
 }
 if err := c.RemoveId(bson.ObjectIdHex(p.ID)); err != nil {
 respondErr(w, r, http.StatusInternalServerError, "failed to
delete poll", err)
 return
 }
 respond(w, r, http.StatusOK, nil) // ok
}

Similar to the GET case, we parse the path, but this time we respond with an error if
the path does not contain an ID. For now, we don't want people to be able to delete
all polls with one request, and so use the suitable StatusMethodNotAllowed code.
Then, using the same collection we used in the previous cases, we call RemoveId,
passing in the ID in the path after converting it into a bson.ObjectId type. Assuming
things go well, we respond with an http.StatusOK message, with no body.

CORS support
In order for our DELETE capability to work over CORS, we must do a little extra
work to support the way CORS browsers handle some HTTP methods such as
DELETE. A CORS browser will actually send a pre-flight request (with an HTTP
method of OPTIONS) asking for permission to make a DELETE request (listed in the
Access-Control-Request-Method request header), and the API must respond
appropriately in order for the request to work. Add another case in the switch
statement for OPTIONS:

case "OPTIONS":
 w.Header().Add("Access-Control-Allow-Methods", "DELETE")
 respond(w, r, http.StatusOK, nil)
 return

Chapter 6

[289]

If the browser asks for permission to send a DELETE request, the API will respond
by setting the Access-Control-Allow-Methods header to DELETE, thus overriding
the default * value that we set in our withCORS wrapper handler. In the real world,
the value for the Access-Control-Allow-Methods header will change in response
to the request made, but since DELETE is the only case we are supporting, we can
hardcode it for now.

The details of CORS are out of the scope of this book, but it is
recommended that you research the particulars online if you intend
to build truly accessible web services and APIs. Head over to
http://enable-cors.org/ to get started.

Testing our API using curl
curl is a command-line tool that allows us to make HTTP requests to our service so
that we can access it as though we were a real app or client consuming the service.

Windows users do not have access to curl by default, and will
need to seek an alternative. Check out http://curl.haxx.se/
dlwiz/?type=bin or search the Web for "Windows curl alternative".

In a terminal, let's read all the polls in the database through our API. Navigate to
your api folder and build and run the project, and also ensure MongoDB is running:

go build –o api

./api

We then perform the following steps:

1. Enter the following curl command that uses the -X flag to denote we want
to make a GET request to the specified URL:
curl -X GET http://localhost:8080/polls/?key=abc123

2. The output is printed after you hit Enter:
[{"id":"541727b08ea48e5e5d5bb189","title":"Best
Beatle?","options":["john","paul","george","ringo"]},{"id":"54
1728728ea48e5e5d5bb18a","title":"Favorite
language?","options":["go","java","javascript","ruby"]}]

3. While it isn't pretty, you can see that the API returns the polls from your
database. Issue the following command to create a new poll:
curl --data '{"title":"test","options":["one","two","three"]}'
-X POST http://localhost:8080/polls/?key=abc123

http://enable-cors.org/
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin

Exposing Data and Functionality through a RESTful Data Web Service API

[290]

4. Get the list again to see the new poll included:
curl -X GET http://localhost:8080/polls/?key=abc123

5. Copy and paste one of the IDs, and adjust the URL to refer specifically to
that poll:
curl -X GET
http://localhost:8080/polls/541727b08ea48e5e5d5bb189?key=abc12
3

[{"id":"541727b08ea48e5e5d5bb189",","title":"Best
Beatle?","options":["john","paul","george","ringo"]}]

6. Now we see only the selected poll, Best Beatle. Let's make a DELETE
request to remove the poll:
curl -X DELETE
http://localhost:8080/polls/541727b08ea48e5e5d5bb189?key=abc12
3

7. Now when we get all the polls again, we'll see that the Best Beatle poll
has gone:

curl -X GET http://localhost:8080/polls/?key=abc123

[{"id":"541728728ea48e5e5d5bb18a","title":"Favorite
language?","options":["go","java","javascript","ruby"]}]

So now that we know that our API is working as expected, it's time to build
something that consumes the API properly.

A web client that consumes the API
We are going to put together an ultra-simple web client that consumes the
capabilities and data exposed through our API, allowing users to interact with
the polling system we built in the previous chapter and earlier in this chapter.
Our client will be made up of three web pages:

• An index.html page that shows all the polls

• A view.html page that shows the results of a specific poll
• A new.html page that allows users to create new polls

Create a new folder called web alongside the api folder, and add the following
content to the main.go file:

package main

Chapter 6

[291]

import (
 "flag"
 "log"
 "net/http"
)
func main() {
 var addr = flag.String("addr", ":8081", "website address")
 flag.Parse()
 mux := http.NewServeMux()
 mux.Handle("/", http.StripPrefix("/",
 http.FileServer(http.Dir("public"))))
 log.Println("Serving website at:", *addr)
 http.ListenAndServe(*addr, mux)
}

These few lines of Go code really highlight the beauty of the language and the Go
standard library. They represent a complete, highly scalable, static website hosting
program. The program takes an addr flag and uses the familiar http.ServeMux
type to serve static files from a folder called public.

Building the next few pages—while we're building the UI—consists
of writing a lot of HTML and JavaScript code. Since this is not Go
code, if you'd rather not type it all out, feel free to head over to
the GitHub repository for this book and copy and paste it from
https://github.com/matryer/goblueprints.

An index page showing a list of polls
Create the public folder inside web and add the index.html file after writing the
following HTML code in it:

<!DOCTYPE html>
<html>
<head>
 <title>Polls</title>
 <link rel="stylesheet"
 href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/
 bootstrap.min.css">
</head>
<body>
</body>
</html>

https://github.com/matryer/goblueprints

Exposing Data and Functionality through a RESTful Data Web Service API

[292]

We will use Bootstrap again to make our simple UI look nice, but we need to add
two additional sections to the body tag of the HTML page. First, add the DOM
elements that will display the list of polls:

<div class="container">
 <div class="col-md-4"></div>
 <div class="col-md-4">
 <h1>Polls</h1>
 <ul id="polls">
 Create new poll
 </div>
 <div class="col-md-4"></div>
</div>

Here we are using Bootstrap's grid system to center-align our content that is made
up of a list of polls and a link to new.html, where users can create new polls.

Next, add the following script tags and JavaScript underneath the previous code:

<script
src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"><
/script>
<script
src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js
"></script>
<script>
 $(function(){
 var update = function(){
 $.get("http://localhost:8080/polls/?key=abc123", null, null,
"json")
 .done(function(polls){
 $("#polls").empty();
 for (var p in polls) {
 var poll = polls[p];
 $("#polls").append(
 $("").append(
 $("<a>")
 .attr("href", "view.html?poll=polls/" + poll.id)
 .text(poll.title)
)
)
 }
 }
);

Chapter 6

[293]

 window.setTimeout(update, 10000);
 }
 update();
 });
</script>

We are using jQuery's $.get function to make an AJAX request to our web service.
We are also hardcoding the API URL. In practice, you might decide against this, but
you should at least use a domain name to abstract it. Once the polls have loaded,
we use jQuery to build up a list containing hyperlinks to the view.html page,
passing the ID of the poll as a query parameter.

A page to create a new poll
To allow users to create a new poll, create a file called new.html inside the public
folder, and add the following HTML code to the file:

<!DOCTYPE html>
<html>
<head>
 <title>Create Poll</title>
 <link rel="stylesheet"
 href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/
 bootstrap.min.css">
</head>
<body>
 <script
src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"><
/script>
 <script
src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js
"></script>
</body>
</html>

We are going to add the elements for an HTML form that will capture the information
we need when creating a new poll, namely the title of the poll and the options. Add the
following code inside the body tags:

<div class="container">
 <div class="col-md-4"></div>
 <form id="poll" role="form" class="col-md-4">
 <h2>Create Poll</h2>
 <div class="form-group">
 <label for="title">Title</label>

Exposing Data and Functionality through a RESTful Data Web Service API

[294]

 <input type="text" class="form-control" id="title"
placeholder="Title">
 </div>
 <div class="form-group">
 <label for="options">Options</label>
 <input type="text" class="form-control" id="options"
placeholder="Options">
 <p class="help-block">Comma separated</p>
 </div>
 <button type="submit" class="btn btn-primary">Create
Poll</button> or cancel
 </form>
 <div class="col-md-4"></div>
</div>

Since our API speaks JSON, we need to do a bit of work to turn the HTML form into
a JSON-encoded string, and also break the comma-separated options string into an
array of options. Add the following script tag:

<script>
 $(function(){
 var form = $("form#poll");
 form.submit(function(e){
 e.preventDefault();
 var title = form.find("input[id='title']").val();
 var options = form.find("input[id='options']").val();
 options = options.split(",");
 for (var opt in options) {
 options[opt] = options[opt].trim();
 }
 $.post("http://localhost:8080/polls/?key=abc123",
 JSON.stringify({
 title: title, options: options
 })
).done(function(d, s, r){
 location.href = "view.html?poll=" +
r.getResponseHeader("Location");
 });
 });
 });
</script>

Chapter 6

[295]

Here we add a listener to the submit event of our form, and use jQuery's val method
to collect the input values. We split the options with a comma, and trim the spaces
away before using the $.post method to make the POST request to the appropriate
API endpoint. JSON.stringify allows us to turn the data object into a JSON string,
and we use that string as the body of the request, as expected by the API. On success,
we pull out the Location header and redirect the user to the view.html page,
passing a reference to the newly created poll as the parameter.

A page to show details of the poll
The final page of our app we need to complete is the view.html page where users
can see the details and live results of the poll. Create a new file called view.html
inside the public folder, and add the following HTML code to it:

<!DOCTYPE html>
<html>
<head>
 <title>View Poll</title>
 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.
css">
</head>
<body>
 <div class="container">
 <div class="col-md-4"></div>
 <div class="col-md-4">
 <h1 data-field="title">...</h1>
 <ul id="options">
 <div id="chart"></div>
 <div>
 <button class="btn btn-sm" id="delete">Delete this
poll</button>
 </div>
 </div>
 <div class="col-md-4"></div>
 </div>
</body>
</html>

Exposing Data and Functionality through a RESTful Data Web Service API

[296]

This page is mostly similar to the other pages; it contains elements for presenting
the title of the poll, the options, and a pie chart. We will be mashing up Google's
Visualization API with our API to present the results. Underneath the final div tag in
view.html (and above the closing body tag), add the following script tags:

<script src="//www.google.com/jsapi"></script>
<script
src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"><
/script>
<script
src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js
"></script>
<script>
google.load('visualization', '1.0', {'packages':['corechart']});
google.setOnLoadCallback(function(){
 $(function(){
 var chart;
 var poll = location.href.split("poll=")[1];
 var update = function(){
 $.get("http://localhost:8080/"+poll+"?key=abc123", null,
null, "json")
 .done(function(polls){
 var poll = polls[0];
 $('[data-field="title"]').text(poll.title);
 $("#options").empty();
 for (var o in poll.results) {
 $("#options").append(
 $("").append(
 $("<small>").addClass("label label-
default").text(poll.results[o]),
 " ", o
)
)
 }
 if (poll.results) {
 var data = new google.visualization.DataTable();
 data.addColumn("string","Option");
 data.addColumn("number","Votes");
 for (var o in poll.results) {
 data.addRow([o, poll.results[o]])
 }
 if (!chart) {
 chart = new
google.visualization.PieChart(document.getElementById('chart'));
 }

Chapter 6

[297]

 chart.draw(data, {is3D: true});
 }
 }
);
 window.setTimeout(update, 1000);
 };
 update();
 $("#delete").click(function(){
 if (confirm("Sure?")) {
 $.ajax({
 url:"http://localhost:8080/"+poll+"?key=abc123",
 type:"DELETE"
 })
 .done(function(){
 location.href = "/";
 })
 }
 });
 });
});
</script>

We include the dependencies we will need to power our page, jQuery and Bootstrap,
and also the Google JavaScript API. The code loads the appropriate visualization
libraries from Google, and waits for the DOM elements to load before extracting
the poll ID from the URL by splitting it on poll=. We then create a variable called
update that represents a function responsible for generating the view of the page.
This approach is taken to make it easy for us to use window.setTimeout to issue
regular calls to update the view. Inside the update function, we use $.get to make
a GET request to our /polls/{id} endpoint, replacing {id} with the actual ID
we extracted from the URL earlier. Once the poll has loaded, we update the title
on the page and iterate over the options to add them to the list. If there are results
(remember in the previous chapter, the results map was only added to the data
as votes start being counted), we create a new google.visualization.PieChart
object and build a google.visualization.DataTable object containing the results.
Calling draw on the chart causes it to render the data, and thus update the chart
with the latest numbers. We then use setTimeout to tell our code to call update
again in another second.

Finally, we bind to the click event of the delete button we added to our page,
and after asking the user if they are sure, make a DELETE request to the polls URL
and then redirect them back to the home page. It is this request that will actually
cause the OPTIONS request to be made first, asking for permission, which is why
we added explicit support for it in our handlePolls function earlier.

Exposing Data and Functionality through a RESTful Data Web Service API

[298]

Running the solution
We have built many components over the last two chapters, and it is now time to
see them all working together. This section contains everything you need to get all the
items running, assuming you have the environment set up properly as described at
the beginning of the previous chapter. This section assumes you have a single folder
that contains four subfolders: api, counter, twittervotes, and web.

Assuming nothing is running, take the following steps (each step in its own
terminal window):

1. In the top-level folder, start the nsqlookupd daemon:
nsqlookupd

2. In the same directory, start the nsqd daemon:
nsqd --lookupd-tcp-address=localhost:4160

3. Start the MongoDB daemon:
mongod

4. Navigate to the counter folder and build and run it:
cd counter

go build –o counter

./counter

5. Navigate to the twittervotes folder and build and run it. Be sure that
you have the appropriate environment variables set, otherwise you will
see errors when you run the program:
cd ../twittervotes

go build –o twittervotes

./twittervotes

6. Navigate to the api folder and build and run it:
cd ../api

go build –o api

./api

7. Navigate to the web folder and build and run it:

cd ../web

go build –o web

./web

Chapter 6

[299]

Now that everything is running, open a browser and head to http://
localhost:8081/. Using the user interface, create a poll called Moods and
input the options as happy,sad,fail,and success. These are common
enough words that we are likely to see some relevant activity on Twitter.

Once you have created your poll, you will be taken to the view page where you
will start to see the results coming in. Wait for a few seconds, and enjoy the fruits
of your hard work as the UI updates in real time showing live, real-time results.

Summary
In this chapter, we exposed the data for our social polling solution through a highly
scalable RESTful API and built a simple website that consumes the API to provide
an intuitive way for users to interact with it. The website consists of static content
only, with no server-side processing (since the API does the heavy lifting for us).
This allows us to host the website very cheaply on static hosting sites such as
bitballoon.com, or to distribute the files to content delivery networks.

Within our API service, we learned how to share data between handlers without
breaking or obfuscating the handler pattern from the standard library. We also
saw how writing wrapped handler functions allows us to build a pipeline of
functionality in a very simple and intuitive way.

bitballoon.com

Exposing Data and Functionality through a RESTful Data Web Service API

[300]

We wrote some basic encoding and decoding functions that—while only simply
wrapping their counterparts from the encoding/json package for now—could be
improved later to support a range of different data representations without changing
the internal interface to our code. We wrote a few simple helper functions that make
responding to data requests easy, while providing the same kind of abstraction that
would allow us to evolve our API later.

We saw how, for simple cases, switching on to HTTP methods is an elegant way
to support many functions for a single endpoint. We also saw how, with a few extra
lines of code, we are able to build in support for CORS to allow applications running
on different domains to interact with our services—without the need for hacks
like JSONP.

The code in this chapter, combined with the work we did in the previous chapter,
provides a real-world, production-ready solution that implements the following flow:

1. The user clicks on the Create Poll button on the website, and enters the
title and options for a poll.

2. The JavaScript running in the browser encodes the data as a JSON string
and sends it in the body of a POST request to our API.

3. The API receives the request, and after validating the API key, setting
up a database session, and storing it in our variables map, calls the
handlePolls function that processes the request and stores the new
poll in the MongoDB database.

4. The API redirects the user to the view.html page for the newly created poll.

5. Meanwhile, the twittervotes program loads all polls from the database,
including the new one, and opens a connection to Twitter filtering on the
hashtags that represent options from the polls.

6. As votes come in, twittervotes pushes them to NSQ.

7. The counter program is listening in on the appropriate channel and notices
the votes coming in, counting each one and periodically making updates
to the database.

8. The user sees the results displayed (and refreshed) on the view.html page
as the website continually makes GET requests to the API endpoint for the
selected poll.

In the next chapter, we will evolve our API and web skills to build a brand new
start-up app called Meander. We'll see how we can write a full, static web server
in just a few lines of Go code, and explore an interesting way of representing
enumerators in a language that doesn't officially support them!

Random Recommendations
Web Service

The concept behind the project that we will build in this chapter is a simple one:
we want users to be able to generate random recommendations for things to do in
specific geographical locations based on a predefined set of journey types that we
will expose through the API. We will give our project the codename Meander.

Often on projects in the real world, you are responsible for the full stack; somebody
else builds the website, a different person still might write the iOS app, and maybe
an outsourced company builds the desktop version. On more successful API projects,
you might not even know who the consumers of your API are, especially if it's a
public API.

In this chapter, we will simulate this reality by designing and agreeing a minimal
API design with a fictional partner up front before going on to implement the API.
Once we have finished our side of the project, we will download a user interface
built by our teammates to see the two work together to produce the final application.

In this chapter, you will:

• Learn to express the general goals of a project using short and simple
Agile user stories

• Discover that you can agree a meeting point in a project by agreeing on
the design of an API, which allows many people to work in parallel

• See how early versions of code can actually have data fixtures written
in code and compiled into the program, allowing us to change the
implementation later without touching the interface

• Learn a strategy that allows structs (and other types) to represent
a public version of themselves for cases when we want to hide or
transform internal representations

Random Recommendations Web Service

[302]

• Learn to use embedded structs to represent nested data, while keeping
the interface of our types simple

• Learn to use http.Get to make external API requests, specifically to the
Google Places API, with no code bloat

• Learn to effectively implement enumerators in Go, even though they
aren't really a language feature

• Experience a real-world example of TDD

• See how the math/rand package makes it easy to select an item from a
slice at random

• Learn an easy way to grab data from the URL parameters of the http.
Request type

Project overview
Following Agile methodologies, let's write two user stories that describe the
functionality of our project. User stories shouldn't be comprehensive documents
describing the entire set of features of an application; rather small cards are perfect
for not only describing what the user is trying to do, but why. Also, we should
do this without trying to design the whole system up front or delve too deep into
implementation details.

First we need a story about seeing the different journey types from which our
users may select:

As a traveler

I want to see the different types of journeys I can get recommendations for

So that I can decide what kind of evening to take my partner on

Secondly, we need a story about providing random recommendations for a
selected journey type:

As a traveler

I want to see a random recommendation for my selected journey type

So that I know where to go, and what the evening will entail

Chapter 7

[303]

These two stories represent the two core capabilities that our API needs to provide,
and actually ends up representing two endpoints.

In order to discover places around specified locations, we are going to make use of
the Google Places API, which allows us to search for listings of businesses with given
types, such as bar, café, or movie_theater. We will then use Go's math/rand package
to pick from those places at random, building up a complete journey for our users.

The Google Places API supports many business types;
see https://developers.google.com/places/
documentation/supported_types for the complete list.

Project design specifics
In order to turn our stories into an interactive application, we are going to provide
two JSON endpoints; one to deliver the kinds of journeys users will be able to select
in the application, and another to actually generate the random recommendations
for the selected journey type.

GET /journeys

The above call should return a list such as the following:

[
 {
 name: "Romantic",
 journey: "park|bar|movie_theater|restaurant|florist"
 },
 {
 name: "Shopping",
 journey: "department_store|clothing_store|jewelry_store"
 }
]

The name field is a human-readable label for the type of recommendations the app
generates, and the journey field is a pipe-separated list of supported journey types.
It is the journey value that we will pass, as a URL parameter, into our other endpoint,
which generates the actual recommendations:

GET /recommendations?
 lat=1&lng=2&journey=bar|cafe&radius=10&cost=$...$$$$$

https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types

Random Recommendations Web Service

[304]

This endpoint is responsible for querying the Google Places API and generating
the recommendations before returning an array of place objects. We will use the
parameters in the URL to control the kind of query to make as per the HTTP
specification. The lat and lng parameters, representing latitude and longitude,
respectively, tell our API where in the world we want recommendations from, and
the radius parameter represents the distance in meters around the point in which
we are interested in. The cost value is a human-readable way of representing the
price range for places that the API returns. It is made up of two values: a lower and
upper range separated by three dots. The number of dollar characters represents
the price level, with $ being the most affordable and $$$$$ being the most expensive.
Using this pattern, a value of $...$$ would represent very low cost recommendations,
where $$$$...$$$$$ would represent a pretty expensive experience.

Some programmers might insist the cost range is represented by
numerical values, but since our API is going to be consumed by
people, why not make things a little more interesting?

An example payload for this call might look something like this:

[
 {
 icon: "http://maps.gstatic.com/mapfiles/place_api/icons/cafe-
71.png",
 lat: 51.519583, lng: -0.146251,
 vicinity: "63 New Cavendish St, London",
 name: "Asia House",
 photos: [{
 url:
"https://maps.googleapis.com/maps/api/place/photo?maxwidth=400&pho
toreference=CnRnAAAAyLRN"
 }]
 }, ...
]

The array returned contains a place object representing a random recommendation
for each segment in the journey, in the appropriate order. The preceding example is
a café in London. The data fields are fairly self-explanatory; the lat and lng fields
represent the location of the place (they're short for latitude and longitude), the name
and vicinity fields tell us what and where the business is, and the photos array
gives us a list of relevant photographs from Google's servers. The vicinity and
icon fields will help us deliver a richer experience to our users.

Chapter 7

[305]

Representing data in code
We are first going to expose the journeys that users can select from, so create a new
folder called meander in GOPATH, and add the following journeys.go code:

package meander
type j struct {
 Name string
 PlaceTypes []string
}
var Journeys = []interface{}{
 &j{Name: "Romantic", PlaceTypes: []string{"park", "bar",
"movie_theater", "restaurant", "florist", "taxi_stand"}},
 &j{Name: "Shopping", PlaceTypes: []string{"department_store",
"cafe", "clothing_store", "jewelry_store", "shoe_store"}},
 &j{Name: "Night Out", PlaceTypes: []string{"bar", "casino",
"food", "bar", "night_club", "bar", "bar", "hospital"}},
 &j{Name: "Culture", PlaceTypes: []string{"museum", "cafe",
"cemetery", "library", "art_gallery"}},
 &j{Name: "Pamper", PlaceTypes: []string{"hair_care",
"beauty_salon", "cafe", "spa"}},
}

Here we define an internal type called j inside the meander package, which
we then use to describe the journeys by creating instances of them inside the
Journeys slice. This approach is an ultra-simple way of representing data in
the code, without building in a dependency on an external data store.

As an additional assignment, why not see if you can keep golint
happy throughout this process? Every time you add some code, run
golint for the packages and satisfy any suggestions that emerge. It
cares a lot about exported items having no documentation, so adding
simple comments in the correct format will keep it happy. To learn
more about golint, see https://github.com/golang/lint.

Of course, this would likely evolve into just that later, maybe even with the ability
for users to create and share their own journeys. Since we are exposing our data
via an API, we are free to change the internal implementation without affecting
the interface, so this approach is great for a version 1.0.

We are using a slice of type []interface{} because we will
later implement a general way of exposing public data regardless
of actual types.

https://github.com/golang/lint

Random Recommendations Web Service

[306]

A romantic journey consists of a visit first to a park, then a bar, a movie theater,
then a restaurant, before a visit to a florist, and finally a taxi ride home; you get the
general idea. Feel free to get creative and add others by consulting the supported
types in the Google Places API.

You might have noticed that since we are containing our code inside a package
called meander (rather than main), our code can never be run as a tool like the other
APIs we have written so far. Create a new folder called cmd inside meander; this will
house the actual command-line tool that exposes the meander package's capabilities
via an HTTP endpoint.

Inside the cmd folder, add the following code to the main.go file:

package main
func main() {
 runtime.GOMAXPROCS(runtime.NumCPU())
 //meander.APIKey = "TODO"
 http.HandleFunc("/journeys", func(w http.ResponseWriter, r
*http.Request) {
 respond(w, r, meander.Journeys)
 })
 http.ListenAndServe(":8080", http.DefaultServeMux)
}
func respond(w http.ResponseWriter, r *http.Request, data
[]interface{}) error {
 return json.NewEncoder(w).Encode(data)
}

You will recognize this as a simple API endpoint program, mapping to the /
journeys endpoint.

You'll have to import the encoding/json, net/http, and runtime
packages, along with the meander package you created earlier.

The runtime.GOMAXPROCS call sets the maximum number of CPUs that our program
can use, and we tell it to use them all. We then set the value of APIKey in the meander
package (which is commented out for now, since we have yet to implement it)
before calling the familiar HandleFunc function on the net/http package to bind
our endpoint, which then just responds with the meander.Journeys variable. We
borrow the abstract responding concept from the previous chapter by providing a
respond function that encodes the specified data to the http.ResponseWriter type.

Chapter 7

[307]

Let's run our API program by navigating to the cmd folder in a terminal and using go
run. We don't need to build this into an executable file at this stage since it's just
a single file:

go run main.go

Hit the http://localhost:8080/journeys endpoint, and notice that our Journeys
data payload is served, which looks like this:

[{
 Name: "Romantic",
 PlaceTypes: [
 "park",
 "bar",
 "movie_theater",
 "restaurant",
 "florist",
 "taxi_stand"
]
}]

This is perfectly acceptable, but there is one major flaw: it exposes internals about
our implementation. If we changed the PlaceTypes field name to Types, our API
would change and it's important that we avoid this.

Projects evolve and change over time, especially successful ones, and as developers
we should do what we can to protect our customers from the impact of the evolution.
Abstracting interfaces is a great way to do this, as is taking ownership of the
public-facing view of our data objects.

Public views of Go structs
In order to control the public view of structs in Go, we need to invent a way to
allow individual journey types to tell us how they want to be exposed. In the
meander folder, create a new file called public.go, and add the following code:

package meander
type Facade interface {
 Public() interface{}
}
func Public(o interface{}) interface{} {
 if p, ok := o.(Facade); ok {
 return p.Public()
 }
 return o
}

Random Recommendations Web Service

[308]

The Facade interface exposes a single Public method, which will return the public
view of a struct. The Public function takes any object and checks to see whether it
implements the Facade interface (does it have a Public() interface{} method?);
and if it is implemented, calls the method and returns the result—otherwise it just
returns the original object untouched. This allows us to pass anything through the
Public function before writing the result to the ResponseWriter object, allowing
individual structs to control their public appearance.

Let's implement a Public method for our j type by adding the following code to
journeys.go:

func (j *j) Public() interface{} {
 return map[string]interface{}{
 "name": j.Name,
 "journey": strings.Join(j.PlaceTypes, "|"),
 }
}

The public view of our j type joins the PlaceTypes field into a single string
separated by the pipe character, as per our API design.

Head back to cmd/main.go and replace the respond method with one that makes
use of our new Public function:

func respond(w http.ResponseWriter, r *http.Request, data []
interface{}) error {
 publicData := make([]interface{}, len(data))
 for i, d := range data {
 publicData[i] = meander.Public(d)
 }
 return json.NewEncoder(w).Encode(publicData)
}

Here we iterate over the data slice calling the meander.Public function for each
item, building the results into a new slice of the same size. In the case of our j type,
its Public method will be called to serve the public view of the data, rather than the
default view. In a terminal, navigate to the cmd folder again and run go run main.
go before hitting http://localhost:8080/journeys again. Notice that the same
data has now changed to a new structure:

[{
 journey: "park|bar|movie_theater|restaurant|florist|taxi_stand",
 name: "Romantic"
}, ...]

Chapter 7

[309]

Generating random recommendations
In order to obtain the places from which our code will randomly build up
recommendations, we need to query the Google Places API. In the meander
folder, add the following query.go file:

package meander
type Place struct {
 *googleGeometry `json:"geometry"`
 Name string `json:"name"`
 Icon string `json:"icon"`
 Photos []*googlePhoto `json:"photos"`
 Vicinity string `json:"vicinity"`
}
type googleResponse struct {
 Results []*Place `json:"results"`
}
type googleGeometry struct {
 *googleLocation `json:"location"`
}
type googleLocation struct {
 Lat float64 `json:"lat"`
 Lng float64 `json:"lng"`
}
type googlePhoto struct {
 PhotoRef string `json:"photo_reference"`
 URL string `json:"url"`
}

This code defines the structures we will need to parse the JSON response from the
Google Places API into usable objects.

Head over to the Google Places API documentation for an example of
the response we are expecting. See http://developers.google.
com/places/documentation/search.

Most of the preceding code will be obvious, but it's worth noticing that the Place
type embeds the googleGeometry type, which allows us to represent the nested
data as per the API, while essentially flattening it in our code. We do the same
with googleLocation inside googleGeometry, which means that we will be able
to access the Lat and Lng values directly on a Place object, even though they're
technically nested in other structures.

http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search

Random Recommendations Web Service

[310]

Because we want to control how a Place object appears publically, let's give this
type the following Public method:

func (p *Place) Public() interface{} {
 return map[string]interface{}{
 "name": p.Name,
 "icon": p.Icon,
 "photos": p.Photos,
 "vicinity": p.Vicinity,
 "lat": p.Lat,
 "lng": p.Lng,
 }
}

Remember to run golint on this code to see which comments need
to be added to the exported items.

Google Places API key
Like with most APIs, we will need an API key in order to access the remote services.
Head over to the Google APIs Console, sign in with a Google account, and create a
key for the Google Places API. For more detailed instructions, see the documentation
on Google's developer website.

Once you have your key, let's make a variable inside the meander package that can
hold it. At the top of query.go, add the following definition:

var APIKey string

Now nip back into main.go, remove the double slash // from the APIKey line, and
replace the TODO value with the actual key provided by the Google APIs console.

Enumerators in Go
To handle the various cost ranges for our API, it makes sense to use an enumerator
(or enum) to denote the various values and to handle conversions to and from string
representations. Go doesn't explicitly provide enumerators, but there is a neat way
of implementing them, which we will explore in this section.

Chapter 7

[311]

A simple flexible checklist for writing enumerators in Go is:

• Define a new type, based on a primitive integer type
• Use that type whenever you need users to specify one of the

appropriate values

• Use the iota keyword to set the values in a const block, disregarding
the first zero value

• Implement a map of sensible string representations to the values of
your enumerator

• Implement a String method on the type that returns the appropriate
string representation from the map

• Implement a ParseType function that converts from a string to your type
using the map

Now we will write an enumerator to represent the cost levels in our API. Create a new
file called cost_level.go inside the meander folder and add the following code:

package meander
type Cost int8
const (
 _ Cost = iota
 Cost1
 Cost2
 Cost3
 Cost4
 Cost5
)

Here we define the type of our enumerator, which we have called Cost, and since
we only need to represent a few values, we have based it on an int8 range. For
enumerators where we need larger values, you are free to use any of the integer
types that work with iota. The Cost type is now a real type in its own right, and
we can use it wherever we need to represent one of the supported values—for
example, we can specify a Cost type as an argument in functions, or use it as the
type for a field in a struct.

We then define a list of constants of that type, and use the iota keyword to indicate
that we want incrementing values for the constants. By disregarding the first iota
value (which is always zero), we indicate that one of the specified constants must
be explicitly used, rather than the zero value.

Random Recommendations Web Service

[312]

To provide a string representation of our enumerator, we need only add a String
method to the Cost type. This is a useful exercise even if you don't need to use the
strings in your code, because whenever you use the print calls from the Go standard
library (such as fmt.Println), the numerical values will be used by default. Often
those values are meaningless and will require you to look them up, and even count
the lines to determine the numerical value for each item.

For more information about the String() method in Go, see
the Stringer and GoStringer interfaces in the fmt package
at http://golang.org/pkg/fmt/#Stringer.

Test-driven enumerator
To be sure that our enumerator code is working correctly, we are going to write
unit tests that make some assertions about expected behavior.

Alongside cost_level.go, add a new file called cost_level_test.go, and add
the following unit test:

package meander_test
import (
 "testing"
 "github.com/cheekybits/is"
 "path/to/meander"
)
func TestCostValues(t *testing.T) {
 is := is.New(t)
 is.Equal(int(meander.Cost1), 1)
 is.Equal(int(meander.Cost2), 2)
 is.Equal(int(meander.Cost3), 3)
 is.Equal(int(meander.Cost4), 4)
 is.Equal(int(meander.Cost5), 5)
}

You will need to run go get to get the CheekyBits' is package (from github.com/
cheekybits/is).

The is package is an alternative testing helper package, but this one is
ultra-simple and deliberately bare-bones. You get to pick your favorite
when you write your own projects.

http://golang.org/pkg/fmt/#Stringer
github.com/cheekybits/is
github.com/cheekybits/is

Chapter 7

[313]

Normally, we wouldn't worry about the actual integer value of constants in our
enumerator, but since the Google Places API uses numerical values to represent
the same thing, we need to care about the values.

You might have noticed something strange about this test file that
breaks from convention. Although it is inside the meander folder, it
is not a part of the meander package; rather it's in meander_test.

In Go, this is an error in every case except for tests. Because we are
putting our test code into its own package, it means that we no longer
have access to the internals of the meander package—notice how we
have to use the package prefix. This may seem like a disadvantage,
but in fact it allows us to be sure that we are testing the package as
though we were a real user of it. We may only call exported methods
and only have visibility into exported types; just like our users.

Run the tests by running go test in a terminal, and notice that it passes.

Let's add another test to make assertions about the string representations for each
Cost constant. In cost_level_test.go, add the following unit test:

func TestCostString(t *testing.T) {
 is := is.New(t)
 is.Equal(meander.Cost1.String(), "$")
 is.Equal(meander.Cost2.String(), "$$")
 is.Equal(meander.Cost3.String(), "$$$")
 is.Equal(meander.Cost4.String(), "$$$$")
 is.Equal(meander.Cost5.String(), "$$$$$")
}

This test asserts that calling the String method for each constant yields the expected
value. Running these tests will of course fail, because we haven't yet implemented
the String method.

Underneath the Cost constants, add the following map and the String method:

var costStrings = map[string]Cost{
 "$": Cost1,
 "$$": Cost2,
 "$$$": Cost3,
 "$$$$": Cost4,
 "$$$$$": Cost5,
}
func (l Cost) String() string {

Random Recommendations Web Service

[314]

 for s, v := range costStrings {
 if l == v {
 return s
 }
 }
 return "invalid"
}

The map[string]Cost variable maps the cost values to the string representation,
and the String method iterates over the map to return the appropriate value.

In our case, a simple return strings.Repeat("$", int(l))
would work just as well (and wins because it's simpler code), but it
often won't, therefore this section explores the general approach.

Now if we were to print out the Cost3 value, we would actually see $$$, which is
much more useful than numerical vales. However, since we do want to use these
strings in our API, we are also going to add a ParseCost method.

In cost_value_test.go, add the following unit test:

func TestParseCost(t *testing.T) {
 is := is.New(t)
 is.Equal(meander.Cost1, meander.ParseCost("$"))
 is.Equal(meander.Cost2, meander.ParseCost("$$"))
 is.Equal(meander.Cost3, meander.ParseCost("$$$"))
 is.Equal(meander.Cost4, meander.ParseCost("$$$$"))
 is.Equal(meander.Cost5, meander.ParseCost("$$$$$"))
}

Here we assert that calling ParseCost will in fact yield the appropriate value
depending on the input string.

In cost_value.go, add the following implementation code:

func ParseCost(s string) Cost {
 return costStrings[s]
}

Parsing a Cost string is very simple since this is how our map is laid out.

Chapter 7

[315]

As we need to represent a range of cost values, let's imagine a CostRange type,
and write the tests out for how we intend to use it. Add the following tests to
cost_value_test.go:

func TestParseCostRange(t *testing.T) {
 is := is.New(t)
 var l *meander.CostRange
 l = meander.ParseCostRange("$$...$$$")
 is.Equal(l.From, meander.Cost2)
 is.Equal(l.To, meander.Cost3)
 l = meander.ParseCostRange("$...$$$$$")
 is.Equal(l.From, meander.Cost1)
 is.Equal(l.To, meander.Cost5)
}
func TestCostRangeString(t *testing.T) {
 is := is.New(t)
 is.Equal("$$...$$$$", (&meander.CostRange{
 From: meander.Cost2,
 To: meander.Cost4,
 }).String())
}

We specify that passing in a string with two dollar characters first, followed by
three dots and then three dollar characters should create a new meander.CostRange
type that has From set to meander.Cost2, and To set to meander.Cost3. The second
test does the reverse by testing that the CostRange.String method returns the
appropriate value.

To make our tests pass, add the following CostRange type and associated String
and ParseString functions:

type CostRange struct {
 From Cost
 To Cost
}
func (r CostRange) String() string {
 return r.From.String() + "..." + r.To.String()
}
func ParseCostRange(s string) *CostRange {
 segs := strings.Split(s, "...")

Random Recommendations Web Service

[316]

 return &CostRange{
 From: ParseCost(segs[0]),
 To: ParseCost(segs[1]),
 }
}

This allows us to convert a string such as $...$$$$$ to a structure that contains
two Cost values; a From and To set and vice versa.

Querying the Google Places API
Now that we are capable of representing the results of the API, we need a way to
represent and initiate the actual query. Add the following structure to query.go:

type Query struct {
 Lat float64
 Lng float64
 Journey []string
 Radius int
 CostRangeStr string
}

This structure contains all the information we will need to build up the query, all of
which will actually come from the URL parameters in the requests from the client.
Next, add the following find method, which will be responsible for making the
actual request to Google's servers:

func (q *Query) find(types string) (*googleResponse, error) {
 u :=
"https://maps.googleapis.com/maps/api/place/nearbysearch/json"
 vals := make(url.Values)
 vals.Set("location", fmt.Sprintf("%g,%g", q.Lat, q.Lng))
 vals.Set("radius", fmt.Sprintf("%d", q.Radius))
 vals.Set("types", types)
 vals.Set("key", APIKey)
 if len(q.CostRangeStr) > 0 {
 r := ParseCostRange(q.CostRangeStr)
 vals.Set("minprice", fmt.Sprintf("%d", int(r.From)-1))
 vals.Set("maxprice", fmt.Sprintf("%d", int(r.To)-1))
 }

Chapter 7

[317]

 res, err := http.Get(u + "?" + vals.Encode())
 if err != nil {
 return nil, err
 }
 defer res.Body.Close()
 var response googleResponse
 if err := json.NewDecoder(res.Body).Decode(&response); err !=
nil {
 return nil, err
 }
 return &response, nil
}

First we build the request URL as per the Google Places API specification, by
appending the url.Values encoded string of the data for lat, lng, radius,
and of course the APIKey values.

The url.Values type is actually a map[string][]string type,
which is why we use make rather than new.

The types value we specify as an argument represents the kind of business to look
for. If there is a CostRangeStr, we parse it and set the minprice and maxprice values,
before finally calling http.Get to actually make the request. If the request is successful,
we defer the closing of the response body and use a json.Decoder method to decode
the JSON that comes back from the API into our googleResponse type.

Building recommendations
Next we need to write a method that will allow us to make many calls to find, for
the different steps in a journey. Underneath the find method, add the following
Run method to the Query struct:

// Run runs the query concurrently, and returns the results.
func (q *Query) Run() []interface{} {
 rand.Seed(time.Now().UnixNano())
 var w sync.WaitGroup
 var l sync.Mutex
 places := make([]interface{}, len(q.Journey))

Random Recommendations Web Service

[318]

 for i, r := range q.Journey {
 w.Add(1)
 go func(types string, i int) {
 defer w.Done()
 response, err := q.find(types)
 if err != nil {
 log.Println("Failed to find places:", err)
 return
 }
 if len(response.Results) == 0 {
 log.Println("No places found for", types)
 return
 }
 for _, result := range response.Results {
 for _, photo := range result.Photos {
 photo.URL =
"https://maps.googleapis.com/maps/api/place/photo?" +
 "maxwidth=1000&photoreference=" + photo.PhotoRef +
"&key=" + APIKey
 }
 }
 randI := rand.Intn(len(response.Results))
 l.Lock()
 places[i] = response.Results[randI]
 l.Unlock()
 }(r, i)
 }
 w.Wait() // wait for everything to finish
 return places
}

The first thing we do is set the random seed to the current time in nanoseconds past
since January 1, 1970 UTC. This ensures that every time we call the Run method and
use the rand package, the results will be different. If we didn't do this, our code
would suggest the same recommendations every time, which defeats the object.

Since we need to make many requests to Google—and since we want to make
sure this is as quick as possible—we are going to run all the queries at the same
time by making concurrent calls to our Query.find method. So we next create
a sync.WaitGroup method, and a map to hold the selected places along with a
sync.Mutex method to allow many go routines to access the map concurrently.

Chapter 7

[319]

We then iterate over each item in the Journey slice, which might be bar, cafe,
movie_theater. For each item, we add 1 to the WaitGroup object, and call
a goroutine. Inside the routine, we first defer the w.Done call informing the
WaitGroup object that this request has completed, before calling our find method
to make the actual request. Assuming no errors occurred, and it was indeed able
to find some places, we iterate over the results and build up a usable URL for any
photos that might be present. According to the Google Places API, we are given a
photoreference key, which we can use in another API call to get the actual image.
To save our clients from having to have knowledge of the Google Places API at all,
we build the complete URL for them.

We then lock the map locker and with a call to rand.Intn, pick one of the options
at random and insert it into the right position in the places slice, before unlocking
the sync.Mutex method.

Finally, we wait for all goroutines to complete with a call to w.Wait, before returning
the places.

Handlers that use query parameters
Now we need to wire up our /recommendations call, so head back to main.go in
the cmd folder, and add the following code inside the main function:

http.HandleFunc("/recommendations", func(w http.ResponseWriter, r
*http.Request) {
 q := &meander.Query{
 Journey: strings.Split(r.URL.Query().Get("journey"), "|"),
 }
 q.Lat, _ = strconv.ParseFloat(r.URL.Query().Get("lat"), 64)
 q.Lng, _ = strconv.ParseFloat(r.URL.Query().Get("lng"), 64)
 q.Radius, _ = strconv.Atoi(r.URL.Query().Get("radius"))
 q.CostRangeStr = r.URL.Query().Get("cost")
 places := q.Run()
 respond(w, r, places)
})

This handler is responsible for preparing the meander.Query object and calling its
Run method, before responding with the results. The http.Request type's URL
value exposes the Query data that provides a Get method that, in turn, looks up
a value for a given key.

Random Recommendations Web Service

[320]

The journey string is translated from the bar|cafe|movie_theater format to a
slice of strings, by splitting on the pipe character. Then a few calls to functions in
the strconv package turn the string latitude, longitude, and radius values into
numerical types.

CORS
The final piece of the first version of our API will be to implement CORS as we did
in the previous chapter. See if you can solve this problem yourself before reading
on to the solution in the next section.

If you are going to tackle this yourself, remember that your aim is to
set the Access-Control-Allow-Origin response header to *. Also
consider the http.HandlerFunc wrapping we did in the previous
chapter. The best place for this code is probably in the cmd program,
since that is what exposes the functionality through an HTTP endpoint.

In main.go, add the following cors function:

func cors(f http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Access-Control-Allow-Origin", "*")
 f(w, r)
 }
}

This familiar pattern takes in an http.HandlerFunc type and returns a new one
that sets the appropriate header before calling the passed-in function. Now we
can modify our code to make sure the cors function gets called for both of our
endpoints. Update the appropriate lines in the main function:

func main() {
 runtime.GOMAXPROCS(runtime.NumCPU())
 meander.APIKey = "YOUR_API_KEY"
 http.HandleFunc("/journeys", cors(func(w http.ResponseWriter, r
*http.Request) {
 respond(w, r, meander.Journeys)
 }))
 http.HandleFunc("/recommendations", cors(func(w
http.ResponseWriter, r *http.Request) {
 q := &meander.Query{
 Journey: strings.Split(r.URL.Query().Get("journey"), "|"),
 }

Chapter 7

[321]

 q.Lat, _ = strconv.ParseFloat(r.URL.Query().Get("lat"), 64)
 q.Lng, _ = strconv.ParseFloat(r.URL.Query().Get("lng"), 64)
 q.Radius, _ = strconv.Atoi(r.URL.Query().Get("radius"))
 q.CostRangeStr = r.URL.Query().Get("cost")
 places := q.Run()
 respond(w, r, places)
 }))
 http.ListenAndServe(":8080", http.DefaultServeMux)
}

Now calls to our API will be allowed from any domain without a cross-origin
error occurring.

Testing our API
Now that we are ready to test our API, head to a console and navigate to the cmd
folder. Because our program imports the meander package, building the program
will automatically build our meander package too.

Build and run the program:

go build –o meanderapi

./meanderapi

To see meaningful results from our API, let's take a minute to find your actual
latitude and longitude. Head over to http://mygeoposition.com/ and use the
web tools to get the x,y values for a location you are familiar with.

Or pick from these popular cities:

• London, England: 51.520707 x 0.153809

• New York, USA: 40.7127840 x -74.0059410

• Tokyo, Japan: 35.6894870 x 139.6917060

• San Francisco, USA: 37.7749290 x -122.4194160

Now open a web browser and access the /recommendations endpoint with some
appropriate values for the fields:

http://localhost:8080/recommendations?
 lat=51.520707&lng=-0.153809&radius=5000&
 journey=cafe|bar|casino|restaurant&
 cost=$...$$$

http://mygeoposition.com/

Random Recommendations Web Service

[322]

The following screenshot shows what a sample recommendation around London
might look like:

Feel free to play around with the values in the URL to see how powerful the simple
API is by trying various journey strings, tweaking the locations, and trying different
cost range value strings.

Web application
We are going to download a complete web application built to the same API
specifications, and point it at our implementation to see it come to life before our
eyes. Head over to https://github.com/matryer/goblueprints/tree/master/
chapter7/meanderweb and download the meanderweb project into your GOPATH.

In a terminal, navigate to the meanderweb folder, and build and run it:

go build –o meanderweb

./meanderweb

https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb

Chapter 7

[323]

This will start a website running on localhost:8081, which is hardcoded to look
for the API running at localhost:8080. Because we added the CORS support,
this won't be a problem despite them running on different domains.

Open a browser to http://localhost:8081/ and interact with the application,
while somebody else built the UI it would be pretty useless without the API that
we built powering it.

Summary
In this chapter, we built an API that consumes and abstracts the Google Places API
to provide a fun and interesting way of letting users plan their days and evenings.

We started by writing some simple and short user stories that described at a really
high level what we wanted to achieve, without trying to design the implementation
up front. In order to parallelize the project, we agreed the meeting point of the
project as the API design, and we built towards it (as would our partners).

We embedded data directly in code, avoiding the need to investigate, design, and
implement a data store in the early stages of a project. By caring instead about
how that data is accessed (via the API endpoint), we allowed our future selves to
completely change how and where the data is stored, without breaking any apps
that have been written to our API.

We implemented the Facade interface, which allows our structs and other types to
provide public representations of them, without revealing messy or sensitive details
about our implementation.

Our foray into enumerators gave us a useful starting point to build enumerated
types, even though there is no official support for them in the language. The iota
keyword that we used lets us specify constants of our own numerical type, with
incrementing values. The common String method that we implemented showed
us how to make sure our enumerated types don't become obscure numbers in our
logs. At the same time, we also saw a real-world example of TDD, and red/green
programming where we wrote unit tests that first fail, but which we then go on to
make pass by writing the implementation code.

Filesystem Backup
There are many solutions that provide filesystem backup capabilities. These include
everything from apps such as Dropbox, Box, Carbonite to hardware solutions such
as Apple's Time Machine, Seagate, or network-attached storage products, to name
a few. Most consumer tools provide some key automatic functionality, along with
an app or website for you to manage your policies and content. Often, especially for
developers, these tools don't quite do the things we need them to. However, thanks
to Go's standard library (that includes packages such as ioutil and os) we have
everything we need to build a backup solution that behaves exactly as we need it to.

For our final project, we will build a simple filesystem backup for our source code
projects that archive specified folders and save a snapshot of them every time we
make a change. The change could be when we tweak a file and save it, or if we add
new files and folders, or even if we delete a file. We want to be able to go back to
any point in time to retrieve old files.

Specifically in this chapter, you will learn:

• How to structure projects that consist of packages and
command-line tools

• A pragmatic approach to persisting simple data across tool executions

• How the os package allows you to interact with a filesystem
• How to run code in an infinite timed loop, while respecting Ctrl + C
• How to use filepath.Walk to iterate over files and folders
• How to quickly determine if the contents of a directory have changed

• How to use the archive/zip package to zip files
• How to build tools that care about a combination of command-line

flags and normal arguments

Filesystem Backup

[326]

Solution design
We will start by listing some high-level acceptance criteria for our solution and the
approach we want to take:

• The solution should create a snapshot of our files at regular intervals,
as we make changes to our source code projects

• We want to control the interval at which the directories are checked
for changes

• Code projects are primarily text-based, so zipping the directories to
generate archives will save a lot of space

• We will build this project quickly, while keeping a close watch over
where we might want to make improvements later

• Any implementation decisions we make should be easily modified
if we decide to change our implementation in the future

• We will build two command-line tools, the backend daemon that
does the work, and a user interaction utility that will let us list, add,
and remove paths from the backup service

Project structure
It is common in Go solutions to have, in a single project, both a package that allows
other Go programmers to use your capabilities, and a command-line tool that allows
end users to use your code.

A convention is emerging to structure the project by having the package in the main
project folder, and the command-line tool inside a subfolder called cmd, or cmds if
you have multiple commands. Because all packages (regardless of the directory tree)
are equal in Go, you can import the main package from the subpackages, knowing
you'll never need to import the commands from the main package. This may seem
like an unnecessary abstraction, but is actually quite a common pattern and can be
seen in the standard Go tool chain with examples such as gofmt and goimports.

For example, for our project we are going to write a package called backup, and two
command-line tools: the daemon and the user interaction tool. We will structure our
project in the following way:

/backup - package
/backup/cmds/backup – user interaction tool
/backup/cmds/backupd – worker daemon

Chapter 8

[327]

Backup package
We are first going to write the backup package, of which we will become the first
customer when we write the associated tools. The package will be responsible for
deciding whether directories have changed and need backing up or not, as well as
actually performing the backup procedure too.

Obvious interfaces?
The first thing to think about when embarking on a new Go program is whether any
interfaces stand out to you. We don't want to over-abstract or waste too much time
up front designing something that we know will change as we start to code, but that
doesn't mean we shouldn't look for obvious concepts that are worth pulling out.
Since our code will archive files, the Archiver interface pops out as a candidate.

Create a new folder inside your GOPATH called backup, and add the following
archiver.go code:

package backup

type Archiver interface {
 Archive(src, dest string) error
}

An Archiver interface will specify a method called Archive that takes source and
destination paths and returns an error. Implementations of this interface will be
responsible for archiving the source folder, and storing it in the destination path.

Defining an interface up front is a nice way to get some concepts out
of our heads and into code; it doesn't mean this interface can't change
as we evolve our solution as long as we remember the power of simple
interfaces. Also, remember that most of the I/O interfaces in the io
package expose only a single method.

From the very beginning, we have made the case that while we are going to
implement ZIP files as our archive format, we could easily swap this out later
with another kind of Archiver format.

Filesystem Backup

[328]

Implementing ZIP
Now that we have the interface for our Archiver types, we are going to implement
one that uses the ZIP file format.

Add the following struct definition to archiver.go:

type zipper struct{}

We are not going to export this type, which might make you jump to the conclusion
that users outside of the package won't be able to make use of it. In fact, we are going
to provide them with an instance of the type for them to use, to save them from
having to worry about creating and managing their own types.

Add the following exported implementation:

// Zip is an Archiver that zips and unzips files.
var ZIP Archiver = (*zipper)(nil)

This curious snippet of Go voodoo is actually a very interesting way of exposing the
intent to the compiler, without using any memory (literally 0 bytes). We are defining
a variable called ZIP of type Archiver, so from outside the package it's pretty clear
that we can use that variable wherever Archiver is needed—if you want to zip things.
Then we assign it with nil cast to the type *zipper. We know that nil takes no
memory, but since it's cast to a zipper pointer, and given that our zipper struct has
no fields, it's an appropriate way of solving a problem, which hides the complexity
of code (and indeed the actual implementation) from outside users. There is no reason
anybody outside of the package needs to know about our zipper type at all, which
frees us up to change the internals without touching the externals at any time; the
true power of interfaces.

Another handy side benefit to this trick is that the compiler will now be checking
whether our zipper type properly implements the Archiver interface or not, so if
you try to build this code you'll get a compiler error:

./archiver.go:10: cannot use (*zipper)(nil) (type *zipper) as type
Archiver in assignment:

 *zipper does not implement Archiver (missing Archive method)

We see that our zipper type does not implement the Archive method as mandated
in the interface.

Chapter 8

[329]

You can also use the Archive method in test code to ensure that your
types implement the interfaces they should. If you don't need to use
the variable, you can always throw it away by using an underscore
and you'll still get the compiler help:

var _ Interface = (*Implementation)(nil)

To make the compiler happy, we are going to add the implementation of the
Archive method for our zipper type.

Add the following code to archiver.go:

func (z *zipper) Archive(src, dest string) error {
 if err := os.MkdirAll(filepath.Dir(dest), 0777); err != nil {
 return err
 }
 out, err := os.Create(dest)
 if err != nil {
 return err
 }
 defer out.Close()
 w := zip.NewWriter(out)
 defer w.Close()
 return filepath.Walk(src, func(path string, info os.FileInfo,
err error) error {
 if info.IsDir() {
 return nil // skip
 }
 if err != nil {
 return err
 }
 in, err := os.Open(path)
 if err != nil {
 return err
 }
 defer in.Close()
 f, err := w.Create(path)
 if err != nil {
 return err
 }
 io.Copy(f, in)
 return nil
 })
}

Filesystem Backup

[330]

You will have to also import the archive/zip package from the Go standard library.
In our Archive method, we take the following steps to prepare writing to a ZIP file:

• Use os.MkdirAll to ensure the destination directory exists. The 0777 code
represents the file permissions with which to create any missing directories.

• Use os.Create to create a new file as specified by the dest path.

• If the file is created without error, defer the closing of the file with defer
out.Close().

• Use zip.NewWriter to create a new zip.Writer type that will write to
the file we just created, and defer the closing of the writer.

Once we have a zip.Writer type ready to go, we use the filepath.Walk function
to iterate over the source directory src.

The filepath.Walk function takes two arguments: the root path, and a callback
function func to be called for every item (files and folders) it encounters while
iterating over the file system. The filepath.Walk function is recursive, so it will
travel deep into subfolders too. The callback function itself takes three arguments:
the full path of the file, the os.FileInfo object that describes the file or folder itself,
and an error (it also returns an error in case something goes wrong). If any calls to
the callback function result in an error being returned, the operation will be aborted
and filepath.Walk returns that error. We simply pass that up to the caller of
Archive and let them worry about it, since there's nothing more we can do.

For each item in the tree, our code takes the following steps:

• If the info.IsDir method tells us that the item is a folder, we just return
nil, effectively skipping it. There is no reason to add folders to ZIP archives,
because anyway the path of the files will encode that information for us.

• If an error is passed in (via the third argument), it means something went
wrong when trying to access information about the file. This is uncommon,
so we just return the error, which will eventually be passed out to the caller
of Archive.

• Use os.Open to open the source file for reading, and if successful defer
its closing.

• Call Create on the ZipWriter object to indicate that we want to create
a new compressed file, and give it the full path of the file, which includes
the directories it is nested inside.

• Use io.Copy to read all of the bytes from the source file, and write them
through the ZipWriter object to the ZIP file we opened earlier.

• Return nil to indicate no errors.

Chapter 8

[331]

This chapter will not cover unit testing or Test-driven Development (TDD)
practices, but feel free to write a test to ensure that our implementation does what
it is meant to do.

Since we are writing a package, spend some time commenting the
exported pieces so far. You can use golint to help you find any
exported pieces you may have missed.

Has the filesystem changed?
One of the biggest problems our backup system has is deciding whether a folder
has changed or not in a cross-platform, predictable, and reliable way. A few things
spring to mind when we think about this problem: should we just check the last
modified date on the top-level folder? Should we use system notifications to be
informed whenever a file we care about changes? There are problems with both
of these approaches, and it turns out it's not a trivial problem to solve.

We are instead going to generate an MD5 hash made up of all of the information
that we care about when considering whether something has changed or not.

Looking at the os.FileInfo type, we can see that we can find out a lot of
information about a file:

type FileInfo interface {
 Name() string // base name of the file
 Size() int64 // length in bytes for regular files;
 system-dependent for others
 Mode() FileMode // file mode bits
 ModTime() time.Time // modification time
 IsDir() bool // abbreviation for Mode().IsDir()
 Sys() interface{} // underlying data source (can return nil)
}

To ensure we are aware of a variety of changes to any file in a folder, the hash will be
made up of the filename and path (so if they rename a file, the hash will be different),
size (if a file changes size, it's obviously different), last modified date, whether the
item is a file or folder, and file mode bits. Even though we won't be archiving the
folders, we still care about their names and the tree structure of the folder.

Create a new file called dirhash.go and add the following function:

package backup
import (
 "crypto/md5"

Filesystem Backup

[332]

 "fmt"
 "io"
 "os"
 "path/filepath"
)
func DirHash(path string) (string, error) {
 hash := md5.New()
 err := filepath.Walk(path, func(path string, info os.FileInfo, err
error) error {
 if err != nil {
 return err
 }
 io.WriteString(hash, path)
 fmt.Fprintf(hash, "%v", info.IsDir())
 fmt.Fprintf(hash, "%v", info.ModTime())
 fmt.Fprintf(hash, "%v", info.Mode())
 fmt.Fprintf(hash, "%v", info.Name())
 fmt.Fprintf(hash, "%v", info.Size())
 return nil
 })
 if err != nil {
 return "", err
 }
 return fmt.Sprintf("%x", hash.Sum(nil)), nil
}

We first create a new hash.Hash that knows how to calculate MD5s, before using
filepath.Walk to iterate over all of the files and folders inside the specified path
directory. For each item, assuming there are no errors, we write the differential
information to the hash generator using io.WriteString, which lets us write
a string to an io.Writer, and fmt.Fprintf, which does the same but exposes
formatting capabilities at the same time, allowing us to generate the default
value format for each item using the %v format verb.

Once each file has been processed, and assuming no errors occurred, we
then use fmt.Sprintf to generate the result string. The Sum method on a
hash.Hash calculates the final hash value with the specified values appended.
In our case, we do not want to append anything since we've already added
all of the information we care about, so we just pass nil. The %x format verb
indicates that we want the value to be represented in hex (base 16) with
lowercase letters. This is the usual way of representing an MD5 hash.

Chapter 8

[333]

Checking for changes and initiating a backup
Now that we have the ability to hash a folder, and to perform a backup, we are going
to put the two together in a new type called Monitor. The Monitor type will have a
map of paths with their associated hashes, a reference to any Archiver type (of course,
we'll use backup.ZIP for now), and a destination string representing where to put
the archives.

Create a new file called monitor.go and add the following definition:

type Monitor struct {
 Paths map[string]string
 Archiver Archiver
 Destination string
}

In order to trigger a check for changes, we are going to add the following Now
method:

func (m *Monitor) Now() (int, error) {
 var counter int
 for path, lastHash := range m.Paths {
 newHash, err := DirHash(path)
 if err != nil {
 return 0, err
 }
 if newHash != lastHash {
 err := m.act(path)
 if err != nil {
 return counter, err
 }
 m.Paths[path] = newHash // update the hash
 counter++
 }
 }
 return counter, nil
}

The Now method iterates over every path in the map and generates the latest hash
of that folder. If the hash does not match the hash from the map (generated the last
time it checked), then it is considered to have changed, and needs backing up again.
We do this with a call to the as yet unwritten act method, before then updating the
hash in the map with this new hash.

Filesystem Backup

[334]

To give our users a high-level indication of what happened when they called Now, we
are also maintaining a counter which we increment every time we back up a folder.
We will use this later to keep our end users up-to-date on what the system is doing
without bombarding them with information.

m.act undefined (type *Monitor has no field or method act)

The compiler is helping us again and reminding us that we have yet to add the
act method:

func (m *Monitor) act(path string) error {
 dirname := filepath.Base(path)
 filename := fmt.Sprintf("%d.zip", time.Now().UnixNano())
 return m.Archiver.Archive(path, filepath.Join(m.Destination,
dirname, filename))
}

Because we have done the heavy lifting in our ZIP Archiver type, all we have
to do here is generate a filename, decide where the archive will go, and call the
Archive method.

If the Archive method returns an error, the act method and then
the Now method will each return it. This mechanism of passing errors
up the chain is very common in Go and allows you to either handle
cases where you can do something useful to recover, or else defer the
problem to somebody else.

The act method in the preceding code uses time.Now().UnixNano() to generate
a timestamp filename and hardcodes the .zip extension.

Hardcoding is OK for a short while
Hardcoding the file extension like we have is OK in the beginning, but if you
think about it we have blended concerns a little here. If we change the Archiver
implementation to use RAR or a compression format of our making, the .zip
extension would no longer be appropriate.

Before reading on, think about what steps you might take to
avoid hardcoding. Where does the filename extension decision
live? What changes would you need to make in order to avoid
hardcoding properly?

Chapter 8

[335]

The right place for the filename extensions decision is probably in the Archiver
interface, since it knows the kind of archiving it will be doing. So we could add an
Ext() string method and access that from our act method. But we can add a little
extra power with not much extra work by instead allowing Archiver authors to
specify the entire filename format, rather than just the extension.

Back in archiver.go, update the Archiver interface definition:

type Archiver interface {
 DestFmt() string
 Archive(src, dest string) error
}

Our zipper type needs to now implement this:

func (z *zipper) DestFmt() string {
 return "%d.zip"
}

Now that we can ask our act method to get the whole format string from the
Archiver interface, update the act method:

func (m *Monitor) act(path string) error {
 dirname := filepath.Base(path)
 filename := fmt.Sprintf(m.Archiver.DestFmt(),
time.Now().UnixNano())
 return m.Archiver.Archive(path, filepath.Join(m.Destination,
dirname, filename))
}

The user command-line tool
The first of two tools we will build allows the user to add, list, and remove paths
for the backup daemon tool (which we will write later). You could expose a web
interface, or even use the binding packages for desktop user interface integration,
but we are going to keep things simple and build ourselves a command-line tool.

Create a new folder called cmds inside the backup folder and create another backup
folder inside that.

It's good practice to name the folder of the command and the
command binary itself the same.

Filesystem Backup

[336]

Inside our new backup folder, add the following code to main.go:

func main() {
 var fatalErr error
 defer func() {
 if fatalErr != nil {
 flag.PrintDefaults()
 log.Fatalln(fatalErr)
 }
 }()
 var (
 dbpath = flag.String("db", "./backupdata", "path to database
directory")
)
 flag.Parse()
 args := flag.Args()
 if len(args) < 1 {
 fatalErr = errors.New("invalid usage; must specify command")
 return
 }
}

We first define our fatalErr variable and defer the function that checks to ensure
that value is nil. If it is not, it will print the error along with flag defaults and exit
with a non-zero status code. We then define a flag called db that expects the path
to the filedb database directory, before parsing the flags and getting the remaining
arguments and ensuring there is at least one.

Persisting small data
In order to keep track of the paths, and the hashes that we generate, we will need
some kind of data storage mechanism that ideally works even when we stop and
start our programs. We have lots of choices here: everything from a text file to a
full horizontally scalable database solution. The Go ethos of simplicity tells us that
building-in a database dependency to our little backup program would not be a great
idea; rather we should ask what is the simplest way we can solve this problem?

The github.com/matryer/filedb package is an experimental solution for just this
kind of problem. It lets you interact with the filesystem as though it were a very
simple schemaless database. It takes its design lead from packages such as mgo, and
can be used in the cases where data querying needs are very simple. In filedb, a
database is a folder, and a collection is a file where each line represents a different
record. Of course, this could all change as the filedb project evolves, but the
interface hopefully won't.

Chapter 8

[337]

Add the following code to the end of the main function:

db, err := filedb.Dial(*dbpath)
if err != nil {
 fatalErr = err
 return
}
defer db.Close()
col, err := db.C("paths")
if err != nil {
 fatalErr = err
 return
}

Here we use the filedb.Dial function to connect with the filedb database.
In actuality, nothing much happens here except specifying where the database
is, since there are no real database servers to connect to (although this might
change in the future, which is why such provisions exist in the interface). If that
was successful, we defer the closing of the database. Closing the database does
actually do something, since files may be open that need to be cleaned up.

Following the mgo pattern, next we specify a collection using the C method and
keep a reference to it in the col variable. If at any point an error occurs, we assign
it to the fatalErr variable and return.

To store data, we are going to define a type called path, which will store the full
path and the last hash value, and use JSON encoding to store this in our filedb
database. Add the following struct definition above the main function:

type path struct {
 Path string
 Hash string
}

Parsing arguments
When we call flag.Args (as opposed to os.Args), we receive a slice of arguments
excluding the flags. This allows us to mix flag arguments and non-flag arguments
in the same tool.

We want our tool to be able to be used in the following ways:

• To add a path:
backup -db=/path/to/db add {path} [paths...]

Filesystem Backup

[338]

• To remove a path:
backup -db=/path/to/db remove {path} [paths...]

• To list all paths:

backup -db=/path/to/db list

To achieve this, since we have already dealt with flags, we must check the first
(non-flag) argument.

Add the following code to the main function:

switch strings.ToLower(args[0]) {
case "list":
case "add":
case "remove":
}

Here we simply switch on the first argument, after setting it to lowercase (if the
user types backup LIST, we still want it to work).

Listing the paths
To list the paths in the database, we are going to use a ForEach method on the
path's col variable. Add the following code to the list case:

var path path
col.ForEach(func(i int, data []byte) bool {
 err := json.Unmarshal(data, &path)
 if err != nil {
 fatalErr = err
 return false
 }
 fmt.Printf("= %s\n", path)
 return false
})

We pass in a callback function to ForEach that will be called for every item in that
collection. We then Unmarshal it from JSON, into our path type, and just print it out
using fmt.Printf. We return false as per the filedb interface, which tells us that
returning true would stop iterating and that we want to make sure we list them all.

Chapter 8

[339]

String representations for your own types
If you print structs in Go in this way, using the %s format verbs, you can get some
messy results that are difficult for users to read. If, however, the type implements
a String() string method, that will be used instead and we can use this to control
what gets printed. Below the path struct, add the following method:

func (p path) String() string {
 return fmt.Sprintf("%s [%s]", p.Path, p.Hash)
}

This tells the path type how it should represent itself as a string.

Adding paths
To add a path, or many paths, we are going to iterate over the remaining arguments
and call the InsertJSON method for each one. Add the following code to the add case:

if len(args[1:]) == 0 {
 fatalErr = errors.New("must specify path to add")
 return
}
for _, p := range args[1:] {
 path := &path{Path: p, Hash: "Not yet archived"}
 if err := col.InsertJSON(path); err != nil {
 fatalErr = err
 return
 }
 fmt.Printf("+ %s\n", path)
}

If the user hasn't specified any additional arguments, like if they just called backup
add without typing any paths, we will return a fatal error. Otherwise, we do the
work and print out the path string (prefixed with a + symbol) to indicate that it was
successfully added. By default, we'll set the hash to the Not yet archived string
literal—this is an invalid hash but serves the dual purposes of letting the user know
that it hasn't yet been archived, as well as indicating as such to our code (given that
a hash of the folder will never equal that string).

Filesystem Backup

[340]

Removing paths
To remove a path, or many paths, we use the RemoveEach method for the path's
collection. Add the following code to the remove case:

var path path
col.RemoveEach(func(i int, data []byte) (bool, bool) {
 err := json.Unmarshal(data, &path)
 if err != nil {
 fatalErr = err
 return false, true
 }
 for _, p := range args[1:] {
 if path.Path == p {
 fmt.Printf("- %s\n", path)
 return true, false
 }
 }
 return false, false
})

The callback function we provide to RemoveEach expects us to return two bool
types: the first one indicates whether the item should be removed or not, and the
second one indicates whether we should stop iterating or not.

Using our new tool
We have completed our simple backup command-line tool. Let's see it in action.
Create a folder called backupdata inside backup/cmds/backup; this will become
the filedb database.

Build the tool in a terminal by navigating to the main.go file and running:

go build -o backup

If all is well, we can now add a path:

./backup -db=./backupdata add ./test ./test2

You should see the expected output:

+ ./test [Not yet archived]

+ ./test2 [Not yet archived]

Chapter 8

[341]

Now let's add another path:

./backup -db=./backupdata add ./test3

You should now see the complete list:

./backup -db=./backupdata list

Our program should yield:

= ./test [Not yet archived]

= ./test2 [Not yet archived]

= ./test3 [Not yet archived]

Let's remove test3 to make sure the remove functionality is working:

./backup -db=./backupdata remove ./test3

./backup -db=./backupdata list

This will take us back to:

+ ./test [Not yet archived]

+ ./test2 [Not yet archived]

We are now able to interact with the filedb database in a way that makes sense
for our use case. Next we build the daemon program that will actually use our
backup package to do the work.

The daemon backup tool
The backup tool, which we will call backupd, will be responsible for periodically
checking the paths listed in the filedb database, hashing the folders to see whether
anything has changed, and using the backup package to actually perform the
archiving of folders that need it.

Create a new folder called backupd alongside the backup/cmds/backup folder,
and let's jump right into handling the fatal errors and flags:

func main() {
 var fatalErr error
 defer func() {
 if fatalErr != nil {

Filesystem Backup

[342]

 log.Fatalln(fatalErr)
 }
 }()
 var (
 interval = flag.Int("interval", 10, "interval between checks
(seconds)")
 archive = flag.String("archive", "archive", "path to archive
location")
 dbpath = flag.String("db", "./db", "path to filedb
database")
)
 flag.Parse()
}

You must be quite used to seeing this kind of code by now. We defer the handling of
fatal errors before specifying three flags: interval, archive, and db. The interval
flag represents the number of seconds between checks to see whether folders have
changed, the archive flag is the path to the archive location where ZIP files will go,
and the db flag is the path to the same filedb database that the backup command
is interacting with. The usual call to flag.Parse sets the variables up and validates
whether we're ready to move on.

In order to check the hashes of the folders, we are going to need an instance of
Monitor that we wrote earlier. Append the following code to the main function:

m := &backup.Monitor{
 Destination: *archive,
 Archiver: backup.ZIP,
 Paths: make(map[string]string),
}

Here we create a backup.Monitor method using the archive value as the
Destination type. We'll use the backup.ZIP archiver and create a map ready
for it to store the paths and hashes internally. At the start of the daemon, we want
to load the paths from the database so that it doesn't archive unnecessarily as we
stop and start things.

Add the following code to the main function:

db, err := filedb.Dial(*dbpath)
if err != nil {
 fatalErr = err

Chapter 8

[343]

 return
}
defer db.Close()
col, err := db.C("paths")
if err != nil {
 fatalErr = err
 return
}

You have seen this code before too; it dials the database and creates an object that
allows us to interact with the paths collection. If anything fails, we set fatalErr
and return.

Duplicated structures
Since we're going to use the same path structure as in our user command-line
tool program, we need to include a definition of it for this program too. Insert the
following structure above the main function:

type path struct {
 Path string
 Hash string
}

The object-oriented programmers out there are no doubt by now screaming at
the pages demanding for this shared snippet to exist in one place only and not
be duplicated in both programs. I urge you to resist this compulsion of early
abstraction. These four lines of code hardly justify a new package and therefore
dependency for our code, when they can just as easily exist in both programs with
very little overhead. Consider also that we might want to add a LastChecked field
to our backupd program so that we could add rules where each folder only gets
archived at most once an hour. Our backup program doesn't care about this and
will chug along perfectly happy with its view into what fields constitute a path.

Caching data
We can now query all existing paths and update the Paths map, which is a
useful technique to increase the speed of a program, especially given slow or
disconnected data stores. By loading the data into a cache (in our case, the Paths
map), we can access it at lightening speeds without having to consult the files
each time we need information.

Filesystem Backup

[344]

Add the following code to the body of the main function:

var path path
col.ForEach(func(_ int, data []byte) bool {
 if err := json.Unmarshal(data, &path); err != nil {
 fatalErr = err
 return true
 }
 m.Paths[path.Path] = path.Hash
 return false // carry on
})
if fatalErr != nil {
 return
}
if len(m.Paths) < 1 {
 fatalErr = errors.New("no paths - use backup tool to add at
least one")
 return
}

Using the ForEach method again allows us to iterate over all the paths in the
database. We Unmarshal the JSON bytes into the same path structure as we used
in our other program and set the values in the Paths map. Assuming nothing goes
wrong, we do a final check to make sure there is at least one path, and if not, return
with an error.

One limitation to our program is that it will not dynamically add
paths once it has started. The daemon would need to be restarted.
If this bothers you, you could always build in a mechanism that
updates the Paths map periodically.

Infinite loops
The next thing we need to do is to perform a check on the hashes right away
to see whether anything needs archiving, before entering into an infinite timed
loop where we check again at regular specified intervals.

An infinite loop sounds like a bad idea; in fact to some it sounds like a bug.
However, since we're talking about an infinite loop within this program, and
since infinite loops can be easily broken with a simple break command, they're
not as dramatic as they might sound.

Chapter 8

[345]

In Go, to write an infinite loop is as simple as:

for {}

The instructions inside the braces get executed over and over again, as quickly
as the machine running the code can execute them. Again this sounds like a bad
plan, unless you're careful about what you're asking it to do. In our case, we are
immediately initiating a select case on the two channels that will block safely
until one of the channels has something interesting to say.

Add the following code:

check(m, col)
signalChan := make(chan os.Signal, 1)
signal.Notify(signalChan, syscall.SIGINT, syscall.SIGTERM)
for {
 select {
 case <-time.After(time.Duration(*interval) * time.Second):
 check(m, col)
 case <-signalChan:
 // stop
 fmt.Println()
 log.Printf("Stopping...")
 goto stop
 }
}
stop:

Of course, as responsible programmers, we care about what happens when the user
terminates our programs. So after a call to the check method, which doesn't yet exist,
we make a signal channel and use signal.Notify to ask for the termination signal
to be given to the channel, rather than handled automatically. In our infinite for
loop, we select on two possibilities: either the timer channel sends a message or
the termination signal channel sends a message. If it's the timer channel message,
we call check again, otherwise we go about terminating the program.

The time.After function returns a channel that will send a signal (actually the
current time) after the specified time has elapsed. The somewhat confusing time.
Duration(*interval) * time.Second code simply indicates the amount of time
to wait before the signal is sent; the first * character is a dereference operator since
the flag.Int method represents a pointer to an int, and not the int itself. The second
* character multiplies the interval value by time.Second, which gives a value
equivalent to the specified interval in seconds. Casting the *interval int to time.
Duration is required so that the compiler knows we are dealing with numbers.

Filesystem Backup

[346]

We take a short trip down the memory lane in the preceding code snippet by using
the goto statement to jump out of the switch and to block loops. We could do away
with the goto statement altogether and just return when a termination signal is
received, but the pattern discussed here allows us to run non-deferred code after
the for loop, should we wish to.

Updating filedb records
All that is left is for us to implement the check function that should call the Now
method on the Monitor type and update the database with new hashes if there
are any.

Underneath the main function, add the following code:

func check(m *backup.Monitor, col *filedb.C) {
 log.Println("Checking...")
 counter, err := m.Now()
 if err != nil {
 log.Fatalln("failed to backup:", err)
 }
 if counter > 0 {
 log.Printf(" Archived %d directories\n", counter)
 // update hashes
 var path path
 col.SelectEach(func(_ int, data []byte) (bool, []byte, bool) {
 if err := json.Unmarshal(data, &path); err != nil {
 log.Println("failed to unmarshal data (skipping):", err)
 return true, data, false
 }
 path.Hash, _ = m.Paths[path.Path]
 newdata, err := json.Marshal(&path)
 if err != nil {
 log.Println("failed to marshal data (skipping):", err)
 return true, data, false
 }
 return true, newdata, false
 })
 } else {
 log.Println(" No changes")
 }
}

Chapter 8

[347]

The check function first tells the user that a check is happening, before immediately
calling Now. If the Monitor type did any work for us, which is to ask if it archived
any files, we output them to the user and go on to update the database with the new
values. The SelectEach method allows us to change each record in the collection if
we so wish, by returning the replacement bytes. So we Unmarshal the bytes to get the
path structure, update the hash value and return the marshaled bytes. This ensures
that next time we start a backupd process, it will do so with the correct hash values.

Testing our solution
Let's see whether our two programs play nicely together and what affects the code
inside our backup package. You may want to open two terminal windows for this,
since we'll be running two programs.

We have already added some paths to the database, so let's use backup to see them:

./backup -db="./backupdata" list

You should see the two test folders; if you don't, refer back to the Adding paths
section.

= ./test [Not yet archived]

= ./test2 [Not yet archived]

In another window, navigate to the backupd folder and create our two test folders
called test and test2.

Build backupd using the usual method:

go build -o backupd

Assuming all is well, we can now start the backup process being sure to point the
db path to the same path as we used for the backup program, and specify that we
want to use a new folder called archive to store the ZIP files. For testing purposes,
let's specify an interval of 5 seconds to save time:

./backupd -db="../backup/backupdata/" -archive="./archive" -
interval=5

Immediately, backupd should check the folders, calculate the hashes, notice that
they are different (to Not yet archived), and initiate the archive process for both
folders. It will print the output telling us this:

Checking...

Archived 2 directories

Filesystem Backup

[348]

Open the newly created archive folder inside backup/cmds/backupd and notice it has
created two subfolders: test and test2. Inside those are compressed archive versions
of the empty folders. Feel free to unzip one and see; not very exciting so far.

Meanwhile, back in the terminal window, backupd has been checking the folders
again for changes:

Checking...

 No changes

Checking...

 No changes

In your favorite text editor, create a new text file inside the test2 folder containing the
word test, and save it as one.txt. After a few seconds, you will see that backupd has
noticed the new file and created another snapshot inside the archive/test2 folder.

Of course, it has a different filename because the time is different, but if you unzip it
you will notice that it has indeed created a compressed archive version of the folder.

Play around with the solution by taking the following actions:

• Change the contents of the one.txt file
• Add a file to the test folder too

• Delete a file

Summary
In this chapter, we successfully built a very powerful and flexible backup system
for your code projects. You can see how simple it would be to extend or modify the
behavior of these programs. The scope for potential problems that you could go on
to solve is limitless.

Rather than having a local archive destination folder like we did in the previous
section, imagine mounting a network storage device and using that instead. Suddenly,
you have off-site (or at least off-machine) backups of those vital files. You could easily
set a Dropbox folder as the archive destination, which would mean not only do you get
access to the snapshots yourself, but also a copy is stored in the cloud and can even be
shared with other users.

Extending the Archiver interface to support Restore operations (which would just
use the encoding/zip package to unzip the files) allows you to build tools that can
peer inside the archives and access the changes of individual files much like Time
Machine allows you to do. Indexing the files gives you full search across the entire
history of your code, much like GitHub does.

Chapter 8

[349]

Since the filenames are timestamps, you could have backed up retiring old archives
to less active storage mediums, or summarized the changes into a daily dump.

Obviously, backup software exists, is well tested, and used through the world and
it may be a smart move to focus on solving problems that haven't yet been solved.
But when it requires such little effort to write small programs to get things done, it
is often worth doing because of the control it gives you. When you write the code,
you can get exactly what you want without compromise, and it's down to each
individual to make that call.

Specifically in this chapter, we explored how easy Go's standard library makes it
to interact with the filesystem: opening files for reading, creating new files, and
making directories. The os package mixed in with the powerful types from the io
package, blended further with capabilities like encoding/zip and others, gives a
clear example of how extremely simple Go interfaces can be composed to deliver
very powerful results.

Module 3

Mastering Concurrency in Go

Discover and harness Go's powerful concurrency features to develop and build fast,
scalable network systems

An Introduction to
Concurrency in Go

While Go is both a great general purpose and low-level systems language, one
of its primary strengths is the built-in concurrency model and tools. Many other
languages have third-party libraries (or extensions), but inherent concurrency is
something unique to modern languages, and it is a core feature of Go's design.

Though there's no doubt that Go excels at concurrency—as we'll see in this
book—what it has that many other languages lack is a robust set of tools to
test and build concurrent, parallel, and distributed code.

Enough talk about Go's marvelous concurrency features and tools, let's jump in.

Introducing goroutines
The primary method of handling concurrency is through a goroutine. Admittedly,
our first piece of concurrent code (mentioned in the preface) didn't do a whole
lot, simply spitting out alternating "hello"s and "world"s until the entire task
was complete.

An Introduction to Concurrency in Go

[354]

Here is that code once again:

package main

import (
 "fmt"
 "time"
)

type Job struct {
 i int
 max int
 text string
}

func outputText(j *Job) {
 for j.i < j.max {
 time.Sleep(1 * time.Millisecond)
 fmt.Println(j.text)
 j.i++
 }
}

func main() {
 hello := new(Job)
 world := new(Job)

 hello.text = "hello"
 hello.i = 0
 hello.max = 3

 world.text = "world"
 world.i = 0
 world.max = 5

 go outputText(hello)
 outputText(world)

}

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www. packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

But, if you think back to our real-world example of planning a surprise party for
your grandmother, that's exactly how things often have to be managed with limited
or finite resources. This asynchronous behavior is critical for some applications to
run smoothly, although our example essentially ran in a vacuum.

Chapter 1

[355]

You may have noticed one quirk in our early example: despite the fact that we called
the outputText() function on the hello struct first, our output started with the
world struct's text value. Why is that?

Being asynchronous, when a goroutine is invoked, it waits for the blocking
code to complete before concurrency begins. You can test this by replacing the
outputText() function call on the world struct with a goroutine, as shown in the
following code:

 go outputText(hello)
 go outputText(world)

If you run this, you will get no output because the main function ends while the
asynchronous goroutines are running. There are a couple of ways to stop this to see
the output before the main function finishes execution and the program exits. The
classic method simply asks for user input before execution, allowing you to directly
control when the application finishes. You can also put an infinite loop at the end of
your main function, as follows:

for {}

Better yet, Go also has a built-in mechanism for this, which is the WaitGroup type
in the sync package.

If you add a WaitGroup struct to your code, it can delay execution of the main
function until after all goroutines are complete. In simple terms, it lets you set
a number of required iterations to get a completed response from the goroutines
before allowing the application to continue. Let's look at a minor modification
to our "Hello World" application in the following section.

A patient goroutine
From here, we'll implement a WaitGroup struct to ensure our goroutines run entirely
before moving on with our application. In this case, when we say patient, it's in
contrast to the way we've seen goroutines run outside of a parent method with our
previous example. In the following code, we will implement our first Waitgroup
struct:

package main

import (
 "fmt"
 "sync"
 "time"
)

An Introduction to Concurrency in Go

[356]

type Job struct {
 i int
 max int
 text string
}

func outputText(j *Job, goGroup *sync.WaitGroup) {
 for j.i < j.max {
 time.Sleep(1 * time.Millisecond)
 fmt.Println(j.text)
 j.i++
 }
 goGroup.Done()
}

func main() {

 goGroup := new(sync.WaitGroup)
 fmt.Println("Starting")

 hello := new(Job)
 hello.text = "hello"
 hello.i = 0
 hello.max = 2

 world := new(Job)
 world.text = "world"
 world.i = 0
 world.max = 2

sync.WaitGroup.Add

go outputText(hello, goGroup)

go outputText(world, goGroup)

 goGroup.Add(2)
 goGroup.Wait()

}

Let's look at the changes in the following code:

 goGroup := new(sync.WaitGroup)

Chapter 1

[357]

Here, we declared a WaitGroup struct named goGroup. This variable will receive
note that our goroutine function has completed x number of times before allowing
the program to exit. Here's an example of sending such an expectation in WaitGroup:

 goGroup.Add(2)

The Add() method specifies how many Done messages goGroup should receive
before satisfying its wait. Here, we specified 2 because we have two functions
running asynchronously. If you had three goroutine members and still called two,
you may see the output of the third. If you added a value more than two to goGroup,
for example, goGroup.Add(3), then WaitGroup would wait forever and deadlock.

With that in mind, you shouldn't manually set the number of goroutines that need
to wait; this is ideally handled computationally or explicitly in a range. This is how
we tell WaitGroup to wait:

 goGroup.Wait()

Now, we wait. This code will fail for the same reason goGroup.Add(3) failed; the
goGroup struct never receives messages that our goroutines are done. So, let's do
this as shown in the following code snippet:

func outputText(j *Job, goGroup *sync.WaitGroup) {
 for j.i < j.max {
 time.Sleep(1 * time.Millisecond)
 fmt.Println(j.text)
 j.i++
 }
 goGroup.Done()
}

We've only made two changes to our outputText() function from the preface.
First, we added a pointer to our goGroup as the second function argument. Then,
when all our iterations were complete, we told goGroup that they are all done.

Implementing the defer control
mechanism
While we're here, we should take a moment and talk about defer. Go has an elegant
implementation of the defer control mechanism. If you've used defer (or something
functionally similar) in other languages, this will seem familiar—it's a useful way of
delaying the execution of a statement until the rest of the function is complete.

An Introduction to Concurrency in Go

[358]

For the most part, this is syntactical sugar that allows you to see related operations
together, even though they won't execute together. If you've ever written something
similar to the following pseudocode, you'll know what I mean:

x = file.open('test.txt')
int longFunction() {
…
}
x.close();

You probably know the kind of pain that can come from large "distances" separating
related bits of code. In Go, you can actually write the code similar to the following:

package main

import(
"os"
)

func main() {

 file, _ := os.Create("/defer.txt")

 defer file.Close()

 for {

 break

 }

}

There isn't any actual functional advantage to this other than making clearer, more
readable code, but that's a pretty big plus in itself. Deferred calls are executed reverse
of the order in which they are defined, or last-in-first-out. You should also take note
that any data passed by reference may be in an unexpected state.

Chapter 1

[359]

For example, refer to the following code snippet:

func main() {

 aValue := new(int)

 defer fmt.Println(*aValue)

 for i := 0; i < 100; i++ {
 *aValue++
 }

}

This will return 0, and not 100, as it is the default value for an integer.

Defer is not the same as deferred (or futures/promises) in
other languages. We'll talk about Go's implementations and
alternatives to futures and promises in Chapter 2, Understanding
the Concurrency Model.

Using Go's scheduler
With a lot of concurrent and parallel applications in other languages, the
management of both soft and hard threads is handled at the operating system level.
This is known to be inherently inefficient and expensive as the OS is responsible for
context switching, among multiple processes. When an application or process can
manage its own threads and scheduling, it results in faster runtime. The threads
granted to our application and Go's scheduler have fewer OS attributes that need
to be considered in context to switching, resulting in less overhead.

If you think about it, this is self-evident—the more you have to juggle, the slower it
is to manage all of the balls. Go removes the natural inefficiency of this mechanism
by using its own scheduler.

There's really only one quirk to this, one that you'll learn very early on: if you don't
ever yield to the main thread, your goroutines will perform in unexpected ways
(or won't perform at all).

An Introduction to Concurrency in Go

[360]

Another way to look at this is to think that a goroutine must be blocked before
concurrency is valid and can begin. Let's modify our example and include some
file I/O to log to demonstrate this quirk, as shown in the following code:

package main

import (
 "fmt"
 "time"
 "io/ioutil"
)

type Job struct {
 i int
 max int
 text string
}

func outputText(j *Job) {
 fileName := j.text + ".txt"
 fileContents := ""
 for j.i < j.max {
 time.Sleep(1 * time.Millisecond)
 fileContents += j.text
 fmt.Println(j.text)
 j.i++
 }
 err := ioutil.WriteFile(fileName, []byte(fileContents), 0644)
 if (err != nil) {
 panic("Something went awry")
 }

}

func main() {

 hello := new(Job)
 hello.text = "hello"
 hello.i = 0
 hello.max = 3

Chapter 1

[361]

 world := new(Job)
 world.text = "world"
 world.i = 0
 world.max = 5

 go outputText(hello)
 go outputText(world)

}

In theory, all that has changed is that we're now using a file operation to log each
operation to a distinct file (in this case, hello.txt and world.txt). However,
if you run this, no files are created.

In our last example, we used a sync.WaitSync struct to force the main thread to
delay execution until asynchronous tasks were complete. While this works (and
elegantly), it doesn't really explain why our asynchronous tasks fail. As mentioned
before, you can also utilize blocking code to prevent the main thread from
completing before its asynchronous tasks.

Since the Go scheduler manages context switching, each goroutine must yield control
back to the main thread to schedule all of these asynchronous tasks. There are two
ways to do this manually. One method, and probably the ideal one, is the WaitGroup
struct. Another is the Gosched() function in the runtime package.

The Gosched() function temporarily yields the processor and then returns to the
current goroutine. Consider the following code as an example:

package main
import(
 _"runtime"
 "fmt"
)

func showNumber(num int) {
 fmt.Println(num)
}

func main() {
 iterations := 10

 for i := 0; i<=iterations; i++ {

An Introduction to Concurrency in Go

[362]

 go showNumber(i)

 }
 //runtime.Gosched()
 fmt.Println("Goodbye!")

}

Run this with runtime.Gosched() commented out and the underscore before
"runtime" removed, and you'll see only Goodbye!. This is because there's no
guarantee as to how many goroutines, if any, will complete before the end of the
main() function.

As we learned earlier, you can explicitly wait for a finite set number of goroutines
before ending the execution of the application. However, Gosched() allows (in
most cases) for the same basic functionality. Remove the comment before runtime.
Gosched(), and you should get 0 through 10 printed before Goodbye!.

Just for fun, try running this code on a multicore server and modify your max
processors using runtime.GOMAXPROCS(), as follows:

func main() {

 runtime.GOMAXPROCS(2)

Also, push your runtime.Gosched() to the absolute end so that all goroutines have
a chance to run before main ends.

Got something unexpected? That's not unexpected! You may end up with a totally
jostled execution of your goroutines, as shown in the following screenshot:

Chapter 1

[363]

Although it's not entirely necessary to demonstrate how juggling your goroutines
with multiple cores can be vexing, this is one of the simplest ways to show exactly
why it's important to have communication between them (and the Go scheduler).

You can debug the parallelism of this using GOMAXPROCS > 1, enveloping your
goroutine call with a timestamp display, as follows:

 tstamp := strconv.FormatInt(time.Now().UnixNano(), 10)
 fmt.Println(num, tstamp)

Remember to import the time and strconv parent packages here.

This will also be a good place to see concurrency and compare it to parallelism in
action. First, add a one-second delay to the showNumber() function, as shown in
the following code snippet:

func showNumber(num int) {
 tstamp := strconv.FormatInt(time.Now().UnixNano(), 10)
 fmt.Println(num,tstamp)
 time.Sleep(time.Millisecond * 10)
}

Then, remove the goroutine call before the showNumber() function with
GOMAXPROCS(0), as shown in the following code snippet:

 runtime.GOMAXPROCS(0)
 iterations := 10

 for i := 0; i<=iterations; i++ {
 showNumber(i)
 }

As expected, you get 0-10 with 10-millisecond delays between them followed by
Goodbye! as an output. This is straight, serial computing.

Next, let's keep GOMAXPROCS at zero for a single thread, but restore the goroutine
as follows:

go showNumber(i)

An Introduction to Concurrency in Go

[364]

This is the same process as before, except for the fact that everything will execute
within the same general timeframe, demonstrating the concurrent nature of
execution. Now, go ahead and change your GOMAXPROCS to two and run again.
As mentioned earlier, there is only one (or possibly two) timestamp, but the order
has changed because everything is running simultaneously.

Goroutines aren't (necessarily) thread-based, but they feel like they are. When Go
code is compiled, the goroutines are multiplexed across available threads. It's this
very reason why Go's scheduler needs to know what's running, what needs to finish
before the application's life ends, and so on. If the code has two threads to work with,
that's what it will use.

Using system variables
So what if you want to know how many threads your code has made available to you?

Go has an environment variable returned from the runtime package function
GOMAXPROCS. To find out what's available, you can write a quick application similar
to the following code:

package main

import (
 "fmt"
 "runtime"
)

func listThreads() int {

 threads := runtime.GOMAXPROCS(0)
 return threads
}

func main() {
 runtime.GOMAXPROCS(2)
 fmt.Printf("%d thread(s) available to Go.", listThreads())

}

A simple Go build on this will yield the following output:

2 thread(s) available to Go.

The 0 parameter (or no parameter) delivered to GOMAXPROCS means no change is
made. You can put another number in there, but as you might imagine, it will only
return what is actually available to Go. You cannot exceed the available cores, but
you can limit your application to use less than what's available.

Chapter 1

[365]

The GOMAXPROCS() call itself returns an integer that represents the previous number
of processors available. In this case, we first set it to two and then set it to zero
(no change), returning two.

It's also worth noting that increasing GOMAXPROCS can sometimes decrease the
performance of your application.

As there are context-switching penalties in larger applications and operating
systems, increasing the number of threads used means goroutines can be shared
among more than one, and the lightweight advantage of goroutines might be
sacrificed.

If you have a multicore system, you can test this pretty easily with Go's internal
benchmarking functionality. We'll take a closer look at this functionality in Chapter 5,
Locks, Blocks, and Better Channels, and Chapter 7, Performance and Scalability.

The runtime package has a few other very useful environment variable return
functions, such as NumCPU, NumGoroutine, CPUProfile, and BlockProfile. These
aren't just handy to debug, they're also good to know how to best utilize your
resources. This package also plays well with the reflect package, which deals with
metaprogramming and program self-analysis. We'll touch on that in more detail
later in Chapter 9, Logging and Testing Concurrency in Go, and Chapter 10, Advanced
Concurrency and Best Practices.

Understanding goroutines versus
coroutines
At this point, you may be thinking, "Ah, goroutines, I know these as coroutines."
Well, yes and no.

A coroutine is a cooperative task control mechanism, but in its most simplistic sense,
a coroutine is not concurrent. While coroutines and goroutines are utilized in similar
ways, Go's focus on concurrency provides a lot more than just state control and
yields. In the examples we've seen so far, we have what we can call dumb goroutines.
Although they operate in the same time and address space, there's no real
communication between the two. If you look at coroutines in other languages, you
may find that they are often not necessarily concurrent or asynchronous, but rather
they are step-based. They yield to main() and to each other, but two coroutines
might not necessarily communicate between each other, relying on a centralized,
explicitly written data management system.

An Introduction to Concurrency in Go

[366]

The original coroutine

Coroutines were first described for COBOL by Melvin Conway.
In his paper, Design of a Separable Transition-Diagram Compiler,
he suggested that the purpose of a coroutine was to take a
program broken apart into subtasks and allow them to operate
independently, sharing only small pieces of data.

Goroutines can sometimes violate the basic tenets of Conway's
coroutines. For example, Conway suggested that there should
be only a unidirectional path of execution; in other words,
A followed by B, then C, and then D, and so on, where each
represents an application chunk in a coroutine. We know that
goroutines can be run in parallel and can execute in a seemingly
arbitrary order (at least without direction). To this point, our
goroutines have not shared any information either; they've
simply executed in a shared pattern.

Implementing channels
So far, we've dabbled in concurrent processes that are capable of doing a lot but
not effectively communicating with each other. In other words, if you have two
processes occupying the same processing time and sharing the same memory and
data, you must have a way of knowing which process is in which place as part of
a larger task.

Take, for example, an application that must loop through one paragraph of Lorem
Ipsum and capitalize each letter, then write the result to a file. Of course, we will
not really need a concurrent application to do this (and in fact, it's an endemic
function of almost any language that handles strings), but it's a quick way to
demonstrate the potential limitations of isolated goroutines. Shortly, we'll turn
this primitive example into something more practical, but for now, here's the
beginning of our capitalization example:

package main

import (
 "fmt"
 "runtime"
 "strings"
)

Chapter 1

[367]

var loremIpsum string
var finalIpsum string
var letterSentChan chan string

func deliverToFinal(letter string, finalIpsum *string) {
 *finalIpsum += letter
}

func capitalize(current *int, length int, letters []byte,
 finalIpsum *string) {
 for *current < length {
 thisLetter := strings.ToUpper(string(letters[*current]))

 deliverToFinal(thisLetter, finalIpsum)
 *current++
 }
}

func main() {

 runtime.GOMAXPROCS(2)

 index := new(int)
 *index = 0
 loremIpsum = "Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Vestibulum venenatis magna eget libero tincidunt, ac
 condimentum enim auctor. Integer mauris arcu, dignissim sit amet
 convallis vitae, ornare vel odio. Phasellus in lectus risus. Ut
 sodales vehicula ligula eu ultricies. Fusce vulputate fringilla
 eros at congue. Nulla tempor neque enim, non malesuada arcu
 laoreet quis. Aliquam eget magna metus. Vivamus lacinia
 venenatis dolor, blandit faucibus mi iaculis quis. Vestibulum
 sit amet feugiat ante, eu porta justo."

 letters := []byte(loremIpsum)
 length := len(letters)

 go capitalize(index, length, letters, &finalIpsum)

An Introduction to Concurrency in Go

[368]

 go func() {
 go capitalize(index, length, letters, &finalIpsum)
 }()

 fmt.Println(length, " characters.")
 fmt.Println(loremIpsum)
 fmt.Println(*index)
 fmt.Println(finalIpsum)

}

If we run this with some degree of parallelism here but no communication between
our goroutines, we'll end up with a jumbled mess of text, as shown in the following
screenshot:

Due to the demonstrated unpredictability of concurrent scheduling in Go, it may
take many iterations to get this exact output. In fact, you may never get the exact
output.

This won't do, obviously. So how do we best structure this application? The missing
piece here is synchronization, but we could also do with a better design pattern.

Here's another way to break this problem down into pieces. Instead of having two
processes handling the same thing in parallel, which is rife with risk, let's have one
process that takes a letter from the loremIpsum string and capitalizes it, and then
pass it onto another process to add it to our finalIpsum string.

Chapter 1

[369]

You can envision this as two people sitting at two desks, each with a stack of letters.
Person A is responsible to take a letter and capitalize it. He then passes the letter onto
person B, who then adds it to the finalIpsum stack. To do this, we'll implement a
channel in our code in an application tasked with taking text (in this case, the first
line of Abraham Lincoln's Gettysburg address) and capitalizing each letter.

Channel-based sorting at the letter
capitalization factory
Let's take the last example and do something (slightly) more purposeful by
attempting to capitalize the preamble of Abraham Lincoln's Gettysburg address
while mitigating the sometimes unpredictable effect of concurrency in Go, as
shown in the following code:

package main

import(
 "fmt"
 "sync"
 "runtime"
 "strings"
)

var initialString string
var finalString string

var stringLength int

func addToFinalStack(letterChannel chan string, wg
 *sync.WaitGroup) {
 letter := <-letterChannel
 finalString += letter
 wg.Done()
}

func capitalize(letterChannel chan string, currentLetter string,
 wg *sync.WaitGroup) {

 thisLetter := strings.ToUpper(currentLetter)

An Introduction to Concurrency in Go

[370]

 wg.Done()
 letterChannel <- thisLetter
}

func main() {

 runtime.GOMAXPROCS(2)
 var wg sync.WaitGroup

 initialString = "Four score and seven years ago our fathers
 brought forth on this continent, a new nation, conceived in
 Liberty, and dedicated to the proposition that all men are
 created equal."
 initialBytes := []byte(initialString)

 var letterChannel chan string = make(chan string)

 stringLength = len(initialBytes)

 for i := 0; i < stringLength; i++ {
 wg.Add(2)

 go capitalize(letterChannel, string(initialBytes[i]), &wg)
 go addToFinalStack(letterChannel, &wg)

 wg.Wait()
 }

 fmt.Println(finalString)

}

You'll note that we even bumped this up to a duo-core process and ended up
with the following output:

go run alpha-channel.go

FOUR SCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH ON THIS

 CONTINENT, A NEW NATION, CONCEIVED IN LIBERTY, AND DEDICATED TO THE

 PROPOSITION THAT ALL MEN ARE CREATED EQUAL.

Chapter 1

[371]

The output is just as we expected. It's worth reiterating that this example is overkill
of the most extreme kind, but we'll parlay this functionality into a usable practical
application shortly.

So what's happening here? First, we reimplemented the sync.WaitGroup struct
to allow all of our concurrent code to execute while keeping the main thread alive,
as shown in the following code snippet:

var wg sync.WaitGroup
...
for i := 0; i < stringLength; i++ {
 wg.Add(2)

 go capitalize(letterChannel, string(initialBytes[i]), &wg)
 go addToFinalStack(letterChannel, &wg)

 wg.Wait()
}

We allow each goroutine to tell the WaitGroup struct that we're done with the step.
As we have two goroutines, we queue two Add() methods to the WaitGroup struct.
Each goroutine is responsible to announce that it's done.

Next, we created our first channel. We instantiate a channel with the following line
of code:

 var letterChannel chan string = make(chan string)

This tells Go that we have a channel that will send and receive a string to various
procedures/goroutines. This is essentially the manager of all of the goroutines. It
is also responsible to send and receive data to goroutines and manage the order of
execution. As we mentioned earlier, the ability of channels to operate with internal
context switching and without reliance on multithreading permits them to operate
very quickly.

There is a built-in limit to this functionality. If you design non-concurrent or blocking
code, you will effectively remove concurrency from goroutines. We will talk more
about this shortly.

We run two separate goroutines through letterChannel: capitalize() and
addToFinalStack(). The first one simply takes a single byte from a byte array
constructed from our string and capitalizes it. It then returns the byte to the channel
as shown in the following line of code:

letterChannel <- thisLetter

An Introduction to Concurrency in Go

[372]

All communication across a channel happens in this fashion. The <- symbol
syntactically tells us that data will be sent back to (or back through) a channel. It's
never necessary to do anything with this data, but the most important thing to know
is that a channel can be blocking, at least per thread, until it receives data back. You
can test this by creating a channel and then doing absolutely nothing of value with it,
as shown in the following code snippet:

package main

func doNothing()(string) {

 return "nothing"
}

func main() {

 var channel chan string = make(chan string)
 channel <- doNothing()

}

As nothing is sent along the channel and no goroutine is instantiated, this results in
a deadlock. You can fix this easily by creating a goroutine and by bringing the
channel into the global space by creating it outside of main().

For the sake of clarity, our example here uses a local scope channel.
Keeping these global whenever possible removes a lot of cruft,
particularly if you have a lot of goroutines, as references to the
channel can clutter up your code in a hurry.

For our example as a whole, you can look at it as is shown in the following figure:

Chapter 1

[373]

Cleaning up our goroutines
You may be wondering why we need a WaitGroup struct when using channels.
After all, didn't we say that a channel gets blocked until it receives data? This is
true, but it requires one other piece of syntax.

A nil or uninitialized channel will always get blocked. We will discuss the potential
uses and pitfalls of this in Chapter 7, Performance and Scalability, and Chapter 10,
Advanced Concurrency and Best Practices.

You have the ability to dictate how a channel blocks the application based on a
second option to the make command by dictating the channel buffer.

Buffered or unbuffered channels
By default, channels are unbuffered, which means they will accept anything sent on
them if there is a channel ready to receive. It also means that every channel call will
block the execution of the application. By providing a buffer, the channel will only
block the application when many returns have been sent.

A buffered channel is synchronous. To guarantee asynchronous performance,
you'll want to experiment by providing a buffer length. We'll look at ways to
ensure our execution falls as we expect in the next chapter.

Go's channel system is based on Communicating Sequential

Processes (CSP), a formal language to design concurrent patterns
and multiprocessing. You will likely encounter CSP on its own
when people describe goroutines and channels.

Using the select statement
One of the issues with first implementing channels is that whereas goroutines were
formerly the method of simplistic and concurrent execution of code, we now have
a single-purpose channel that dictates application logic across the goroutines. Sure,
the channel is the traffic manager, but it never knows when traffic is coming, when
it's no longer coming, and when to go home, unless being explicitly told. It waits
passively for communication and can cause problems if it never receives any.

An Introduction to Concurrency in Go

[374]

Go has a select control mechanism, which works just as effectively as a switch
statement does, but on channel communication instead of variable values. A switch
statement modifies execution based on the value of a variable, and select reacts
to actions and communication across a channel. You can use this to orchestrate
and arrange the control flow of your application. The following code snippet is our
traditional switch, familiar to Go users and common among other languages:

switch {

 case 'x':

 case 'y':

}

The following code snippet represents the select statement:

select {

 case <- channelA:

 case <- channelB:

}

In a switch statement, the right-hand expression represents a value; in select,
it represents a receive operation on a channel. A select statement will block the
application until some information is sent along the channel. If nothing is sent ever,
the application deadlocks and you'll get an error to that effect.

If two receive operations are sent at the same time (or if two cases are otherwise met),
Go will evaluate them in an unpredictable fashion.

So, how might this be useful? Let's look at a modified version of the letter
capitalization application's main function:

package main

import(
 "fmt"
 "strings"
)

Chapter 1

[375]

var initialString string
var initialBytes []byte
var stringLength int
var finalString string
var lettersProcessed int
var applicationStatus bool
var wg sync.WaitGroup

func getLetters(gQ chan string) {

 for i := range initialBytes {
 gQ <- string(initialBytes[i])

 }

}

func capitalizeLetters(gQ chan string, sQ chan string) {

 for {
 if lettersProcessed >= stringLength {
 applicationStatus = false
 break
 }
 select {
 case letter := <- gQ:
 capitalLetter := strings.ToUpper(letter)
 finalString += capitalLetter
 lettersProcessed++
 }
 }
}

func main() {

 applicationStatus = true;

 getQueue := make(chan string)
 stackQueue := make(chan string)

An Introduction to Concurrency in Go

[376]

 initialString = "Four score and seven years ago our fathers
 brought forth on this continent, a new nation, conceived in
 Liberty, and dedicated to the proposition that all men are
 created equal."
 initialBytes = []byte(initialString)
 stringLength = len(initialString)
 lettersProcessed = 0

 fmt.Println("Let's start capitalizing")

 go getLetters(getQueue)
 capitalizeLetters(getQueue,stackQueue)

 close(getQueue)
 close(stackQueue)

 for {

 if applicationStatus == false {
 fmt.Println("Done")
 fmt.Println(finalString)
 break
 }

 }
}

The primary difference here is we now have a channel that listens for data across
two functions running concurrently, getLetters and capitalizeLetters.
At the bottom, you'll see a for{} loop that keeps the main active until the
applicationStatus variable is set to false. In the following code, we pass
each of these bytes as a string through the Go channel:

func getLetters(gQ chan string) {

 for i := range initialBytes {
 gQ <- string(initialBytes[i])

 }

}

Chapter 1

[377]

The getLetters function is our primary goroutine that fetches individual letters
from the byte array constructed from Lincoln's line. As the function iterates through
each byte, it sends the letter through the getQueue channel.

On the receiving end, we have capitalizeLetters that takes each letter as it's sent
across the channel, capitalizes it, and appends to our finalString variable. Let's
take a look at this:

func capitalizeLetters(gQ chan string, sQ chan string) {

 for {
 if lettersProcessed >= stringLength {
 applicationStatus = false
 break
 }
 select {
 case letter := <- gQ:
 capitalLetter := strings.ToUpper(letter)
 finalString += capitalLetter
 lettersProcessed++
 }
 }
}

It's critical that all channels are closed at some point or our application will hit a
deadlock. If we never break the for loop here, our channel will be left waiting to
receive from a concurrent process, and the program will deadlock. We manually
check to see that we've capitalized all letters and only then break the loop.

Closures and goroutines
You may have noticed the anonymous goroutine in Lorem Ipsum:

 go func() {
 go capitalize(index, length, letters, &finalIpsum)
 }()

While it isn't always ideal, there are plenty of places where inline functions work
best in creating a goroutine.

An Introduction to Concurrency in Go

[378]

The easiest way to describe this is to say that a function isn't big or important enough
to deserve a named function, but the truth is, it's more about readability. If you have
dealt with lambdas in other languages, this probably doesn't need much explanation,
but try to reserve these for quick inline functions.

In the earlier examples, the closure works largely as a wrapper to invoke a select
statement or to create anonymous goroutines that will feed the select statement.

Since functions are first-class citizens in Go, not only can you utilize inline or
anonymous functions directly in your code, but you can also pass them to and from
other functions.

Here's an example that passes a function's result as a return value, keeping the
state resolute outside of that returned function. In this, we'll return a function as
a variable and iterate initial values on the returned function. The initial argument
will accept a string that will be trimmed by word length with each successive call
of the returned function.

import(
 "fmt"
 "strings"
)

func shortenString(message string) func() string {

 return func() string {
 messageSlice := strings.Split(message," ")
 wordLength := len(messageSlice)
 if wordLength < 1 {
 return "Nothingn Left!"
 }else {
 messageSlice = messageSlice[:(wordLength-1)]
 message = strings.Join(messageSlice, " ")
 return message
 }
 }
}

func main() {

 myString := shortenString("Welcome to concurrency in Go! ...")

Chapter 1

[379]

 fmt.Println(myString())
 fmt.Println(myString())
 fmt.Println(myString())
 fmt.Println(myString())
 fmt.Println(myString())
 fmt.Println(myString())
}

Once initialized and returned, we set the message variable, and each successive run
of the returned method iterates on that value. This functionality allows us to eschew
running a function multiple times on returned values or loop unnecessarily when we
can very cleanly handle this with a closure as shown.

Building a web spider using goroutines
and channels
Let's take the largely useless capitalization application and do something practical
with it. Here, our goal is to build a rudimentary spider. In doing so, we'll accomplish
the following tasks:

• Read five URLs
• Read those URLs and save the contents to a string

• Write that string to a file when all URLs have been scanned and read

These kinds of applications are written every day, and they're the ones that benefit
the most from concurrency and non-blocking code.

It probably goes without saying, but this is not a particularly elegant web scraper.
For starters, it only knows a few start points—the five URLs that we supply it. Also,
it's neither recursive nor is it thread-safe in terms of data integrity.

That said, the following code works and demonstrates how we can use channels
and the select statements:

package main

import(
 "fmt"
 "io/ioutil"
 "net/http"
 "time"
)

An Introduction to Concurrency in Go

[380]

var applicationStatus bool
var urls []string
var urlsProcessed int
var foundUrls []string
var fullText string
var totalURLCount int
var wg sync.WaitGroup

var v1 int

First, we have our most basic global variables that we'll use for the application state.
The applicationStatus variable tells us that our spider process has begun and
urls is our slice of simple string URLs. The rest are idiomatic data storage variables
and/or application flow mechanisms. The following code snippet is our function to
read the URLs and pass them across the channel:

func readURLs(statusChannel chan int, textChannel chan string) {

 time.Sleep(time.Millisecond * 1)
 fmt.Println("Grabbing", len(urls), "urls")
 for i := 0; i < totalURLCount; i++ {

 fmt.Println("Url", i, urls[i])
 resp, _ := http.Get(urls[i])
 text, err := ioutil.ReadAll(resp.Body)

 textChannel <- string(text)

 if err != nil {
 fmt.Println("No HTML body")
 }

 statusChannel <- 0

 }

}

The readURLs function assumes statusChannel and textChannel for
communication and loops through the urls variable slice, returning the text on
textChannel and a simple ping on statusChannel. Next, let's look at the function
that will append scraped text to the full text:

func addToScrapedText(textChannel chan string, processChannel chan
 bool) {

Chapter 1

[381]

 for {
 select {
 case pC := <-processChannel:
 if pC == true {
 // hang on
 }
 if pC == false {

 close(textChannel)
 close(processChannel)
 }
 case tC := <-textChannel:
 fullText += tC

 }

 }

}

We use the addToScrapedText function to accumulate processed text and add it to a
master text string. We also close our two primary channels when we get a kill signal
on our processChannel. Let's take a look at the evaluateStatus() function:

func evaluateStatus(statusChannel chan int, textChannel chan
 string, processChannel chan bool) {

 for {
 select {
 case status := <-statusChannel:

 fmt.Print(urlsProcessed, totalURLCount)
 urlsProcessed++
 if status == 0 {

 fmt.Println("Got url")

 }
 if status == 1 {

An Introduction to Concurrency in Go

[382]

 close(statusChannel)
 }
 if urlsProcessed == totalURLCount {
 fmt.Println("Read all top-level URLs")
 processChannel <- false
 applicationStatus = false

 }
 }

 }
}

At this juncture, all that the evaluateStatus function does is determine what's
happening in the overall scope of the application. When we send a 0 (our
aforementioned ping) through this channel, we increment our urlsProcessed
variable. When we send a 1, it's a message that we can close the channel. Finally,
let's look at the main function:

func main() {
 applicationStatus = true
 statusChannel := make(chan int)
 textChannel := make(chan string)
 processChannel := make(chan bool)
 totalURLCount = 0

 urls = append(urls, "http://www.mastergoco.com/index1.html")
 urls = append(urls, "http://www.mastergoco.com/index2.html")
 urls = append(urls, "http://www.mastergoco.com/index3.html")
 urls = append(urls, "http://www.mastergoco.com/index4.html")
 urls = append(urls, "http://www.mastergoco.com/index5.html")

 fmt.Println("Starting spider")

 urlsProcessed = 0
 totalURLCount = len(urls)

 go evaluateStatus(statusChannel, textChannel, processChannel)

 go readURLs(statusChannel, textChannel)

 go addToScrapedText(textChannel, processChannel)

 for {
 if applicationStatus == false {
 fmt.Println(fullText)
 fmt.Println("Done!")

Chapter 1

[383]

 break
 }
 select {
 case sC := <-statusChannel:
 fmt.Println("Message on StatusChannel", sC)

 }
 }

}

This is a basic extrapolation of our last function, the capitalization function.
However, each piece here is responsible for some aspect of reading URLs
or appending its respective content to a larger variable.

In the following code, we created a sort of master loop that lets you know
when a URL has been grabbed on statusChannel:

 for {
 if applicationStatus == false {
 fmt.Println(fullText)
 fmt.Println("Done!")
 break
 }
 select {
 case sC := <- statusChannel:
 fmt.Println("Message on StatusChannel",sC)

 }
 }

Often, you'll see this wrapped in go func() as part of a WaitGroup struct,
or not wrapped at all (depending on the type of feedback you require).

The control flow, in this case, is evaluateStatus, which works as a channel
monitor that lets us know when data crosses each channel and ends execution
when it's complete. The readURLs function immediately begins reading our URLs,
extracting the underlying data and passing it on to textChannel. At this point,
our addToScrapedText function takes each sent HTML file and appends it to the
fullText variable. When evaluateStatus determines that all URLs have been
read, it sets applicationStatus to false. At this point, the infinite loop at the
bottom of main() quits.

As mentioned, a crawler cannot come more rudimentary than this, but seeing
a real-world example of how goroutines can work in congress will set us up for
safer and more complex examples in the coming chapters.

An Introduction to Concurrency in Go

[384]

Summary
In this chapter, we learned how to go from simple goroutines and instantiating
channels to extending the basic functionality of goroutines and allowing cross-channel,
bidirectional communication within concurrent processes. We looked at new ways to
create blocking code to prevent our main process from ending before our goroutines.
Finally, we learned about using select statements to develop reactive channels that are
silent unless data is sent along a channel.

In our rudimentary web spider example, we employed these concepts together to
create a safe, lightweight process that could extract all links from an array of URLs,
grab the content via HTTP, and store the resulting response.

In the next chapter, we'll go beneath the surface to see how Go's internal scheduling
manages concurrency and start using channels to really utilize the power, thrift,
and speed of concurrency in Go.

Understanding the
Concurrency Model

Now that we have a sense of what Go is capable of and how to test drive some
concurrency models, we need to look deeper into Go's most powerful features
to understand how to best utilize various concurrent tools and models.

We played with some general and basic goroutines to see how we can run concurrent
processes, but we need to see how Go manages scheduling in concurrency before we
get to communication between channels.

Understanding the working of goroutines
By this point, you should be well-versed in what goroutines do, but it's worth
understanding how they work internally in Go. Go handles concurrency with
cooperative scheduling, which, as we mentioned in the previous chapter,
is heavily dependent on some form of blocking code.

The most common alternative to cooperative scheduling is preemptive scheduling,
wherein each subprocess is granted a space of time to complete and then its
execution is paused for the next.

Without some form of yielding back to the main thread, execution runs into
issues. This is because Go works with a single process, working as a conductor
for an orchestra of goroutines. Each subprocess is responsible for announcing its own
completion. As compared to other concurrency models, some of which allow for
direct, named communication, this might pose a sticking point, particularly if you
haven't worked with channels before.

Understanding the Concurrency Model

[386]

You can probably see a potential for deadlocks given these facts. In this chapter,
we'll discuss both the ways Go's design allows us to manage this and the methods
to mitigate issues in applications wherein it fails.

Synchronous versus asynchronous
goroutines
Understanding the concurrency model is sometimes an early pain point for
programmers—not just for Go, but across languages that use different models as
well. Part of this is due to operating in a black box (depending on your terminal
preferences); a developer has to rely on logging or errors with data consistency to
discern asynchronous and/or multiple core timing issues.

As the concepts of synchronous and asynchronous or concurrent and nonconcurrent
tasks can sometimes be a bit abstract, we will have a bit of fun here in an effort to
demonstrate all the concepts we've covered so far in a visual way.

There are, of course, a myriad of ways to address feedback and logging. You can
write to files in console/terminal/stdout…, most of which are inherently linear
in nature. There is no concise way to represent concurrency in a logfile. Given this
and the fact that we are dealing with an emerging language with a focus on servers,
let's take a different angle.

Instead of simply outputting to a file, we'll create a visual feedback that shows
when a process starts and stops on a timeline.

Designing the web server plan
To show how approaches differ, we'll create a simple web server that loops through
three trivial tasks and outputs their execution marks on an X-second timeline. We'll
do this using a third-party library called svgo and the built-in http package for Go.

To start, let's grab the svgo library via go get:

go get github.com/ajstarks/svgo

Chapter 2

[387]

If you try to install a package via the go get command and get an error about
$GOPATH not being set, you need to set that environment variable. GOPATH is where
Go will look to find installed import packages.

To set this in Linux (or Mac), type the following in bash (or Terminal):

export GOPATH=/usr/yourpathhere

This path is up to you, so pick a place where you're most comfortable storing your
Go packages.

To ensure it's globally accessible, install it where your Go binary is installed.

On Windows, you can right-click on My Computer and navigate to Properties |
Advanced system settings | Environment Variables…, as shown in the following
screenshot:

Here, you'll need to create a new variable called GOPATH. As with the Linux and Mac
instructions, this can either be your Go language root directory or someplace else
entirely. In this example, we've used C:\Go, as shown in the following screenshot:

Note that after taking these steps, you may need to reopen the
Terminal, Command Prompt, or bash sessions before the value is read
as valid. On *nix systems, you can log in and log out to initiate this.

Understanding the Concurrency Model

[388]

Now that we have installed gosvg, we can visually demonstrate how the
asynchronous and synchronous processes will look side-by-side as well as
with multiple processors.

More libraries

Why SVG? We didn't need to use SVG and a web server, of course,
and if you'd rather see an image generated and open that separately,
there are other alternatives to do so. There are some additional
graphical libraries available for Go, which are as follows:

• draw2d: As the name suggests, this is a two-dimensional
drawing library for doing vector-style and raster graphics,
which can be found at https://code.google.com/p/
draw2d/.

• graphics-go: This project involves some members of the Go
team itself. It's fairly limited in scope. You can find more
about it at https://code.google.com/p/graphics-
go/.

• go:ngine: This is one of the few OpenGL implementations
for Go. It can be overkill for this project, but if you find
yourself in need of a three-dimensional graphics library,
start at http://go-ngine.com/.

• Go-SDL: Another possible overkill method, this is an
implementation of the wonderful multimedia library SDL.
You can find more about it at https://github.com/
banthar/Go-SDL.

Robust GUI toolkits are also available, but as they were designed as
systems languages, it isn't really Go's forte.

Visualizing concurrency
Our first attempt at visualizing concurrency will have two simple goroutines
running the drawPoint function in a loop with 100 iterations. After running this, you
can visit localhost:1900/visualize and see what concurrent goroutines look like.

If you run into problems with port 1900 (either with your firewall or through a port
conflict), feel free to change the value on line 99 in the main() function. You may
also need to access it through 127.0.0.1 if your system doesn't resolve localhost.

https://code.google.com/p/draw2d/
https://code.google.com/p/draw2d/
https://code.google.com/p/graphics-go/
https://code.google.com/p/graphics-go/
http://go-ngine.com/
https://github.com/banthar/Go-SDL
https://github.com/banthar/Go-SDL

Chapter 2

[389]

Note that we're not using WaitGroup or anything to manage the end of the
goroutines because all we want to see is a visual representation of our code
running. You can also handle this with a specific blocking code or runtime.
Gosched(), as shown:

package main

import (
 "github.com/ajstarks/svgo"
 "net/http"
 "fmt"
 "log"
 "time"
 "strconv"
)

var width = 800
var height = 400
var startTime = time.Now().UnixNano()

func drawPoint(osvg *svg.SVG, pnt int, process int) {
 sec := time.Now().UnixNano()
 diff := (int64(sec) - int64(startTime)) / 100000

 pointLocation := 0

 pointLocation = int(diff)
 pointLocationV := 0
 color := "#000000"
 switch {
 case process == 1:
 pointLocationV = 60
 color = "#cc6666"
 default:
 pointLocationV = 180
 color = "#66cc66"

 }

Understanding the Concurrency Model

[390]

 osvg.Rect(pointLocation,pointLocationV,3,5,"fill:"+color+";stroke:
 none;")
 time.Sleep(150 * time.Millisecond)
}

func visualize(rw http.ResponseWriter, req *http.Request) {
 startTime = time.Now().UnixNano()
 fmt.Println("Request to /visualize")
 rw.Header().Set("Content-Type", "image/svg+xml")

 outputSVG := svg.New(rw)

 outputSVG.Start(width, height)
 outputSVG.Rect(10, 10, 780, 100, "fill:#eeeeee;stroke:none")
 outputSVG.Text(20, 30, "Process 1 Timeline", "text-
 anchor:start;font-size:12px;fill:#333333")
 outputSVG.Rect(10, 130, 780, 100, "fill:#eeeeee;stroke:none")
 outputSVG.Text(20, 150, "Process 2 Timeline", "text-
 anchor:start;font-size:12px;fill:#333333")

 for i:= 0; i < 801; i++ {
 timeText := strconv.FormatInt(int64(i),10)
 if i % 100 == 0 {
 outputSVG.Text(i,380,timeText,"text-anchor:middle;font-
 size:10px;fill:#000000")
 }else if i % 4 == 0 {
 outputSVG.Circle(i,377,1,"fill:#cccccc;stroke:none")
 }

 if i % 10 == 0 {
 outputSVG.Rect(i,0,1,400,"fill:#dddddd")
 }
 if i % 50 == 0 {
 outputSVG.Rect(i,0,1,400,"fill:#cccccc")
 }

 }

 for i := 0; i < 100; i++ {
 go drawPoint(outputSVG,i,1)
 drawPoint(outputSVG,i,2)
 }

Chapter 2

[391]

 outputSVG.Text(650, 360, "Run without goroutines", "text-
 anchor:start;font-size:12px;fill:#333333")
 outputSVG.End()
}

func main() {
 http.Handle("/visualize", http.HandlerFunc(visualize))

 err := http.ListenAndServe(":1900", nil)
 if err != nil {
 log.Fatal("ListenAndServe:", err)
 }

}

When you go to localhost:1900/visualize, you should see something like the
following screenshot:

As you can see, everything is definitely running concurrently—our briefly sleeping
goroutines hit on the timeline at the same moment. By simply forcing the goroutines
to run in a serial fashion, you'll see a predictable change in this behavior. Remove the
goroutine call on line 73, as shown:

 drawPoint(outputSVG,i,1)
 drawPoint(outputSVG,i,2)

Understanding the Concurrency Model

[392]

To keep our demonstration clean, change line 77 to indicate that there are no
goroutines as follows:

outputSVG.Text(650, 360, "Run with goroutines", "text-
 anchor:start;font-size:12px;fill:#333333")

If we stop our server and restart with go run, we should see something like the
following screenshot:

Now, each process waits for the previous process to complete before beginning.
You can actually add this sort of feedback to any application if you run into
problems with syncing data, channels, and processes.

If we so desired, we could add some channels and show communication across
them as represented. Later, we will design a self-diagnosing server that gives
real-time analytics about the state and status of the server, requests, and channels.

If we turn the goroutine back on and increase our maximum available processors,
we'll see something similar to the following screenshot, which is not exactly the
same as our first screenshot:

Chapter 2

[393]

Your mileage will obviously vary depending on server speeds, the number of
processors, and so on. But in this case, our change here resulted in a faster total
execution time for our two processes with intermittent sleeps. This should come as
no surprise, given we have essentially twice the bandwidth available to complete
the two tasks.

RSS in action
Let's take the concept of Rich Site Summary / Really Simple Syndication (RSS)
and inject some real potential delays to identify where we can best utilize goroutines
in an effort to speed up execution and prevent blocking code. One common way
to bring real-life, potentially blocking application elements into your code is to use
something involving network transmission.

This is also a great place to look at timeouts and close channels to ensure that our
program doesn't fall apart if something takes too long.

To accomplish both these requirements, we'll build a very basic RSS reader that
will simply parse through and grab the contents of five RSS feeds. We'll read each
of these as well as the provided links on each, and then we'll generate an SVG report
of the process available via HTTP.

Understanding the Concurrency Model

[394]

This is obviously an application best suited for a background
task—you'll notice that each request can take a long time.
However, for graphically representing a real-life process working
with and without concurrency, it will work, especially with a
single end user. We'll also log our steps to standard output, so be
sure to take a look at your console as well.

For this example, we'll again use a third-party library, although it's entirely possible
to parse RSS using Go's built-in XML package. Given the open-ended nature of XML
and the specificity of RSS, we'll bypass them and use go-pkg-rss by Jim Teeuwen,
available via the following go get command:

go get github.com/jteeuwen/go-pkg-rss

While this package is specifically intended as a replacement for the Google
Reader product, which means that it does interval-based polling for new content
within a set collection of sources, it also has a fairly neat and tidy RSS reading
implementation. There are a few other RSS parsing libraries out there, though,
so feel free to experiment.

An RSS reader with self diagnostics
Let's take a look at what we've learned so far, and use it to fetch and parse a set
of RSS feeds concurrently while returning some visual feedback about the process
in an internal web browser, as shown in the following code:

package main

import(
 "github.com/ajstarks/svgo"
 rss "github.com/jteeuwen/go-pkg-rss"
 "net/http"
 "log"
 "fmt"
 "strconv"
 "time"
 "os"
 "sync"
 "runtime"
)

type Feed struct {
 url string
 status int
 itemCount int

Chapter 2

[395]

 complete bool
 itemsComplete bool
 index int
}

Here is the basis of our feed's overall structure: we have a url variable that
represents the feed's location, a status variable to indicate whether it's started, and
a complete Boolean variable to indicate it's finished. The next piece is an individual
FeedItem; here's how it can be laid out:

type FeedItem struct {
 feedIndex int
 complete bool
 url string
}

Meanwhile, we will not do much with individual items; at this point, we simply
maintain a URL, whether it's complete or a FeedItem struct's index.

var feeds []Feed
var height int
var width int
var colors []string
var startTime int64
var timeout int
var feedSpace int

var wg sync.WaitGroup

func grabFeed(feed *Feed, feedChan chan bool, osvg *svg.SVG) {

 startGrab := time.Now().Unix()
 startGrabSeconds := startGrab - startTime

 fmt.Println("Grabbing feed",feed.url,"
 at",startGrabSeconds,"second mark")

 if feed.status == 0 {
 fmt.Println("Feed not yet read")
 feed.status = 1

 startX := int(startGrabSeconds * 33);
 startY := feedSpace * (feed.index)

 fmt.Println(startY)
 wg.Add(1)

Understanding the Concurrency Model

[396]

 rssFeed := rss.New(timeout, true, channelHandler,
 itemsHandler);

 if err := rssFeed.Fetch(feed.url, nil); err != nil {
 fmt.Fprintf(os.Stderr, "[e] %s: %s", feed.url, err)
 return
 } else {

 endSec := time.Now().Unix()
 endX := int((endSec - startGrab))
 if endX == 0 {
 endX = 1
 }
 fmt.Println("Read feed in",endX,"seconds")
 osvg.Rect(startX,startY,endX,feedSpace,"fill:
 #000000;opacity:.4")
 wg.Wait()

 endGrab := time.Now().Unix()
 endGrabSeconds := endGrab - startTime
 feedEndX := int(endGrabSeconds * 33);

 osvg.Rect(feedEndX,startY,1,feedSpace,"fill:#ff0000;opacity:.9")

 feedChan <- true
 }

 }else if feed.status == 1{
 fmt.Println("Feed already in progress")
 }

}

The grabFeed() method directly controls the flow of grabbing any individual feed.
It also bypasses potential concurrent duplication through the WaitGroup struct.
Next, let's check out the itemsHandler function:

func channelHandler(feed *rss.Feed, newchannels []*rss.Channel) {

}

func itemsHandler(feed *rss.Feed, ch *rss.Channel, newitems
 []*rss.Item) {

Chapter 2

[397]

 fmt.Println("Found",len(newitems),"items in",feed.Url)

 for i := range newitems {
 url := *newitems[i].Guid
 fmt.Println(url)

 }

 wg.Done()
}

The itemsHandler function doesn't do much at this point, other than instantiating a
new FeedItem struct—in the real world, we'd take this as the next step and retrieve
the values of the items themselves. Our next step is to look at the process that grabs
individual feeds and marks the time taken for each one, as follows:

func getRSS(rw http.ResponseWriter, req *http.Request) {
 startTime = time.Now().Unix()
 rw.Header().Set("Content-Type", "image/svg+xml")
 outputSVG := svg.New(rw)
 outputSVG.Start(width, height)

 feedSpace = (height-20) / len(feeds)

 for i:= 0; i < 30000; i++ {
 timeText := strconv.FormatInt(int64(i/10),10)
 if i % 1000 == 0 {
 outputSVG.Text(i/30,390,timeText,"text-anchor:middle;font-
 size:10px;fill:#000000")
 }else if i % 4 == 0 {
 outputSVG.Circle(i,377,1,"fill:#cccccc;stroke:none")
 }

 if i % 10 == 0 {
 outputSVG.Rect(i,0,1,400,"fill:#dddddd")
 }
 if i % 50 == 0 {
 outputSVG.Rect(i,0,1,400,"fill:#cccccc")
 }

 }

Understanding the Concurrency Model

[398]

 feedChan := make(chan bool, 3)

 for i := range feeds {

 outputSVG.Rect(0, (i*feedSpace), width, feedSpace,
 "fill:"+colors[i]+";stroke:none;")
 feeds[i].status = 0
 go grabFeed(&feeds[i], feedChan, outputSVG)
 <- feedChan
 }

 outputSVG.End()
}

Here, we retrieve the RSS feed and mark points on our SVG with the status of our
retrieval and read events. Our main() function will primarily handle the setup of
feeds, as follows:

func main() {

 runtime.GOMAXPROCS(2)

 timeout = 1000

 width = 1000
 height = 400

 feeds = append(feeds, Feed{index: 0, url:
 "https://groups.google.com/forum/feed/golang-
 nuts/msgs/rss_v2_0.xml?num=50", status: 0, itemCount: 0,
 complete: false, itemsComplete: false})
 feeds = append(feeds, Feed{index: 1, url:
 "http://www.reddit.com/r/golang/.rss", status: 0, itemCount:
 0, complete: false, itemsComplete: false})
 feeds = append(feeds, Feed{index: 2, url:
 "https://groups.google.com/forum/feed/golang-
 dev/msgs/rss_v2_0.xml?num=50", status: 0, itemCount: 0,
 complete: false, itemsComplete: false })

Here is our slice of FeedItem structs:

 colors = append(colors,"#ff9999")
 colors = append(colors,"#99ff99")
 colors = append(colors,"#9999ff")

Chapter 2

[399]

In the print version, these colors may not be particularly useful, but testing it on your
system will allow you to delineate between events inside the application. We'll need
an HTTP route to act as an endpoint; here's how we'll set that up:

 http.Handle("/getrss", http.HandlerFunc(getRSS))
 err := http.ListenAndServe(":1900", nil)
 if err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

When run, you should see the start and duration of the RSS feed retrieval and
parsing, followed by a thin line indicating that the feed has been parsed and all
items read.

Each of the three blocks expresses the full time to process each feed, demonstrating
the nonconcurrent execution of this version, as shown in the following screenshot:

Note that we don't do anything interesting with the feed items, we simply read the
URL. The next step will be to grab the items via HTTP, as shown in the following
code snippet:

 url := *newitems[i].Guid
 response, _, err := http.Get(url)
 if err != nil {

 }

Understanding the Concurrency Model

[400]

With this example, we stop at every step to provide some sort of feedback to the SVG
that some event has occurred. Our channel here is buffered and we explicitly state
that it must receive three Boolean messages before it can finish blocking, as shown in
the following code snippet:

 feedChan := make(chan bool, 3)

 for i := range feeds {

 outputSVG.Rect(0, (i*feedSpace), width, feedSpace,
 "fill:"+colors[i]+";stroke:none;")
 feeds[i].status = 0
 go grabFeed(&feeds[i], feedChan, outputSVG)
 <- feedChan
 }

 outputSVG.End()

By giving 3 as the second parameter in our channel invocation, we tell Go that this
channel must receive three responses before continuing the application. You should
use caution with this, though, particularly in setting things explicitly as we have
done here. What if one of the goroutines never sent a Boolean across the channel?
The application would crash.

Note that we also increased our timeline here, from 800ms to 60 seconds, to allow for
retrieval of all feeds. Keep in mind that if our script exceeds 60 seconds, all actions
beyond that time will occur outside of this visual timeline representation.

By implementing the WaitGroup struct while reading feeds, we impose some
serialization and synchronization to the application. The second feed will not start
until the first feed has completed retrieving all URLs. You can probably see where
this might introduce some errors going forward:

 wg.Add(1)
 rssFeed := rss.New(timeout, true, channelHandler,
 itemsHandler);
 …
 wg.Wait()

This tells our application to yield until we set the Done() command from the
itemsHandler() function.

So what happens if we remove WaitGroups entirely? Given that the calls to grab
the feed items are asynchronous, we may not see the status of all of our RSS calls;
instead, we might see just one or two feeds or no feed at all.

Chapter 2

[401]

Imposing a timeout
So what happens if nothing runs within our timeline? As you might expect, we'll get
three bars with no activity in them. It's important to consider how to kill processes
that aren't doing what we expect them to. In this case, the best method is a timeout.
The Get method in the http package does not natively support a timeout, so you'll
have to roll your own rssFeed.Fetch (and underlying http.Get()) implementation
if you want to prevent these requests from going into perpetuity and killing your
application. We'll dig into this a bit later; in the mean time, take a look at the
Transport struct, available in the core http package at http://golang.org/pkg/
net/http/#Transport.

A little bit about CSP
We touched on CSP briefly in the previous chapter, but it's worth exploring a bit
more in the context of how Go's concurrency model operates.

CSP evolved in the late 1970s and early 1980s through the work of Sir Tony Hoare
and is still in the midst of evolution today. Go's implementation is heavily based on
CSP, but it neither entirely follows all the rules and conventions set forth in its initial
description nor does it follow its evolution since.

One of the ways in which Go differs from true CSP is that as it is defined, a process
in Go will only continue so long as there exists a channel ready to receive from that
process. We've already encountered a couple of deadlocks that were the result of a
listening channel with nothing to receive. The inverse is also true; a deadlock can
result from a channel continuing without sending anything, leaving its receiving
channel hanging indefinitely.

This behavior is endemic to Go's scheduler, and it should really only pose problems
when you're working with channels initially.

Hoare's original work is now available (mostly) free from a number of
institutions. You can read, cite, copy, and redistribute it free of charge
(but not for commercial gain). If you want to read the whole thing,
you can grab it at http://www.cs.ucf.edu/courses/cop4020/
sum2009/CSP-hoare.pdf.

The complete book itself is also available at http://www.
usingcsp.com/cspbook.pdf.

As of this publishing, Hoare is working as a researcher at Microsoft.

http://golang.org/pkg/net/http/#Transport
http://golang.org/pkg/net/http/#Transport
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf

Understanding the Concurrency Model

[402]

As per the designers of the application itself, the goal of Go's implementation of
CSP concepts was to focus on simplicity—you don't have to worry about threads
or mutexes unless you really want to or need to.

The dining philosophers problem
You may have heard of the dining philosophers problem, which describes the
kind of problems concurrent programming was designed to solve. The dining
philosophers problem was formulated by the great Edsger Dijkstra. The crux of
the problem is a matter of resources—five philosophers sit at a table with five plates
of food and five forks, and each can only eat when he has two forks (one to his left
and another to his right). A visual representation is shown as follows:

With a single fork on either side, any given philosopher can only eat when he has a
fork in both hands and must put both back on the table when complete. The idea is
to coordinate the meal such that all of the philosophers can eat in perpetuity without
any starving—two philosophers must be able to eat at any moment and there can
be no deadlocks. They're philosophers because when they're not eating, they're
thinking. In a programming analog, you can consider this as either a waiting
channel or a sleeping process.

Chapter 2

[403]

Go handles this problem pretty succinctly with goroutines. Given five philosophers
(in an individual struct, for example), you can have all five alternate between
thinking, receiving a notification when the forks are down, grabbing forks, dining
with forks, and placing the forks down.

Receiving the notification that the forks are down acts as the listening channel,
dining and thinking are separate processes, and placing the forks down operates
as an announcement along the channel.

We can visualize this concept in the following pseudo Go code:

type Philosopher struct {
 leftHand bool
 rightHand bool
 status int
 name string
}

func main() {

 philosophers := [...]Philospher{"Kant", "Turing",
 "Descartes","Kierkegaard","Wittgenstein"}

 evaluate := func() {
 for {

 select {
 case <- forkUp:
 // philosophers think!
 case <- forkDown:
 // next philospher eats in round robin
 }

 }

 }

}

This example has been left very abstract and nonoperational so that you have a
chance to attempt to solve it. We will build a functional solution for this in the
next chapter, so make sure to compare your solution later on.

There are hundreds of ways to handle this problem, and we'll look at a couple
of alternatives and how they can or cannot play nicely within Go itself.

Understanding the Concurrency Model

[404]

Go and the actor model
The actor model is something that you'll likely be very familiar with if you're an
Erlang or Scala user. The difference between CSP and the actor model is negligible
but important. With CSP, messages from one channel can only be completely sent if
another channel is listening and ready for them. The actor model does not necessarily
require a ready channel for another to send. In fact, it stresses direct communication
rather than relying on the conduit of a channel.

Both systems can be nondeterministic, which we've already seen demonstrated
in Go/CSP in our earlier examples. CSP and goroutines are anonymous and
transmission is specified by the channel rather than the source and destination.
An easy way to visualize this in pseudocode in the actor model is as follows:

a = new Actor
b = new Actor
a -> b("message")

In CSP, it is as follows:

a = new Actor
b = new Actor
c = new Channel
a -> c("sending something")
b <- c("receiving something")

Both serve the same fundamental functionality but through slightly different ways.

Object orientation
As you work with Go, you will notice that there is a core characteristic that's often
espoused, which users may feel is wrong. You'll hear that Go is not an object-
oriented language, and yet you have structs that can have methods, those methods
in turn can have methods, and you can have communication to and from any
instantiation of it. Channels themselves may feel like primitive object interfaces,
capable of setting and receiving values from a given data element.

The message passing implementation of Go is, indeed, a core concept of object-
oriented programming. Structs with interfaces operate essentially as classes, and
Go supports polymorphism (although not parametric polymorphism). Yet, many
who work with the language (and who have designed it) stress that it is not object
oriented. So what gives?

Chapter 2

[405]

Much of this definition ultimately depends on who you ask. Some believe that Go
lacks some of the requisite characteristics of object-oriented programming, and
others believe it satisfies them. The most important thing to keep in mind is that
you're not limited by Go's design. Anything that you can do in a true object-oriented
language can be handled without much struggle within Go.

Demonstrating simple polymorphism in Go
As mentioned before, if you expect polymorphism to resemble object-oriented
programming, this may not represent a syntactical analogue. However, the use
of interfaces as an abstraction of class-bound polymorphic methods is just as
clean, and in many ways, more explicit and readable. Let's look at a very simple
implementation of polymorphism in Go:

type intInterface struct {

}

type stringInterface struct {

}

func (number intInterface) Add (a int, b int) int {
 return a + b;
}

func (text stringInterface) Add (a string, b string) string {
 return a + b
}

func main() {

 number := new (intInterface)
 fmt.Println(number.Add(1,2))

 text := new (stringInterface)
 fmt.Println(text.Add("this old man"," he played one"))

}

Understanding the Concurrency Model

[406]

As you can see, we use an interface (or its Go analog) to disambiguate methods.
You cannot have generics the same way you might in Java, for example. This,
however, boils down to a mere matter of style in the end. You should neither
find this daunting nor will it impose any cruft or ambiguity into your code.

Using concurrency
It hasn't yet been mentioned, but we should be aware that concurrency is not always
necessary and beneficial for an application. There exists no real rule of thumb, and
it's rare that concurrency will introduce problems to an application; but if you really
think about applications as a whole, not all will require concurrent processes.

So what works best? As we've seen in the previous example, anything that
introduces potential latency or I/O blocking, such as network calls, disk reads,
third-party applications (primarily databases), and distributed systems, can benefit
from concurrency. If you have the ability to do work while other work is being done
on an undetermined timeline, concurrency strategies can improve the speed and
reliability of an application.

The lesson here is you should never feel compelled to shoehorn concurrency into an
application that doesn't really require it. Programs with inter-process dependencies
(or lack of blocking and external dependencies) may see little or no benefit from
implementing concurrency structures.

Managing threads
So far, you've probably noticed that thread management is not a matter that requires
the programmer's utmost concern in Go. This is by design. Goroutines aren't tied to
a specific thread or threads that are handled by Go's internal scheduler. However,
this doesn't mean that you neither have access to the threads nor the ability to
control what individual threads do. As you know, you can already tell Go how
many threads you have (or wish to use) by using GOMAXPROCS. We also know that
using this can introduce asynchronous issues as it pertains to data consistency and
execution order.

At this point, the main issue with threads is not how they're accessed or utilized,
but how to properly control execution flow to guarantee that your data is predictable
and synchronized.

Chapter 2

[407]

Using sync and mutexes to lock data
One issue that you may have run into with the preceding examples is the notion
of atomic data. After all, if you deal with variables and structures across multiple
goroutines, and possibly processors, how do you ensure that your data is safe
across them? If these processes run in parallel, coordinating data access can
sometimes be problematic.

Go provides a bevy of tools in its sync package to handle these types of problems.
How elegantly you approach them depends heavily on your approach, but you
should never have to reinvent the wheel in this realm.

We've already looked at the WaitGroup struct, which provides a simple method to
tell the main thread to pause until the next notification that says a waiting process
has done what it's supposed to do.

Go also provides a direct abstraction to a mutex. It may seem contradictory to
call something a direct abstraction, but the truth is you don't have access to Go's
scheduler, only an approximation of a true mutex.

We can use a mutex to lock and unlock data and guarantee atomicity in our data.
In many cases, this may not be necessary; there are a great many times where the
order of execution does not impact the consistency of the underlying data. However,
when we do have concerns about this value, it's helpful to be able to invoke a lock
explicitly. Let's take the following example:

package main

import(
 "fmt"
 "sync"
)

func main() {
 current := 0
 iterations := 100
 wg := new (sync.WaitGroup);

 for i := 0; i < iterations; i++ {
 wg.Add(1)

Understanding the Concurrency Model

[408]

 go func() {
 current++
 fmt.Println(current)
 wg.Done()
 }()
 wg.Wait()
 }

}

Unsurprisingly, this provides a list of 0 to 99 in your terminal. What happens if
we change WaitGroup to know there will be 100 instances of Done() called, and
put our blocking code at the end of the loop?

To demonstrate a simple proposition of why and how to best utilize waitGroups
as a mechanism for concurrency control, let's do a simple number iterator and look
at the results. We will also check out how a directly called mutex can augment this
functionality, as follows:

func main() {
 runtime.GOMAXPROCS(2)
 current := 0
 iterations := 100
 wg := new (sync.WaitGroup);
 wg.Add(iterations)
 for i := 0; i < iterations; i++ {
 go func() {
 current++
 fmt.Println(current)
 wg.Done()
 }()

 }
 wg.Wait()

}

Now, our order of execution is suddenly off. You may see something like the
following output:

95

96

98

Chapter 2

[409]

99

100

3

4

We have the ability to lock and unlock the current command at will; however, this
won't change the underlying execution order, it will only prevent reading and/or
writing to and from a variable until an unlock is called.

Let's try to lock down the variable we're outputting using mutex, as follows:

 for i := 0; i < iterations; i++ {
 go func() {
 mutex.Lock()
 fmt.Println(current)
 current++
 mutex.Unlock()
 fmt.Println(current)
 wg.Done()
 }()

 }

You can probably see how a mutex control mechanism can be important to enforce
data integrity in your concurrent application. We'll look more at mutexes and
locking and unlocking processes in Chapter 4, Data Integrity in an Application.

Summary
In this chapter, we've tried to remove some of the ambiguity of Go's concurrency
patterns and models by giving visual, real-time feedback to a few applications,
including a rudimentary RSS aggregator and reader. We examined the dining
philosophers problem and looked at ways you can use the Go concurrency topics
to solve the problem neatly and succinctly. We compared the way CSP and actor
models are similar and ways in which they differ.

In the next chapter, we will take these concepts and apply them to the process
of developing a strategy to maintain concurrency in an application.

Developing a Concurrent
Strategy

In the previous chapter, we looked at the concurrency model that Go relies on
to make your life as a developer easier. We also saw a visual representation of
parallelism and concurrency. These help us to understand the differences and
overlaps between serialized, concurrent, and parallel applications.

However, the most critical part of any concurrent application is not the concurrency
itself but communication and coordination between the concurrent processes.

In this chapter, we'll look at creating a plan for an application that heavily factors
communication between processes and how a lack of coordination can lead to
significant issues with consistency. We'll look at ways we can visualize our concurrent
strategy on paper so that we're better equipped to anticipate potential problems.

Applying efficiency in complex
concurrency
When designing applications, we often eschew complex patterns for simplicity,
with the assumption that simple systems are often the fastest and most efficient.
It seems only logical that a machine with fewer moving parts will be more efficient
than one with more.

The paradox here, as it applies to concurrency, is that adding redundancy and
significantly more movable parts often leads to a more efficient application. If we
consider concurrent schemes, such as goroutines, to be infinitely scalable resources,
employing more should always result in some form of efficiency benefit. This applies
not just to parallel concurrency but to single core concurrency as well.

Developing a Concurrent Strategy

[412]

If you find yourself designing an application that utilizes concurrency at the cost of
efficiency, speed, and consistency, you should ask yourself whether the application
truly needs concurrency at all.

When we talk about efficiency, we aren't just dealing with speed. Efficiency should
also weigh the CPU and memory overhead and the cost to ensure data consistency.

For example, should an application marginally benefit from concurrency but
require an elaborate and/or computationally expensive process to guarantee data
consistency, it's worth re-evaluating the strategy entirely.

Keeping your data reliable and up to date should be paramount; while having
unreliable data may not always have a devastating effect, it will certainly
compromise the reliability of your application.

Identifying race conditions with race
detection
If you've ever written an application that depends on the exact timing and
sequencing of functions or methods to create a desired output, you're already
quite familiar with race conditions.

These are particularly common anytime you deal with concurrency and far more
so when parallelism is introduced. We've actually encountered a few of them in
the first few chapters, specifically with our incrementing number function.

The most commonly used educational example of race conditions is that of a bank
account. Assume that you start with $1,000 and attempt 200 $5 transactions. Each
transaction requires a query on the current balance of the account. If it passes, the
transaction is approved and $5 is removed from the balance. If it fails, the transaction
is declined and the balance remains unchanged.

This is all well and good until the query happens at some point during a concurrent
transaction (in most cases in another thread). If, for example, a thread asks "Do you
have $5 in your account?" as another thread is in the process of removing $5 but has
not yet completed, you can end up with an approved transaction that should have
been declined.

Tracking down the cause of race conditions can be—to say the least—a gigantic
headache. With Version 1.1 of Go, Google introduced a race detection tool that
can help you locate potential issues.

Chapter 3

[413]

Let's take a very basic example of a multithreaded application with race conditions
and see how Golang can help us debug it. In this example, we'll build a bank account
that starts with $1,000 and runs 100 transactions for a random amount between $0
and $25.

Each transaction will be run in its own goroutine, as follows:

package main

import(
 "fmt"
 "time"
 "sync"
 "runtime"
 "math/rand"
)

var balance int
var transactionNo int

func main() {
 rand.Seed(time.Now().Unix())
 runtime.GOMAXPROCS(2)
 var wg sync.WaitGroup

 tranChan := make(chan bool)

 balance = 1000
 transactionNo = 0
 fmt.Println("Starting balance: $",balance)

 wg.Add(1)
 for i := 0; i < 100; i++ {
 go func(ii int, trChan chan(bool)) {
 transactionAmount := rand.Intn(25)
 transaction(transactionAmount)
 if (ii == 99) {
 trChan <- true
 }

 }(i,tranChan)
 }

Developing a Concurrent Strategy

[414]

 go transaction(0)
 select {

 case <- tranChan:
 fmt.Println("Transactions finished")
 wg.Done()

 }

 wg.Wait()
 close(tranChan)
 fmt.Println("Final balance: $",balance)
}

func transaction(amt int) (bool) {

 approved := false
 if (balance-amt) < 0 {
 approved = false
 }else {
 approved = true
 balance = balance - amt
 }

 approvedText := "declined"
 if (approved == true) {
 approvedText = "approved"
 }else {

 }
 transactionNo = transactionNo + 1
 fmt.Println(transactionNo,"Transaction for $",amt,approvedText)
 fmt.Println("\tRemaining balance $",balance)
 return approved
}

Depending on your environment (and whether you enable multiple processors),
you might have the previous goroutine operate successfully with a $0 or more final
balance. You might, on the other hand, simply end up with transactions that exceed
the balance at the time of transaction, resulting in a negative balance.

Chapter 3

[415]

So how do we know for sure?

For most applications and languages, this process often involves a lot of running,
rerunning, and logging. It's not unusual for race conditions to present a daunting
and laborious debugging process. Google knows this and has given us a race
condition detection tool. To test this, simply use the –race flag when testing,
building, or running your application, as shown:

go run -race race-test.go

When run on the previous code, Go will execute the application and then report
any possible race conditions, as follows:

>> Final balance: $0

>> Found 2 data race(s)

Here, Go is telling us there are two potential race conditions with data. It isn't telling
us that these will surely create data consistency issues, but if you run into such
problems, this may give you some clue as to why.

If you look at the top of the output, you'll get more detailed notes on what's causing
a race condition. In this example, the details are as follows:

==================

WARNING: DATA RACE

Write by goroutine 5: main.transaction() /var/go/race.go:75 +0xbd

 main.func┬╖001() /var/go/race.go:31 +0x44

Previous write by goroutine 4: main.transaction()

 /var/go/race.go:75 +0xbd main.func┬╖001() /var/go/race.go:31

 +0x44

Goroutine 5 (running) created at: main.main() /var/go/race.go:36

 +0x21c

Goroutine 4 (finished) created at: main.main() /var/go/race.go:36

 +0x21c

We get a detailed, full trace of where our potential race conditions exist. Pretty
helpful, huh?

Developing a Concurrent Strategy

[416]

The race detector is guaranteed to not produce false positives, so you can take
the results as strong evidence that there is a potential problem in your code. The
potential is stressed here because a race condition can go undetected in normal
conditions very often—an application may work as expected for days, months,
or even years before a race condition can surface.

We've mentioned logging, and if you aren't intimately familiar with
Go's core language, your mind might go in a number of directions—
stdout, file logs, and so on. So far we've stuck to stdout, but you can use
the standard library to handle this logging. Go's log package allows you
to write to io or stdout as shown:

 messageOutput := os.Stdout
 logOut := log.New(messageOutput,"Message: ",log.
 Ldate|log.Ltime|log.Llongfile);
 logOut.Println("This is a message from the

 application!")

This will produce the following output:
Message: 2014/01/21 20:59:11 /var/go/log.go:12: This is
 a message from the application!

So, what's the advantage of the log package versus rolling your own?
In addition to being standardized, this package is also synchronized in
terms of output.

So what now? Well, there are a few options. You can utilize your channels to ensure
data integrity with a buffered channel, or you can use the sync.Mutex struct to lock
your data.

Using mutual exclusions
Typically, mutual exclusion is considered a low-level and best-known approach to
synchronicity in your application—you should be able to address data consistency
within communication between your channels. However, there will be instances
where you need to truly block read/write on a value while you work with it.

At the CPU level, a mutex represents an exchange of binary integer values across
registers to acquire and release locks. We'll deal with something on a much higher
level, of course.

We're already familiar with the sync package from our use of the WaitGroup struct,
but the package also contains the conditional variables struct Cond and Once,
which will perform an action just one time, and the mutual exclusion locks RWMutex
and Mutex. As the name RWMutex implies, it is open to multiple readers and/or
writers to lock and unlock; there is more on this later in this chapter and in Chapter 5,
Locks, Blocks, and Better Channels.

Chapter 3

[417]

All of these—as the package name implies—empower you to prevent race conditions
on data that may be accessed by any number of goroutines and/or threads. Using any
of the methods in this package does not ensure atomicity within data and structures,
but it does give you the tools to manage atomicity effectively. Let's look at a few ways
we can solidify our account balance in concurrent, threadsafe applications.

As mentioned previously, we can coordinate data changes at the channel level
whether that channel is buffered or unbuffered. Let's offload the logic and data
manipulation to the channel and see what the –race flag presents.

If we modify our main loop, as shown in the following code, to utilize messages
received by the channel to manage the balance value, we will avoid race conditions:

package main

import(
 "fmt"
 "time"
 "sync"
 "runtime"
 "math/rand"
)

var balance int
var transactionNo int

func main() {
 rand.Seed(time.Now().Unix())
 runtime.GOMAXPROCS(2)
 var wg sync.WaitGroup
 balanceChan := make(chan int)
 tranChan := make(chan bool)

 balance = 1000
 transactionNo = 0
 fmt.Println("Starting balance: $",balance)

 wg.Add(1)
 for i:= 0; i<100; i++ {

 go func(ii int) {

 transactionAmount := rand.Intn(25)
 balanceChan <- transactionAmount

Developing a Concurrent Strategy

[418]

 if ii == 99 {
 fmt.Println("Should be quittin time")
 tranChan <- true
 close(balanceChan)
 wg.Done()
 }

 }(i)

 }

 go transaction(0)

 breakPoint := false
 for {
 if breakPoint == true {
 break
 }
 select {
 case amt:= <- balanceChan:
 fmt.Println("Transaction for $",amt)
 if (balance - amt) < 0 {
 fmt.Println("Transaction failed!")
 }else {
 balance = balance - amt
 fmt.Println("Transaction succeeded")
 }
 fmt.Println("Balance now $",balance)

 case status := <- tranChan:
 if status == true {
 fmt.Println("Done")
 breakPoint = true
 close(tranChan)

 }
 }
 }

 wg.Wait()

 fmt.Println("Final balance: $",balance)
}

Chapter 3

[419]

func transaction(amt int) (bool) {

 approved := false
 if (balance-amt) < 0 {
 approved = false
 }else {
 approved = true
 balance = balance - amt
 }

 approvedText := "declined"
 if (approved == true) {
 approvedText = "approved"
 }else {

 }
 transactionNo = transactionNo + 1
 fmt.Println(transactionNo,"Transaction for $",amt,approvedText)
 fmt.Println("\tRemaining balance $",balance)
 return approved
}

This time, we let the channel manage the data entirely. Let's look at what we're doing:

transactionAmount := rand.Intn(25)
balanceChan <- transactionAmount

This still generates a random integer between 0 and 25, but instead of passing it to
a function, we pass the data along the channel. Channels allow you to control the
ownership of data neatly. We then see the select/listener, which largely mirrors our
transaction() function defined earlier in this chapter:

case amt:= <- balanceChan:
fmt.Println("Transaction for $",amt)
if (balance - amt) < 0 {
 fmt.Println("Transaction failed!")
}else {
 balance = balance - amt
 fmt.Println("Transaction succeeded")
}
fmt.Println("Balance now $",balance)

To test whether we've averted a race condition, we can run go run with the -race
flag again and see no warnings.

Developing a Concurrent Strategy

[420]

Channels can be seen as the sanctioned go-to way of handling synchronized
dataUse Sync.Mutex().

As mentioned, having a built-in race detector is a luxury not afforded to developers
in most languages, and having it allows us to test methodologies and get real-time
feedback on each.

We noted that using an explicit mutex is discouraged in favor of channels of
goroutines. This isn't always exactly true because there is a right time and place for
everything, and mutexes are no exclusion. What's worth noting is that mutexes are
implemented internally by Go for channels. As was previously mentioned, you can
use explicit channels to handle reads and writes and juggle the data between them.

However, this doesn't mean there is no use for explicit locks. An application that
has many reads and very few writes might benefit from explicit locks for writes;
this doesn't necessarily mean that the reads will be dirty reads, but it could result in
faster and/or more concurrent execution.

For the sake of demonstration, let's remove our race condition using an explicit lock.
Our -race flag tells us where it encounters read/write race conditions, as shown:

Read by goroutine 5: main.transaction() /var/go/race.go:62 +0x46

The previous line is just one among several others we'll get from the race detection
report. If we look at line 62 in our code, we'll find a reference to balance. We'll
also find a reference to transactionNo, our second race condition. The easiest
way to address both is to place a mutual exclusion lock around the contents of
the transaction function as this is the function that modifies the balance and
transactionNo variables. The transaction function is as follows:

func transaction(amt int) (bool) {
 mutex.Lock()

 approved := false
 if (balance-amt) < 0 {
 approved = false
 }else {
 approved = true
 balance = balance - amt
 }

 approvedText := "declined"
 if (approved == true) {
 approvedText = "approved"
 }else {

Chapter 3

[421]

 }
 transactionNo = transactionNo + 1
 fmt.Println(transactionNo,"Transaction for $",amt,approvedText)
 fmt.Println("\tRemaining balance $",balance)

 mutex.Unlock()
 return approved
}

We also need to define mutex as a global variable at the top of our application,
as shown:

var mutex sync.Mutex

If we run our application now with the -race flag, we get no warnings.

The mutex variable is, for practical purposes, an alternative to the WaitGroup struct,
which functions as a conditional synchronization mechanism. This is also the way
that the channels operate—data that moves along channels is contained and isolated
between goroutines. A channel can effectively work as a first-in, first-out tool in this
way by binding goroutine state to WaitGroup; data accessed across the channel can
then be provided safety via the lower-level mutex.

Another worthwhile thing to note is the versatility of a channel—we have the ability
to share a channel among an array of goroutines to receive and/or send data, and as
a first-class citizen, we can pass them along in functions.

Exploring timeouts
Another noteworthy thing we can do with channels is explicitly kill them after
a specified amount of time. This is an operation that will be a bit more involved
should you decide to manually handle mutual exclusions.

The ability to kill a long-running routine through the channel is extremely helpful;
consider a network-dependent operation that should not only be restricted to a
short time period but also not allowed to run for a long period. In other words, you
want to offer the process a few seconds to complete; but if it runs for more than a
minute, our application should know that something has gone wrong enough to stop
attempting to listen or send on that channel. The following code demonstrates using
a timeout channel in a select call:

func main() {

 ourCh := make(chan string,1)

Developing a Concurrent Strategy

[422]

 go func() {

 }()

 select {
 case <-time.After(10 * time.Second):
 fmt.Println("Enough's enough")
 close(ourCh)
 }

}

If we run the previous simple application, we'll see that our goroutine will be allowed
to do nothing for exactly 10 seconds, after which we implement a timeout safeguard
that bails us out.

You can see this as being particularly useful in network applications; even in the days
of blocking and thread-dependent servers, timeouts like these were implemented to
prevent a single misbehaving request or process to gum up the entire server. This is
the very basis of a classic web server problem that we'll revisit in more detail later.

Importance of consistency
In our example, we'll build an events scheduler. If we are available for a meeting and
we get two concurrent requests for a meeting invite, we'll get double-booked should
a race condition exist. Alternately, locked data across two goroutines may cause both
the requests to be denied or will result in an actual deadlock.

We want to guarantee that any request for availability is consistent—there should
neither be double-booking nor should a request for an event be blocked incorrectly
(because two concurrent or parallel routines lock the data simultaneously).

Synchronizing our concurrent operations
The word synchronization literally refers to temporal existence—things occurring at
the same time. It seems then that the most apt demonstration of synchronicity will be
something involving time itself.

Chapter 3

[423]

When we think about the ways time impacts us, it's generally a matter of scheduling,
due dates, and coordination. Going back to our preliminary example from the
Preface, if one wishes to plan their grandmother's birthday party, the following
types of scheduled tasks can take several forms:

• Things that must be done by a certain time (the actual party)

• Things that cannot be done until another task is completed (putting up
decorations before they're purchased)

• Things that can be done in any particular order without impacting the
outcome (cleaning the house)

• Things that can be done in any order but may well impact the outcome
(buying a cake before finding out what cake your grandmother likes
the most)

With these in mind, we'll attempt to handle some rudimentary human scheduling
by designing an appointment calendar that can handle any number of people with
one hour timeslots between 9 a.m. and 5 p.m.

The project – multiuser appointment
calendar
What do you do when you decide to write a program?

If you're like a lot of people, you think about the program; perhaps you and a
team will write up a spec or requirements document, and then you'll get to coding.
Sometimes, there will be a drawing representing some facsimile of the way the
application will work.

Quite often, the best way to nail down the architecture and the inner workings of
an application is to put pencil to paper and visually represent the way the program
will work. For a lot of linear or serial applications, this is often an unnecessary step
as things will work in a predictable fashion that should not require any specific
coordination within the application logic itself (although coordinating third-party
software likely benefits from specification).

Developing a Concurrent Strategy

[424]

You may be familiar with some logic that looks something like the following diagram:

The logic here makes sense. If you remember from our Preface, when humans draw
out processes, we tend to serialize them. Visually, going from step one to step two
with a finite number of processes is easy to understand.

However, when designing a concurrent application, it's essential that we at least
account for innumerable and concurrent requests, processes, and logic to make sure
our application ends where we want, with the data and results we expect.

In the previous example, we completely ignore the possibility that "Is User
Available" could fail or report old or erroneous data. Does it make more sense to
address such problems if and when we find them, or should we anticipate them as
part of a control flow? Adding complexity to the model can help us reduce the odds
of data integrity issues down the road.

Let's visualize this again, taking into account availability pollers that will request
availability for a user with any given request for a time/user pair.

Chapter 3

[425]

Visualizing a concurrent pattern
As we have already discussed, we wish to create a basic blueprint of how our
application should function as a starting point. Here, we'll implement some control
flow, which relates to user activity, to help us decide what functionality we'll need to
include. The following diagram illustrates how the control flow may look like:

In the previous diagram, we anticipate where data can be shared using concurrent
and parallel processes to locate points of failure. If we design concurrent applications
in such graphical ways, we're less likely to find race conditions later on.

While we talked about how Go helps you to locate these after the application has
completed running, our ideal development workflow is to attempt to cut these
problems off at the start.

Developing a Concurrent Strategy

[426]

Developing our server requirements
Now that we have an idea of how the scheduling process should work, we need
to identify components that our application will need. In this case, the components
are as follows:

• A web server handler

• A template for output

• A system for determining dates and times

Web server
In our visualizing concurrency example from the previous chapter, we used Go's
built-in http package, and we'll do the same here. There are a number of good
frameworks out there for this, but they primarily extend the core Go functionality
rather than reinventing the wheel. The following are a few of these functionalities,
listed from lightest to heaviest:

• Web.go: http://webgo.io/

Web.go is very lightweight and lean, and it provides some routing
functionality not available in the net/http package.

• Gorilla: http://www.gorillatoolkit.org/

Gorilla is a Swiss army knife to augment the net/http package. It's not
particularly heavy, and it is fast, utilitarian, and very clean.

• Revel: http://robfig.github.io/revel/

Revel is the heaviest of the three, but it focuses on a lot of intuitive code,
caching, and performance. Look for it if you need something mature that
will face a lot of traffic.

In Chapter 6, C10K – A Non-blocking Web Server in Go, we'll roll our own web server
and framework with the sole goal of extreme high performance.

The Gorilla toolkit
For this application, we'll partially employ the Gorilla web toolkit. Gorilla is a fairly
mature web-serving platform that fulfills a few of our needs here natively, namely
the ability to include regular expressions in our URL routing. (Note: Web.Go also
extends some of this functionality.) Go's internal HTTP routing handler is rather
simplistic; you can extend this, of course, but we'll take a shortcut down a well-worn
and reliable path here.

http://webgo.io/
http://www.gorillatoolkit.org/
http://robfig.github.io/revel/

Chapter 3

[427]

We'll use this package solely for ease of URL routing, but the Gorilla web toolkit also
includes packages to handle cookies, sessions, and request variables. We'll examine
this package a little closer in Chapter 6, C10K – A Non-blocking Web Server in Go.

Using templates
As Go is intended as a system language, and as system languages often deal with
the creation of servers with clients, some care was put into making it a well-featured
alternative to create web servers.

Anyone who's dealt with a "web language" will know that on top of that you'll need
a framework, ideally one that handles the presentation layer for the web. While
it's true that if you take on such a project you'll likely look for or build your own
framework, Go makes the templating side of things very easy.

The template package comes in two varieties: text and http. Though they
both serve different end points, the same properties—affording dynamism and
flexibility—apply to the presentation layer rather than strictly the application layer.

The text template package is intended for general plaintext
documents, while the http template package handles the generation
of HTML and related documents.

These templating paradigms are all too common these days; if you look at the
http/template package, you'll find some very strong similarities to Mustache,
one of the more popular variants. While there is a Mustache port in Go, there's
nothing there that isn't handled by default in the template package.

For more information on Mustache, visit http://mustache.
github.io/.

One potential advantage to Mustache is its availability in other languages. If you
ever feel the need to port some of your application logic to another language (or
existing templates into Go), utilizing Mustache could be advantageous. That said,
you sacrifice a lot of the extended functionality of Go templates, namely the ability
to take out Go code from your compiled package and move it directly into template
control structures. While Mustache (and its variants) has control flows, they may not
mirror Go's templating system. Take the following example:

{{range .Users}}
A User
{{end}}

http://mustache.github.io/
http://mustache.github.io/

Developing a Concurrent Strategy

[428]

Given the familiarity with Go's logic structures, it makes sense to keep them
consistent in our templating language as well.

We won't show all the specific templates in this thread, but we will
show the output. If you wish to peruse them, they're available at
mastergoco.com/chapters/3/templates.

Time
We're not doing a whole lot of math here; time will be broken into hour blocks and
each will be set to either occupied or available. At this time, there aren't a lot of
external date/time packages for Go. We're not doing any heavy-date math, but it
doesn't really matter because Go's time package should suffice even if we were.

In fact, as we have literal hour blocks from 9 a.m. to 5 p.m., we just set these
to the 24-hour time values of 9-17, and invoke a function to translate them into
linguistic dates.

Endpoints
We'll want to identify the REST endpoints (via GET requests) and briefly
describe how they'll work. You can think of these as modules or methods
in the model-view-controller architecture. The following is a list of the
endpoint patterns we'll use:

• entrypoint/register/{name}: This is where we'll go to add a name
to the list of users. If the user exists, it will fail.

• entrypoint/viewusers: Here, we'll present a list of users with their
timeslots, both available and occupied.

• entrypoint/schedule/{name}/{time}: This will initialize an attempt
to schedule an appointment.

Each will have an accompanying template that will report the status of the
intended action.

mastergoco.com/chapters/3/templates

Chapter 3

[429]

Custom structs
We'll deal with users and responses (web pages), so we need two structs to represent
each. One struct is as follows:

type User struct {
 Name string
 email string
 times[int] bool
}

The other struct is as follows:

type Page struct {
 Title string
 Body string
}

We will keep the page as simple as possible. Rather than doing a lot of iterative
loops, we will produce the HTML within the code for the most part.

Our endpoints for requests will relate to our previous architecture, using the
following code:

func users(w http.ResponseWriter, r *http.Request) {
}
func register(w http.ResponseWriter, r *http.Request) {
}
func schedule(w http.ResponseWriter, r *http.Request) {
}

A multiuser Appointments Calendar
In this section, we'll quickly look at our sample Appointments Calendar application,
which attempts to control consistency of specific elements to avoid obvious race
conditions. The following is the full code, including the routing and templating:

package main

import(
 "net/http"
 "html/template"
 "fmt"

Developing a Concurrent Strategy

[430]

 "github.com/gorilla/mux"
 "sync"
 "strconv"
)

type User struct {
 Name string
 Times map[int] bool
 DateHTML template.HTML
}

type Page struct {
 Title string
 Body template.HTML
 Users map[string] User
}

var usersInit map[string] bool
var userIndex int
var validTimes []int
var mutex sync.Mutex
var Users map[string]User
var templates = template.Must(template.New("template").
ParseFiles("view_users.html", "register.html"))

func register(w http.ResponseWriter, r *http.Request){
 fmt.Println("Request to /register")
 params := mux.Vars(r)
 name := params["name"]

 if _,ok := Users[name]; ok {
 t,_ := template.ParseFiles("generic.txt")
 page := &Page{ Title: "User already exists", Body:
 template.HTML("User " + name + " already exists")}
 t.Execute(w, page)
 } else {
 newUser := User { Name: name }
 initUser(&newUser)
 Users[name] = newUser
 t,_ := template.ParseFiles("generic.txt")
 page := &Page{ Title: "User created!", Body:
 template.HTML("You have created user "+name)}

Chapter 3

[431]

 t.Execute(w, page)
 }

}

func dismissData(st1 int, st2 bool) {

// Does nothing in particular for now other than avoid Go compiler
 errors
}

func formatTime(hour int) string {
 hourText := hour
 ampm := "am"
 if (hour > 11) {
 ampm = "pm"
 }
 if (hour > 12) {
 hourText = hour - 12;
 }
fmt.Println(ampm)
 outputString := strconv.FormatInt(int64(hourText),10) + ampm

 return outputString
}

func (u User) FormatAvailableTimes() template.HTML { HTML := ""
 HTML += ""+u.Name+" - "

 for k,v := range u.Times { dismissData(k,v)

 if (u.Times[k] == true) { formattedTime := formatTime(k) HTML
 += "<a href='/schedule/"+u.Name+"/"
 +strconv.FormatInt(int64(k),10)+"'
 class='button'>"+formattedTime+" "

 } else {

 }

 } return template.HTML(HTML)

Developing a Concurrent Strategy

[432]

}

func users(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Request to /users")

 t,_ := template.ParseFiles("users.txt")
 page := &Page{ Title: "View Users", Users: Users}
 t.Execute(w, page)
}

func schedule(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Request to /schedule")
 params := mux.Vars(r)
 name := params["name"]
 time := params["hour"]
 timeVal,_ := strconv.ParseInt(time, 10, 0)
 intTimeVal := int(timeVal)

 createURL := "/register/"+name

 if _,ok := Users[name]; ok {
 if Users[name].Times[intTimeVal] == true {
 mutex.Lock()
 Users[name].Times[intTimeVal] = false
 mutex.Unlock()
 fmt.Println("User exists, variable should be modified")
 t,_ := template.ParseFiles("generic.txt")
 page := &Page{ Title: "Successfully Scheduled!", Body:
 template.HTML("This appointment has been scheduled. Back to users")}

 t.Execute(w, page)

 } else {
 fmt.Println("User exists, spot is taken!")
 t,_ := template.ParseFiles("generic.txt")
 page := &Page{ Title: "Booked!", Body:
 template.HTML("Sorry, "+name+" is booked for
 "+time+" Back to users")}
 t.Execute(w, page)

 }

Chapter 3

[433]

 } else {
 fmt.Println("User does not exist")
 t,_ := template.ParseFiles("generic.txt")
 page := &Page{ Title: "User Does Not Exist!", Body:
 template.HTML("Sorry, that user does not exist. Click
 here to create it. Back to users")}
 t.Execute(w, page)
 }
 fmt.Println(name,time)
}

func defaultPage(w http.ResponseWriter, r *http.Request) {

}

func initUser(user *User) {

 user.Times = make(map[int] bool)
 for i := 9; i < 18; i ++ {
 user.Times[i] = true
 }

}

func main() {
 Users = make(map[string] User)
 userIndex = 0
 bill := User {Name: "Bill" }
 initUser(&bill)
 Users["Bill"] = bill
 userIndex++

 r := mux.NewRouter() r.HandleFunc("/", defaultPage)
 r.HandleFunc("/users", users)
 r.HandleFunc("/register/{name:[A-Za-z]+}", register)
 r.HandleFunc("/schedule/{name:[A-Za-z]+}/{hour:[0-9]+}",
 schedule) http.Handle("/", r)

 err := http.ListenAndServe(":1900", nil) if err != nil { //
 log.Fatal("ListenAndServe:", err) }

}

Developing a Concurrent Strategy

[434]

Note that we seeded our application with a user, Bill. If you attempt to hit
/register/bill|bill@example.com, the application will report that the user exists.

As we control the most sensitive data through channels, we avoid any race
conditions. We can test this in a couple of ways. The first and easiest way is to keep
a log of how many successful appointments are registered, and run this with Bill as
the default user.

We can then run a concurrent load tester against the action. There are a number of
such testers available, including Apache's ab and Siege. For our purposes, we'll use
JMeter, primarily because it permits us to test against multiple URLs concurrently.

Although we're not necessarily using JMeter for load testing (rather,
we use it to run concurrent tests), load testers can be extraordinarily
valuable ways to find bottlenecks in applications at scales that don't
yet exist.

For example, if you built a web application that had a blocking
element and had 5,000-10,000 requests per day, you may not notice
it. But at 5 million-10 million requests per day, it might result in the
application crashing.

In the dawn of network servers, this is what happened; servers
scaled until one day, suddenly, they couldn't scale further. Load/
stress testers allow you to simulate traffic in order to better detect
these issues and inefficiencies.

Given that we have one user and eight hours in a day, we should end our script
with no more than eight total successful appointments. Of course, if you hit the
/register endpoint, you will see eight times as many users as you've added.
The following screenshot shows our benchmark test plan in JMeter:

Chapter 3

[435]

When you run your application, keep an eye on your console; at the end of our load
test, we should see the following message:

Total registered appointments: 8

Had we designed our application as per the initial graphical mockup representation
in this chapter (with race conditions), it's plausible—and in fact likely—that we'd
register far more appointments than actually existed.

By isolating potential race conditions, we guarantee data consistency and ensure
that nobody is waiting on an appointment with an otherwise occupied attendee.
The following screenshot is the list we present of all the users and their available
appointment times:

The previous screenshot is our initial view that shows us available users and their
available time slots. By selecting a timeslot for a user, we'll attempt to book them
for that particular time. We'll start with Nathan at 5 p.m.

The following screenshot shows what happens when we attempt to schedule with
an available user:

Developing a Concurrent Strategy

[436]

However, if we attempt to book again (even simultaneously), we'll be greeted
with a sad message that Nathan cannot see us at 5 p.m, as shown in the following
screenshot:

With that, we have a multiuser calendar app that allows for creating new users,
scheduling, and blocking double-bookings.

Let's look at a few interesting new points in this application.

First, you will notice that we use a template called generic.txt for most parts
of the application. There's not much to this, only a page title and body filled in by
each handler. However, on the /users endpoint, we use users.txt as follows:

<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-
 8">
 <title>{{.Title}}</title>
</head>
<body>

<h1>{{.Title}}</h1>

{{range .Users}}
<div class="user-row">

 {{.FormatAvailableTimes}}

</div>
{{end}}

</body>
</html>

Chapter 3

[437]

We mentioned the range-based functionality in templates, but how does
{{.FormatAvailableTimes}} work? In any given context, we can have type-specific
functions that process the data in more complex ways than are available strictly in
the template lexer.

In this case, the User struct is passed to the following line of code:

func (u User) FormatAvailableTimes() template.HTML {

This line of code then performs some conditional analysis and returns a string with
some time conversion.

In this example, you can use either a channel to control the flow of User.times
or an explicit mutex as we have here. We don't want to limit all locks, unless
absolutely necessary, so we only invoke the Lock() function if we've determined
the request has passed the tests necessary to modify the status of any given user/
time pair. The following code shows where we set the availability of a user within
a mutual exclusion:

if _,ok := Users[name]; ok {
 if Users[name].Times[intTimeVal] == true {
 mutex.Lock()
 Users[name].Times[intTimeVal] = false
 mutex.Unlock()

The outer evaluation checks that a user by that name (key) exists. The second
evaluation checks that the time availability exists (true). If it does, we lock the
variable, set it to false, and then move onto output rendering.

Without the Lock() function, many concurrent connections can compromise the
consistency of data and cause the user to have more than one appointment in a
given hour.

A note on style
You'll note that despite preferring camelCase for most of our variables, we have
some uppercase variables within structs. This is an important Go convention worth
mentioning: any struct variable that begins with a capital letter is public. Any
variable that begins with a lowercase letter is private.

If you attempt to output a private (or nonexistent) variable in your template files,
template rendering will fail.

Developing a Concurrent Strategy

[438]

A note on immutability
Note that whenever possible, we'll avoid using the string type for comparative
operations, especially in multithreaded environments. In the previous example,
we use integers and Booleans to decide availability for any given user. In some
languages, you may feel empowered to assign the time values to a string for ease
of use. For the most part, this is fine, even in Go; but assuming that we have an
infinitely scalable, shared calendar application, we run the risk of introducing
memory issues if we utilize strings in this way.

The string type is the sole immutable type in Go; this is noteworthy if you end up
assigning and reassigning values to a string. Assuming that memory is yielded after
a string is converted to a copy, this is not a problem. However, in Go (and a couple
of other languages), it's entirely possible to keep the original value in memory.
We can test this using the following example:

func main() {

 testString := "Watch your top / resource monitor"
 for i:= 0; i < 1000; i++ {

 testString = string(i)

 }
 doNothing(testString)

 time.Sleep(10 * time.Second)

}

When run in Ubuntu, this takes approximately 1.0 MB of memory; some of that no
doubt overhead, but a useful reference point. Let's up the ante a bit—though having
1,000 relatively small pointers won't have much impact—using the following line
of code:

for i:= 0; i < 100000000; i++ {

Now, having gone through 100 million memory assignments, you can see the
impact on memory (it doesn't help that the string itself is at this point longer
than the initial, but it doesn't account for the full effect). Garbage collection takes
place here too, which impacts CPU. On our initial test here, both CPU and memory
spiked. If we substitute this for an integer or a Boolean assignment, we get much
smaller footprints.

Chapter 3

[439]

This is not exactly a real-world scenario, but it's worth noting in a concurrent
environment where garbage collection must happen so we can evaluate the
properties and types of our logic.

It's also entirely possible, depending on your current version of Go, your machine(s),
and so on, and this could run as efficiently in either scenario. While that might seem
fine, part of our concurrent strategy planning should involve the possibility that our
application will scale in input, output, physical resources, or all of them. Just because
something works well now doesn't mean it's not worth implementing efficiencies
that will keep it from causing performance problems at a 100x scale.

If you ever encounter a place where a string is logical, but you want or could benefit
from a mutable type, consider a byte slice instead.

A constant is, of course, also immutable, but given that's the implied purpose of a
constant variable, you should already know this. A mutable constant variable is,
after all, an oxymoron.

Summary
This chapter has hopefully directed you towards exploring methods to plan and
chart out your concurrent applications before delving in. By briefly touching on
race conditions and data consistency, we attempted to highlight the importance
of anticipatory design. At the same time, we utilized a few tools for identifying
such issues, should they occur.

Creating a robust script flowchart with concurrent processes will help you locate
possible pitfalls before you create them, and it will give you a better sense of how
(and when) your application should be making decisions with logic and data.

In the next chapter, we'll examine data consistency issues and look at advanced
channel communication options in an effort to avoid needless and often expensive
mitigating functions, mutexes, and external processes.

Data Integrity in
an Application

By now, you should be comfortable with the models and tools provided in Go's core
to provide mostly race-free concurrency.

We can now create goroutines and channels with ease, manage basic communication
across channels, coordinate data without race conditions, and detect such conditions
as they arise.

However, we can neither manage larger distributed systems nor deal with
potentially lower-level consistency problems. We've utilized a basic and simplistic
mutex, but we are about to look at a more complicated and expressive way of
handling mutual exclusions.

By the end of this chapter, you should be able to expand your concurrency patterns
from the previous chapter into distributed systems using a myriad of concurrency
models and systems from other languages. We'll also look—at a high level—at some
consistency models that you can utilize to further express your precoding strategies
for single-source and distributed applications.

Getting deeper with mutexes and sync
In Chapter 2, Understanding the Concurrency Model, we introduced sync.mutex and
how to invoke a mutual exclusion lock within your code, but there's some more
nuance to consider with the package and the mutex type.

We've mentioned that in an ideal world, you should be able to maintain
synchronization in your application by using goroutines alone. In fact, this would
probably be best described as the canonical method within Go, although the sync
package does provide a few other utilities, including mutexes.

Data Integrity in an Application

[442]

Whenever possible, we'll stick with goroutines and channels to manage consistency,
but the mutex does provide a more traditional and granular approach to lock and
access data. If you've ever managed another concurrent language (or package within
a language), odds are you've had experience with either a mutex or a philosophical
analog. In the following chapters, we'll look at ways of extending and exploiting
mutexes to do a little more out of the box.

If we look at the sync package, we'll see there are a couple of different mutex structs.

The first is sync.mutex, which we've explored—but another is RWMutex. The
RWMutex struct provides a multireader, single-writer lock. These can be useful if
you want to allow reads to resources but provide mutex-like locks when a write
is attempted. They can be best utilized when you expect a function or subprocess
to do frequent reads but infrequent writes, but it still cannot afford a dirty read.

Let's look at an example that updates the date/time every 10 seconds (acquiring
a lock), yet outputs the current value every other second, as shown in the
following code:

package main

import (
 "fmt"
 "sync"
 "time"
)

type TimeStruct struct {
 totalChanges int
 currentTime time.Time
 rwLock sync.RWMutex
}

var TimeElement TimeStruct

func updateTime() {
 TimeElement.rwLock.Lock()
 defer TimeElement.rwLock.Unlock()
 TimeElement.currentTime = time.Now()
 TimeElement.totalChanges++
}

func main() {

 var wg sync.WaitGroup

Chapter 4

[443]

 TimeElement.totalChanges = 0
 TimeElement.currentTime = time.Now()
 timer := time.NewTicker(1 * time.Second)
 writeTimer := time.NewTicker(10 * time.Second)
 endTimer := make(chan bool)

 wg.Add(1)
 go func() {

 for {
 select {
 case <-timer.C:
 fmt.Println(TimeElement.totalChanges,
 TimeElement.currentTime.String())
 case <-writeTimer.C:
 updateTime()
 case <-endTimer:
 timer.Stop()
 return
 }

 }

 }()

 wg.Wait()
 fmt.Println(TimeElement.currentTime.String())
}

We don't explicitly run Done() on our WaitGroup struct, so this
will run in perpetuity.

There are two different methods for performing locks/unlocks on RWMutex:

• Lock(): This will block variables for both reading and writing until an
Unlock() method is called

• happenedRlock(): This locks bound variables solely for reads

The second method is what we've used for this example, because we want to
simulate a real-world lock. The net effect is the interval function that outputs the
current time that will return a single dirty read before rwLock releases the read lock
on the currentTime variable. The Sleep() method exists solely to give us time to
witness the lock in motion. An RWLock struct can be acquired by many readers or
by a single writer.

Data Integrity in an Application

[444]

The cost of goroutines
As you work with goroutines, you might get to a point where you're spawning
dozens or even hundreds of them and wonder if this is going to be expensive. This
is particularly true if your previous experience with concurrent and/or parallel
programming was primarily thread-based. It's commonly accepted that maintaining
threads and their respective stacks can begin to bog down a program with
performance issues. There are a few reasons for this, which are as follows:

• Memory is required just for the creation of a thread

• Context switching at the OS level is more complex and expensive than
in-process context switching

• Very often, a thread is spawned for a very small process that could be
handled otherwise

It's for these reasons that a lot of modern concurrent languages implement something
akin to goroutines (C# uses the async and await mechanism, Python has greenlets/
green threads, and so on) that simulate threads using small-scale context switching.

However, it's worth knowing that while goroutines are (or can be) cheap and
cheaper than OS threads, they are not free. At a large (perhaps enormous) measure,
even cheap and light goroutines can impact performance. This is particularly
important to note as we begin to look at distributed systems, which often scale larger
and at faster rates.

The difference between running a function directly and running it in a goroutine is
negligible of course. However, keep in mind that Go's documentation states:

It is practical to create hundreds of thousands of goroutines in the same address
space.

Given that stack creation uses a few kilobytes per goroutine, in a modern
environment, it's easy to see how that could be perceived as a nonfactor. However,
when you start talking about thousands (or millions) of goroutines running, it
can and likely will impact the performance of any given subprocess or function.
You can test this by wrapping functions in an arbitrary number of goroutines and
benchmarking the average execution time and—more importantly—memory usage.
At approximately 5KB per goroutine, you may find that memory can become a
factor, particularly on low-RAM machines or instances. If you have an application
that runs heavy on a high-powered machine, imagine it reaching criticality in one
or more lower-powered machines. Consider the following example:

for i:= 0; i < 1000000000; i++ {
 go someFunction()
}

Chapter 4

[445]

Even if the overhead for the goroutine is cheap, what happens at 100 million or—as
we have here—a billion goroutines running?

As always, doing this in an environment that utilizes more than a single core can
actually increase the overhead of this application due to the costs of OS threading
and subsequent context switching.

These issues are almost always the ones that are invisible unless and until an
application begins to scale. Running on your machine is one thing, running at scale
across a distributed system with what amounts to low-powered application servers
is quite another.

The relationship between performance and data consistency is important,
particularly if you start utilizing a lot of goroutines with mutual exclusions, locks,
or channel communication.

This becomes a larger issue when dealing with external, more permanent
memory sources.

Working with files
Files are a great example of areas where data consistency issues such as race
conditions can lead to more permanent and catastrophic problems. Let's look at a
piece of code that might continuously attempt to update a file to see where we could
run into race conditions, which in turn could lead to bigger problems such as an
application failing or losing data consistency:

package main

import(
 "fmt"
 "io/ioutil"
 "strconv"
 "sync"
)

func writeFile(i int) {

 rwLock.RLock();
 ioutil.WriteFile("test.txt",
 []byte(strconv.FormatInt(int64(i),10)), 0x777)
 rwLock.RUnlock();

Data Integrity in an Application

[446]

 writer<-true

}

var writer chan bool
var rwLock sync.RWMutex

func main() {

 writer = make(chan bool)

 for i:=0;i<10;i++ {
 go writeFile(i)
 }

 <-writer
 fmt.Println("Done!")
}

Code involving file operations are rife for these sorts of potential issues, as mistakes
are specifically not ephemeral and can be locked in time forever.

If our goroutines block at some critical point or the application fails midway
through, we could end up with a file that has invalid data in it. In this case, we're
simply iterating through some numbers, but you can also apply this situation to one
involving database or datastore writes—the potential exists for persistent bad data
instead of temporary bad data.

This is not a problem that is exclusively solved by channels or mutual exclusions;
rather, it requires some sort of sanity check at every step to make certain that data
is where you and the application expect it to be at every step in the execution. Any
operation involving io.Writer relies on primitives, which Go's documentation
explicitly notes that we should not assume they are safe for parallel execution.
In this case, we have wrapped the file writing in a mutex.

Chapter 4

[447]

Getting low – implementing C
One of the most interesting developments in language design in the past decade
or two is the desire to implement lower-level languages and language features via
API. Java lets you do this purely externally, and Python provides a C library for
interaction between the languages. It warrants mentioning that the reasons for doing
this vary—among them applying Go's concurrency features as a wrapper for legacy
C code—and you will likely have to deal with some of the memory management
associated with introducing unmanaged code to garbage-collected applications.

Go takes a hybrid approach, allowing you to call a C interface through an import,
which requires a frontend compiler such as GCC:

import "C"

So why would we want to do this?

There are some good and bad reasons to implement C directly in your project.
An example of a good reason might be to have direct access to the inline assembly,
which you can do in C but not directly in Go. A bad reason could be any that has
a solution inherent in Golang itself.

To be fair, even a bad reason is not bad if you build your application reliably, but it
does impose an additional level of complexity to anyone else who might use your
code. If Go can satisfy the technical and performance requirements, it's always better
to use a single language in a single project.

There's a famous quote from C++ creator Bjarne Stroustrup on C and C++:

C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you
do, it blows your whole leg off.

Jokes aside (Stroustrup has a vast collection of such quips and quotes), the
fundamental reasoning is that the complexity of C often prevents people from
accidentally doing something catastrophic.

Data Integrity in an Application

[448]

As Stroustrup says, C makes it easy to make big mistakes, but the repercussions are
often smaller due to language design than higher-level languages. Issues dealing
with security and stability are easy to be introduced in any low-level language.

By simplifying the language, C++ provides abstractions that make low-level
operations easier to carry out. You can see how this might apply to using C directly
in Go, given the latter language's syntactical sweetness and programmer friendliness.

That said, working with C can highlight some of the potential pitfalls with regard to
memory, pointers, deadlocks, and consistency, so we'll touch upon a simple example
as follows:

package main

// #include <stdio.h>
// #include <string.h>
// int string_length (char* str) {
// return strlen(str);
// }
import "C"
import "fmt"
func main() {
 v := C.CString("Don't Forget My Memory Is Not Visible To Go!")
 x := C.string_length(v)
 fmt.Println("A C function has determined your string
 is",x,"characters in length")
}

Touching memory in cgo
The most important takeaway from the preceding example is to remember that
anytime you go into or out of C, you need to manage memory manually (or at least
more directly than with Go alone). If you've ever worked in C (or C++), you know
that there's no automatic garbage collection, so if you request memory space, you
must also free it. Calling C from Go does not preclude this.

The structure of cgo
Importing C into Go will take you down a syntactical side route, as you probably
noticed in the preceding code. The first thing that will appear glaringly different is
the actual implementation of C code within your application.

Chapter 4

[449]

Any code (in comments to stop Go's compiler from failing) directly above the import
"C" directive will be interpreted as C code. The following is an example of a C
function declared above our Go code:

/*
 int addition(int a, int b) {
 return a + b;
 }

Bear in mind that Go won't validate this, so if you make an error in your C code, it
could lead to silent failure.

Another related warning is to remember your syntax. While Go and C share a lot of
syntactical overlap, leave off a curly bracket or a semicolon and you could very well
find yourself in one of those silent failure situations. Alternately, if you're working
in the C part of your application and you go back to Go, you will undoubtedly find
yourself wrapping loop expressions in parentheses and ending your lines with
semicolons.

Also remember that you'll frequently have to handle type conversions between C
and Go that don't have one-to-one analogs. For example, C does not have a built-in
string type (you can, of course, include additional libraries for types), so you may
need to convert between strings and char arrays. Similarly, int and int64 might
need some nonimplicit conversion, and again, you may not get the debugging
feedback that you might expect when compiling these.

The other way around
Using C within Go is obviously a potentially powerful tool for code migration,
implementing lower-level code, and roping in other developers, but what about
the inverse? Just as you can call C from within Go, you can call Go functions as
external functions within your embedded C.

The end game here is the ability to work with and within C and Go in the same
application. By far the easiest way to handle this is by using gccgo, which is a
frontend for GCC. This is different than the built-in Go compiler; it is possible
to go back and forth between C and Go without gccgo, but using it makes this
process much simpler.

Data Integrity in an Application

[450]

gopart.go

The following is the code for the Go part of the interaction, which the C part will
call as an external function:

package main

func MyGoFunction(num C.int) int {

 squared := num * num
 fmt.Println(num,"squared is",squared)
 return squared
}

cpart.c

Now for the C part, where we make our call to our Go application's exported
function MyGoFunction, as shown in the following code snippet:

#include <stdio.h>

extern int square_it(int) __asm__ ("cross.main.MyGoFunction")

int main() {

 int output = square_it(5)
 printf("Output: %d",output)
 return 0;
}

Makefile

Unlike using C directly in Go, at present, doing the inverse requires the use of a
makefile for C compilation. Here's one that you can use to get an executable from
the earlier simple example:

all: main

main: cpart.o cpart.c
 gcc cpart.o cpart.c -o main

gopart.o: gopart.go
 gccgo -c gopart.go -o gopart.o -fgo-prefix=cross

clean:
 rm -f main *.o

Chapter 4

[451]

Running the makefile here should produce an executable file that calls the function
from within C.

However, more fundamentally, cgo allows you to define your functions as external
functions for C directly:

package output

import "C"

//export MyGoFunction
func MyGoFunction(num int) int {

 squared := num * num
 return squared
}

Next, you'll need to use the cgo tool directly to generate header files for C as shown
in the following line of code:

go tool cgo goback.go

At this point, the Go function is available for use in your C application:

#include <stdio.h>
#include "_obj/_cgo_export.h"

extern int MyGoFunction(int num);

int main() {

 int result = MyGoFunction(5);
 printf("Output: %d",result);
 return 0;

}

Note that if you export a Go function that contains more than one return value,
it will be available as a struct in C rather than a function, as C does not provide
multiple variables returned from a function.

Data Integrity in an Application

[452]

At this point, you may be realizing that the true power of this functionality is the
ability to interface with a Go application directly from existing C (or even C++)
applications.

While not necessarily a true API, you can now treat Go applications as linked
libraries within C apps and vice versa.

One caveat about using //export directives: if you do this, your C code must
reference these as extern-declared functions. As you may know, extern is used
when a C application needs to call a function from another linked C file.

When we build our Go code in this manner, cgo generates the header file _cgo_
export.h, as you saw earlier. If you want to take a look at that code, it can help
you understand how Go translates compiled applications into C header files for
this type of use:

/* Created by cgo - DO NOT EDIT. */
#include "_cgo_export.h"

extern void crosscall2(void (*fn)(void *, int), void *, int);

extern void _cgoexp_d133c8d0d35b_MyGoFunction(void *, int);

GoInt64 MyGoFunction(GoInt p0)
{
 struct {
 GoInt p0;
 GoInt64 r0;
 } __attribute__((packed)) a;
 a.p0 = p0;
 crosscall2(_cgoexp_d133c8d0d35b_MyGoFunction, &a, 16);
 return a.r0;
}

You may also run into a rare scenario wherein the C code is not exactly as you
expect, and you're unable to cajole the compiler to produce what you expect. In
that case, you're always free to modify the header file before the compilation of
your C application, despite the DO NOT EDIT warning.

Chapter 4

[453]

Getting even lower – assembly in Go
If you can shoot your foot off with C and you can blow your leg off with C++, just
imagine what you can do with assembly in Go.

It isn't possible to use assembly directly in Go, but as Go provides access to C directly
and C provides the ability to call inline assembly, you can indirectly use it in Go.

But again, just because something is possible doesn't mean it should be done—if you
find yourself in need of assembly in Go, you should consider using assembly directly
and connecting via an API.

Among the many roadblocks that you may encounter with assembly in (C and
then in) Go is the lack of portability. Writing inline C is one thing—your code
should be relatively transferable between processor instruction sets and operating
systems—but assembly is obviously something that requires a lot of specificity.

All that said, it's certainly better to have the option to shoot yourself in the foot
whether you choose to take the shot or not. Use great care when considering whether
you need C or assembly directly in your Go application. If you can get away with
communicating between dissonant processes through an API or interprocess
conduit, always take that route first.

One very obvious drawback of using assembly in Go (or on its own or in C) is you
lose the cross-compilation capabilities that Go provides, so you'd have to modify
your code for every destination CPU architecture. For this reason, the only practical
times to use Go in C are when there is a single platform on which your application
should run.

Here's an example of what an ASM-in-C-in-Go application might look like. Keep in
mind that we've included no ASM code, because it varies from one processor type
to another. Experiment with some boilerplate assembly in the following __asm__
section:

package main

/*
#include <stdio.h>

void asmCall() {

__asm__("");
 printf("I come from a %s","C function with embedded asm\n");

Data Integrity in an Application

[454]

}
*/
import "C"

func main() {

 C.asmCall()

}

If nothing else, this may provide an avenue for delving deeper into ASM even if
you're familiar with neither assembly nor C itself. The more high-level you consider
C and Go to be, the more practical you might see this.

For most uses, Go (and certainly C) is low-level enough to be able to squeeze out any
performance hiccups without landing at assembly. It's worth noting again that while
you do lose some immediate control of memory and pointers in Go when you invoke
C applications, that caveat applies tenfold with assembly. All of those nifty tools that
Go provides may not work reliably or not work at all. If you think about the Go race
detector, consider the following application:

package main

/*
int increment(int i) {
 i++;
 return i;
}
*/
import "C"
import "fmt"

var myNumber int

func main() {
 fmt.Println(myNumber)

 for i:=0;i<100;i++ {
 myNumber = int(C.increment(C.int(myNumber)))
 fmt.Println(myNumber)
 }

}

Chapter 4

[455]

You can see how tossing your pointers around between Go and C might leave you
out in the dark when you don't get what you expect out of the program.

Keep in mind that here there is a somewhat unique and perhaps unexpected kicker
to using goroutines with cgo; they are treated by default as blocking. This isn't to say
that you can't manage concurrency within C, but it won't happen by default. Instead,
Go may well launch another system thread. You can manage this to some degree
by utilizing the runtime function runtime.LockOSThread(). Using LockOSThread
tells Go that a particular goroutine should stay within the present thread and no
other concurrent goroutine may use this thread until runtime.UnlockOSThread()
is called.

The usefulness of this depends heavily on the necessity to call C or a C library
directly; some libraries will play happily as new threads are created, a few others
may segfault.

Another useful runtime call you should find useful within your Go
code is NumGcoCall(). This returns the number of cgo calls made
by a current process. If you need to lock and unlock threads, you can
also use this to build an internal queue report to detect and prevent
deadlocks.

None of this precludes the possibility of race conditions should you choose to mix
and match Go and C within goroutines.

Of course, C itself has a few race detector tools available. Go's race detector itself is
based on the ThreadSanitizer library. It should go without saying that you probably
do not want several tools that accomplish the same thing within a single project.

Distributed Go
So far, we've talked quite a bit about managing data within single machines, though
with one or more cores. This is complicated enough as is. Preventing race conditions
and deadlocks can be hard to begin with, but what happens when you introduce
more machines (virtual or real) to the mix?

Data Integrity in an Application

[456]

The first thing that should come to mind is that you can throw out a lot of the
inherent tools that Go provides, and to a large degree that's true. You can mostly
guarantee that Go can handle internal locking and unlocking of data within its own,
singular goroutines and channels, but what about one or more additional instances
of an application running? Consider the following model:

Here we see that either of these threads across either process could be reading from
or writing to our Critical Data at any given point. With that in mind, there exists a
need to coordinate access to that data.

At a very high level, there are two direct strategies for handling this, a distributed
lock or consistency hash table (consistent hashing).

The first strategy is an extension of mutual exclusions except that we do not
have direct and shared access to the same address space, so we need to create an
abstraction. In other words, it's our job to concoct a lock mechanism that's visible
to all available external entities.

The second strategy is a pattern designed specifically for caching and cache
validation/invalidation, but it has relevancy here as well, because you can use
it to manage where data lives in the more global address space.

However, when it comes to ensuring consistency across these systems, we need to
go deeper than this general, high-level approach.

Chapter 4

[457]

Split this model down the middle and it becomes easy: channels will handle the
concurrent flow of data and data structures, and where they don't, you can use
mutexes or low-level atomicity to add additional safeguards.

However, look to the right. Now you have another VM/instance or machine
attempting to work with the same data. How can we make sure that we do not
encounter reader/writer problems?

Some common consistency models
Luckily, there are some non-core Go solutions and strategies that we can utilize
to improve our ability to control data consistency.

Let's briefly look at a few consistency models that we can employ to manage our
data in distributed systems.

Distributed shared memory
On its own, a Distributed Shared Memory (DSM) system does not intrinsically
prevent race conditions, as it is merely a method for more than one system to share
real or partitioned memory.

In essence, you can imagine two systems with 1 GB of memory, each allocating 500
MB to a shared memory space that is accessible and writable by each. Dirty reads are
possible as are race conditions unless explicitly designed. The following figure is a
visual representation of how two systems can coordinate using shared memory:

We'll look at one prolific but simple example of DSM shortly, and play with a library
available to Go for test driving it.

Data Integrity in an Application

[458]

First-in-first-out – PRAM
Pipelined RAM (PRAM) consistency is a form of first-in-first-out methodology,
in which data can be read in order of the queued writes. This means that writes
read by any given, separate process may be different. The following figure
represents this concept:

Looking at the master-slave model
The master-slave consistency model is similar to the leader/follower model that we'll
look at shortly, except that the master manages all operations on data and broadcasts
rather than receiving write operations from a slave. In this case, replication is the
primary method of transmission of changes to data from the master to the slave.
In the following diagram, you will find a representation of the master-slave model
with a master server and four slaves:

While we can simply duplicate this model in Go, we have more elegant solutions
available to us.

Chapter 4

[459]

The producer-consumer problem
In the classic producer-consumer problem, the producer writes chunks of data to a
conduit/buffer, while a consumer reads chunks. The issue arises when the buffer is
full: if the producer adds to the stack, the data read will not be what you intend. To
avoid this, we employ a channel with waits and signals. This model looks a bit like
the following figure:

If you're looking for the semaphore implementation in Go, there is no explicit usage
of the semaphore. However, think about the language here—fixed-size channels with
waits and signals; sounds like a buffered channel. Indeed, by providing a buffered
channel in Go, you give the conduit here an explicit length; the channel mechanism
gives you the communication for waits and signals. This is incorporated in Go's
concurrency model. Let's take a quick look at a producer-consumer model as shown
in the following code:

package main

import(
 "fmt"
)

var comm = make(chan bool)
var done = make(chan bool)

func producer() {
 for i:=0; i< 10; i++ {
 comm <- true
 }

Data Integrity in an Application

[460]

 done <- true
}
func consumer() {
 for {
 communication := <-comm
 fmt.Println("Communication from producer
 received!",communication)
 }
}

func main() {
 go producer()
 go consumer()
 <- done
 fmt.Println("All Done!")
}

Looking at the leader-follower model
In the leader/follower model, writes are broadcasted from a single source to any
followers. Writes can be passed through any number of followers or be restricted
to a single follower. Any completed writes are then broadcasted to the followers.
This can be visually represented as the following figure:

We can see a channel analog here in Go as well. We can, and have, utilized a single
channel to handle broadcasts to and from other followers.

Chapter 4

[461]

Atomic consistency / mutual exclusion
We've looked at atomic consistency quite a bit. It ensures that anything that is not
created and used at essentially the same time will require serialization to guarantee
the strongest form of consistency. If a value or dataset is not atomic in nature,
we can always use a mutex to force linearizability on that data.

Serial or sequential consistency is inherently strong, but can also lead to performance
issues and degradation of concurrency.

Atomic consistency is often considered the strongest form of ensuring consistency.

Release consistency
The release consistency model is a DSM variant that can delay a write's
modifications until the time of first acquisition from a reader. This is known
as lazy release consistency. We can visualize lazy release consistency in the
following serialized model:

This model as well as an eager release consistency model both require an
announcement of a release (as the name implies) when certain conditions are met.
In the eager model, that condition requires that a write would be read by all read
processes in a consistent manner.

In Go, there exists alternatives for this, but there are also packages out there if
you're interested in playing with it.

Data Integrity in an Application

[462]

Using memcached
If you're not familiar with memcache(d), it's a wonderful and seemingly obvious way
to manage data across distributed systems. Go's built-in channels and goroutines
are fantastic to manage communication and data integrity within a single machine's
processes, but neither are built for distributed systems out of the box.

Memcached, as the name implies, allows data sharing memory among multiple
instances or machines. Initially, memcached was intended to store data for quick
retrieval. This is useful for caching data for systems with high turnover such as
web applications, but it's also a great way to easily share data across multiple
servers and/or to utilize shared locking mechanisms.

In our earlier models, memcached falls under DSM. All available and invoked
instances share a common, mirrored memory space within their respective
memories.

It's worth pointing out that race conditions can and do exist within memcached,
and you still need a way to deal with that. Memcached provides one method to share
data across distributed systems, but does not guarantee data atomicity. Instead,
memcached operates on one of two methods for invalidating cached data as follows:

• Data is explicitly assigned a maximum age (after which, it is removed from
the stack)

• Or data is pushed from the stack due to all available memory being used by
newer data

It's important to note that storage within memcache(d) is, obviously, ephemeral and
not fault resistant, so it should only be used where data should be passed without
threat of critical application failure.

At the point where either of these conditions is met, the data disappears and the
next call to this data will fail, meaning the data needs to be regenerated. Of course,
you can work with some elaborate lock generation methods to make memcached
operate in a consistent manner, although this is not standard built-in functionality
of memcached itself. Let's look at a quick example of memcached in Go using Brad
Fitz's gomemcache interface (https://github.com/bradfitz/gomemcache):

package main

import (
 "github.com/bradfitz/gomemcache/memcache"
 "fmt"
)

https://github.com/bradfitz/gomemcache
https://github.com/bradfitz/gomemcache
https://github.com/bradfitz/gomemcache

Chapter 4

[463]

func main() {
 mC := memcache.New("10.0.0.1:11211", "10.0.0.2:11211",
 "10.0.0.3:11211", "10.0.0.4:11211")
 mC.Set(&memcache.Item{Key: "data", Value: []byte("30") })

 dataItem, err := mc.Get("data")
}

As you might note from the preceding example, if any of these memcached clients
are writing to the shared memory at the same time, a race condition could still exist.

The key data can exist across any of the clients that have memcached connected
and running at the same time.

Any client can also unset or overwrite the data at any time.

Unlike a lot of implementations, you can set some more complex types through
memcached, such as structs, assuming they are serialized. This caveat means that
we're somewhat limited with the data we can share directly. We are obviously
unable to use pointers as memory locations will vary from client to client.

One method to handle data consistency is to design a master-slave system wherein
only one node is responsible for writes and the other clients listen for changes via
a key's existence.

We can utilize any other earlier mentioned models to strictly manage a lock on this
data, although it can get especially complicated. In the next chapter, we'll explore
some ways by which we can build distributed mutual exclusion systems, but for
now, we'll briefly look at an alternative option.

Circuit
An interesting third-party library to handle distributed concurrency that has
popped up recently is Petar Maymounkov's Go' circuit. Go' circuit attempts to
facilitate distributed coroutines by assigning channels to listen to one or more
remote goroutines.

The coolest part of Go' circuit is that simply including the package makes your
application ready to listen and operate on remote goroutines and work with
channels with which they are associated.

Go' circuit is in use at Tumblr, which proves it has some viability as a large-scale
and relatively mature solutions platform.

Data Integrity in an Application

[464]

Go' circuit can be found at https://github.com/gocircuit/
circuit.

Installing Go' circuit is not simple—you cannot run a simple go get on it—and
requires Apache Zookeeper and building the toolkit from scratch.

Once done, it's relatively simple to have two machines (or two processes if running
locally) running Go code to share a channel. Each cog in this system falls under a
sender or listener category, just as with goroutines. Given that we're talking about
network resources here, the syntax is familiar with some minor modifications:

homeChannel := make(chan bool)

circuit.Spawn("etphonehome.example.com",func() {
 homeChannel <- true
})

for {
 select {
 case response := <- homeChannel:
 fmt.Print("E.T. has phoned home with:",response)

 }
}

You can see how this might make the communication between disparate machines
playing with the same data a lot cleaner, whereas we used memcached primarily as
a networked in-memory locking system. We're dealing with native Go code directly
here; we have the ability to use circuits like we would in channels, without worrying
about introducing new data management or atomicity issues. In fact, the circuit is
built upon a goroutine itself.

This does, of course, still introduce some additional management issues, primarily as
it pertains to knowing what remote machines are out there, whether they are active,
updating the machines' statuses, and so on. These types of issues are best suited for
a suite such as Apache Zookeeper to handle coordination of distributed resources.
It's worth noting that you should be able to produce some feedback from a remote
machine to a host: the circuit operates via passwordless SSH.

That also means you may need to make sure that user rights are locked down
and that they meet with whatever security policies you may have in place.

https://github.com/gocircuit/circuit
https://github.com/gocircuit/circuit

Chapter 4

[465]

You can find Apache Zookeeper at http://zookeeper.
apache.org/.

Summary
Equipped now with some methods and models to manage not only local data
across single or multithreaded systems, but also distributed systems, you should
start to feel pretty comfortable with protecting the validity of data in concurrent
and parallel processes.

We've looked at both forms of mutual exclusions for read and read/write locks,
and we have started to apply these to distributed systems to prevent blocks and
race conditions across multiple networked systems.

In the next chapter, we'll explore these exclusion and data consistency concepts
a little deeper, building non-blocking networked applications and learn to work
with timeouts and give parallelism with channels a deeper look.

We'll also dig a little deeper into the sync and OS packages, in particular looking
at the sync.atomic operations.

http://zookeeper.apache.org/
http://zookeeper.apache.org/

Locks, Blocks, and
Better Channels

Now that we're starting to get a good grasp of utilizing goroutines in safe and
consistent ways, it's time to look a bit more at what causes code blocking and
deadlocks. Let's also explore the sync package and dive into some profiling
and analysis.

So far, we've built some relatively basic goroutines and complementary channels,
but we now need to utilize some more complex communication channels between
our goroutines. To do this, we'll implement more custom data types and apply them
directly to channels.

We've not yet looked at some of Go's lower-level tools for synchronization
and analysis, so we'll explore sync.atomic, a package that—along with sync.
Mutex—allows for more granular control over state.

Finally, we'll delve into pprof, a fabulous tool provided by Go that lets us analyze
our binaries for detailed information about our goroutines, threads, overall heap,
and blocking profiles.

Armed with some new tools and methods to test and analyze our code, we'll be
ready to generate a robust, highly-scalable web server that can be used to safely
and quickly handle any amount of traffic thrown at it.

Locks, Blocks, and Better Channels

[468]

Understanding blocking methods in Go
So far, we've encountered a few pieces of blocking code, intentional and unintentional,
through our exploration and examples. At this point, it's prudent to look at the various
ways we can introduce (or inadvertently fall victim to) blocking code.

By looking at the various ways Go code can be blocked, we can also be better prepared
to debug cases when concurrency is not operating as expected in our application.

Blocking method 1 – a listening, waiting
channel
The most concurrently-focused way to block your code is by leaving a serial
channel listening to one or more goroutines. We've seen this a few times by now,
but the basic concept is shown in the following code snippet:

func thinkAboutKeys() {
 for {
 fmt.Println("Still Thinking")
 time.Sleep(1 * time.Second)
 }
}

func main() {
 fmt.Println("Where did I leave my keys?")

 blockChannel := make(chan int)
 go thinkAboutKeys()

 <-blockChannel

 fmt.Println("OK I found them!")
}

Chapter 5

[469]

Despite the fact that all of our looping code is concurrent, we're waiting on a signal
for our blockChannel to continue linear execution. We can, of course, see this in
action by sending along the channel, thus continuing code execution as shown in
the following code snippet:

func thinkAboutKeys(bC chan int) {
 i := 0
 max := 10
 for {
 if i >= max {
 bC <- 1
 }
 fmt.Println("Still Thinking")
 time.Sleep(1 * time.Second)
 i++
 }
}

Here, we've modified our goroutine function to accept our blocking channel
and deliver an end message to it when we've hit our maximum. These kinds of
mechanisms are important for long-running processes because we may need to
know when and how to kill them.

Sending more data types via channels
Go's use of channels (structs and functions) as first-class citizens provides us
with a lot of interesting ways of executing, or at least trying, new approaches
of communication between channels.

One such example is to create a channel that handles translation through a function
itself, and instead of communicating directly through the standard syntax, the
channel executes its function. You can even do this on a slice/array of functions
iterating through them in the individual functions.

Locks, Blocks, and Better Channels

[470]

Creating a function channel
So far, we've almost exclusively worked in single data type and single value
channels. So, let's try sending a function across a channel. With first-class channels,
we need no abstraction to do this; we can just send almost anything directly over
a channel as shown in the following code snippet:

func abstractListener(fxChan chan func() string) {

 fxChan <- func() string {

 return "Sent!"
 }
}

func main() {

 fxChan := make (chan func() string)
 defer close(fxChan)
 go abstractListener(fxChan)
 select {
 case rfx := <- fxChan:
 msg := rfx()
 fmt.Println(msg)
 fmt.Println("Received!")

 }

}

This is like a callback function. However, it also is intrinsically different, as it is not
just the method called after the execution of a function, but also serves as the mode
of communication between functions.

Keep in mind that there are often alternatives to passing functions across channels, so
this will likely be something very specific to a use case rather than a general practice.

Since your channel's type can be virtually any available type, this functionality
opens up a world of possibilities, which can be potentially confusing abstractions.
A struct or interface as a channel type is pretty self-explanatory, as you can make
application-related decisions on any of its defined properties.

Let's see an example of using an interface in this way in the next section.

Chapter 5

[471]

Using an interface channel
As with our function channel, being able to pass an interface (which is a
complementary data type) across a channel can be incredibly useful. Let's look
at an example of sending across an interface:

type Messenger interface {
 Relay() string
}

type Message struct {
 status string
}

func (m Message) Relay() string {
 return m.status
}

func alertMessages(v chan Messenger, i int) {
 m := new(Message)
 m.status = "Done with " + strconv.FormatInt(int64(i),10)
 v <- m
}

func main () {

 msg := make(chan Messenger)

 for i:= 0; i < 10; i++ {
 go alertMessages(msg,i)
 }

 select {
 case message := <-msg:
 fmt.Println (message.Relay())
 }
 <- msg
}

This is a very basic example of how to utilize interfaces as channels; in the previous
example, the interface itself is largely ornamental. In actuality, we're passing
newly-created message types through the interface's channel rather than interacting
directly with the interface.

Locks, Blocks, and Better Channels

[472]

Using structs, interfaces, and more complex channels
Creating a custom type for our channel allows us to dictate the way our intra-channel
communication will work while still letting Go dictate the context switching and
behind-the-scenes scheduling.

Ultimately, this is mostly a design consideration. In the previous examples, we used
individual channels for specific pieces of communication in lieu of a one-size-fits-all
channel that passes a multitude of data. However, you may also find it advantageous
to use a single channel to handle a large amount of communication between
goroutines and other channels.

The primary consideration in deciding whether to segregate channels into individual
bits of communication or a package of communications depends on the aggregate
mutability of each.

For example, if you'll always want to send a counter along with a function or string
and they will always be paired in terms of data consistency, such a method might
make sense. If any of those components can lose synchronicity en route, it's more
logical to keep each piece independent.

Maps in Go

As mentioned, maps in Go are like hash tables elsewhere and
immediately related to slices or arrays.

In the previous example we were checking to see if a username/
key exists already; for this purpose Go provides a simple method for
doing so. When attempting to retrieve a hash with a nonexistent key,
a zero value is returned, as shown in the following lines of code:

if Users[user.name] {
 fmt.Fprintln(conn, "Unfortunately, that username
is in
 use!");

}

This makes it syntactically simple and clean to test against a map
and its keys.

One of the best features of maps in Go is the ability to make keys out
of any comparable type, which includes strings, integers, Booleans
as well as any map, struct, slice, or channel that is comprised
exclusively of those types.

This one-to-many channel can work as a master-slave or broadcaster-subscriber
model. We'll have a channel that listens for messages and routes them to appropriate
users and a channel that listens for broadcast messages and queues them to all users.

Chapter 5

[473]

To best demonstrate this, we'll create a simple multiuser chat system that allows
Twitter style @user communication with a single user, with the ability to broadcast
standard messages to all users and creates a universal broadcast chat note that
can be read by all users. Both will be simple, custom type struct channels, so we
can delineate various communication pieces.

Structs in Go

As a first-class, anonymous, and extensible type, a struct is
one of the most versatile and useful data constructs available.
It's simple to create analogs to other data structures such as
databases and data stores, and while we hesitate to call them
objects they can certainly be viewed as such.

The rule of thumb as it pertains to using structs within
functions is to pass by reference rather than by value if the
struct is particularly complex. Two points of clarification are
as follows:

• Reference is in quotations because (and this is
validated by Go's FAQ) technically everything in Go
is passed by value. By that we mean that though a
reference to a pointer still exists, at some step in the
process the value(s) is copied.

• "Particularly complex" is, understandably, tough to
quantify, so personal judgment might come into play.
However, we can consider a simple struct one with no
more than five methods or properties.

You can think of this in terms of a help desk system, and while in the present day
we'd be unlikely to create a command-line interface for such a thing, eschewing the
web portion allows us to gloss over all of the client-side code that isn't necessarily
relevant to Go.

You could certainly take such an example and extrapolate it to the Web utilizing
some frontend libraries for asynchronous functionality (such as backbone.js or
socket.io).

To accomplish this, we'll need to create both a client and a server application, and
we'll try to keep each as bare bone as possible. You can clearly and simply augment
this to include any functionality you see fit such as making Git comments and
updating a website.

We'll start with the server, which will be the most complicated part. The client
application will mostly receive messages back through the socket, so much of
the reading and routing logic will be invisible to the client-side of the process.

Locks, Blocks, and Better Channels

[474]

The net package – a chat server with interfaced
channels
Here, we'll need to introduce a relevant package that will be required to handle most
of the communication for our application(s). We've touched on the net package a bit
while dabbling in the SVG output generation example to show concurrency—net/
http is just a small part of a broader, more complex, and more feature-full package.

The basic components that we'll be using will be a TCP listener (server) and a TCP
dialer (client). Let's look at the basic setup for these.

Server

Listening on a TCP port couldn't be easier. Simply initiate the net.Listen()
method and handle the error as shown in the following lines of code:

 listener, err := net.Listen("tcp", ":9000")
 if err != nil {
 fmt.Println ("Could not start server!")
 }

If you get an error starting the server, check your firewall or modify the port—it's
possible that something is utilizing port 9000 on your system.

As easy as that is, it's just as simple on our client/dialer side.

Client

In this case, we have everything running on localhost as shown in the following
lines of code. However, in a real-world application we'd probably have an intranet
address used here:

 conn, err := net.Dial("tcp","127.0.0.1:9000")
 if err != nil {
 fmt.Println("Could not connect to server!")
 }

In this application, we demonstrate two different ways to handle byte buffers of
unknown lengths on Read(). The first is a rather crude method of trimming a string
using strings.TrimRight(). This method allows you to define characters you
aren't interested in counting as part of the input as shown in the following line of
code. Mostly, it's whitespace characters that we can assume are unused parts of the
buffer length.

sendMessage := []byte(cM.name + ": " +
 strings.TrimRight(string(buf)," \t\r\n"))

Chapter 5

[475]

Dealing with strings this way is often both inelegant and unreliable. What happens
if we get something we don't expect here? The string will be the length of the buffer,
which in this case is 140 bytes.

The other way we deal with this is by using the end of the buffer directly. In this
case, we assign the n variable to the conn.Read() function, and then can use that
as a buffer length in the string to buffer conversion as shown in the following lines
of code:

messBuff := make([]byte,1024)
n, err := conn.Read(messBuff)
if err != nil {

}
message := string(messBuff[:n])

Here we're taking the first n bytes of the message buffer's received value.

This is more reliable and efficient, but you will certainly run into text ingestion
cases where you will want to remove certain characters to create cleaner input.

Each connection in this application is a struct and each user is as well. We keep
track of our users by pushing them to the Users slice as they join.

The selected username is a command-line argument as follows:

./chat-client nathan

chat-client.exe nathan

We do not check to to ensure there is only one user with that name, so that
logic might be required, particularly if chats with direct messages contain
sensitive information.

Handling direct messages
For the most part, this chat client is a simple echo server, but as mentioned, we also
include an ability to do non-globally broadcast messages by invoking the Twitter
style @ syntax.

We handle this mainly through regular expressions, wherein if a message matches
@user then only that user will see the message; otherwise, it's broadcasted to all.
This is somewhat inelegant, because senders of the direct message will not see their
own direct message if their usernames do not match the intended names of the users.

Locks, Blocks, and Better Channels

[476]

To do this, we direct every message through a evalMessageRecipient() function
before broadcasting. As this is relying on user input to create the regular expression
(in the form of the username), please take note that we should escape this with the
regexp.QuoteMeta() method to prevent regex failures.

Let's first examine our chat server, which is responsible for maintaining all
connections and passing them to goroutines to listen and receive, as shown in the
following code:

chat-server.go
package main

import
(
 "fmt"
 "strings"
 "net"
 "strconv"
 "regexp"
)

var connectionCount int
var messagePool chan(string)

const (
 INPUT_BUFFER_LENGTH = 140
)

We utilize a maximum character buffer. This restricts our chat messages to no more
than 140 characters. Let's look at our User struct to see the information we might
keep about a user that joins, as follows:

type User struct {
 Name string
 ID int
 Initiated bool

Chapter 5

[477]

The initiated variable tells us that User is connected after a connection and
announcement. Let's examine the following code to understand the way we'd listen
on a channel for a logged-in user:

 UChannel chan []byte
 Connection *net.Conn
}
The User struct contains all of the information we will maintain
 for each connection. Keep in mind here we don't do any sanity
 checking to make sure a user doesn't exist – this doesn't
 necessarily pose a problem in an example, but a real chat client
 would benefit from a response should a user name already be
 in use.

func (u *User) Listen() {
 fmt.Println("Listening for",u.Name)
 for {
 select {
 case msg := <- u.UChannel:
 fmt.Println("Sending new message to",u.Name)
 fmt.Fprintln(*u.Connection,string(msg))

 }
 }
}

This is the core of our server: each User gets its own Listen() method, which
maintains the User struct's channel and sends and receives messages across it. Put
simply, each user gets a concurrent channel of his or her own. Let's take a look at the
ConnectionManager struct and the Initiate() function that creates our server in
the following code:

type ConnectionManager struct {
 name string
 initiated bool
}

func Initiate() *ConnectionManager {
 cM := &ConnectionManager{
 name: "Chat Server 1.0",
 initiated: false,
 }

 return cM
}

Locks, Blocks, and Better Channels

[478]

Our ConnectionManager struct is initiated just once. This sets some relatively
ornamental attributes, some of which could be returned on request or on chat login.
We'll examine the evalMessageRecipient function that attempts to roughly identify
the intended recipient of any message sent as follows:

func evalMessageRecipient(msg []byte, uName string) bool {
 eval := true
 expression := "@"
 re, err := regexp.MatchString(expression, string(msg))
 if err != nil {
 fmt.Println("Error:", err)
 }
 if re == true {
 eval = false
 pmExpression := "@" + uName
 pmRe, pmErr := regexp.MatchString(pmExpression, string(msg))
 if pmErr != nil {
 fmt.Println("Regex error", err)
 }
 if pmRe == true {
 eval = true
 }
 }
 return eval
}

This is our router of sorts taking the @ part of the string and using it to detect an
intended recipient to hide from public consumption. We do not return an error
if the user doesn't exist or has left the chat.

The format for regular expressions using the regexp package relies
on the re2 syntax, which is described at https://code.google.
com/p/re2/wiki/Syntax.

Let's take a look at the code for the Listen() method of the ConnectionManager
struct:

func (cM *ConnectionManager) Listen(listener net.Listener) {
 fmt.Println(cM.name, "Started")
 for {

 conn, err := listener.Accept()
 if err != nil {
 fmt.Println("Connection error", err)
 }

https://code.google.com/p/re2/wiki/Syntax
https://code.google.com/p/re2/wiki/Syntax

Chapter 5

[479]

 connectionCount++
 fmt.Println(conn.RemoteAddr(), "connected")
 user := User{Name: "anonymous", ID: 0, Initiated: false}
 Users = append(Users, &user)
 for _, u := range Users {
 fmt.Println("User online", u.Name)
 }
 fmt.Println(connectionCount, "connections active")
 go cM.messageReady(conn, &user)
 }
}

func (cM *ConnectionManager) messageReady(conn net.Conn, user
 *User) {
 uChan := make(chan []byte)

 for {

 buf := make([]byte, INPUT_BUFFER_LENGTH)
 n, err := conn.Read(buf)
 if err != nil {
 conn.Close()
 conn = nil
 }
 if n == 0 {
 conn.Close()
 conn = nil
 }
 fmt.Println(n, "character message from user", user.Name)
 if user.Initiated == false {
 fmt.Println("New User is", string(buf))
 user.Initiated = true
 user.UChannel = uChan
 user.Name = string(buf[:n])
 user.Connection = &conn
 go user.Listen()

 minusYouCount := strconv.FormatInt(int64(connectionCount-1),
 10)
 conn.Write([]byte("Welcome to the chat, " + user.Name + ",
 there are " + minusYouCount + " other users"))

 } else {

Locks, Blocks, and Better Channels

[480]

 sendMessage := []byte(user.Name + ": " +
 strings.TrimRight(string(buf), " \t\r\n"))

 for _, u := range Users {
 if evalMessageRecipient(sendMessage, u.Name) == true {
 u.UChannel <- sendMessage
 }

 }

 }

 }
}geReady (per connectionManager) function instantiates new
 connections into a User struct, utilizing first sent message as
 the user's name.

var Users []*User
This is our unbuffered array (or slice) of user structs.
func main() {
 connectionCount = 0
 serverClosed := make(chan bool)

 listener, err := net.Listen("tcp", ":9000")
 if err != nil {
 fmt.Println ("Could not start server!",err)
 }

 connManage := Initiate()
 go connManage.Listen(listener)

 <-serverClosed
}

As expected, main() primarily handles the connection and error and keeps our
server open and nonblocked with the serverClosed channel.

Chapter 5

[481]

There are a number of methods we could employ to improve the way we route
messages. The first method would be to invoke a map (or hash table) bound to
a username. If the map's key exists, we could return some error functionality if
a user already exists, as shown in the following code snippet:

type User struct {
 name string
}
var Users map[string] *User

func main() {
 Users := make(map[string] *User)
}

Examining our client
Our client application is a bit simpler primarily because we don't care as much
about blocking code.

While we do have two concurrent operations (wait for the message and wait for
user input to send the message), this is significantly less complicated than our
server, which needs to concurrently listen to each created user and distribute sent
messages, respectively.

Let's now compare our chat client to our chat server. Obviously, the client has less
overall maintenance of connections and users, and so we do not need to use nearly
as many channels. Let's take a look at our chat client's code:

chat-client.go
package main

import
(
 "fmt"
 "net"
 "os"
 "bufio"
 "strings"
)

Locks, Blocks, and Better Channels

[482]

type Message struct {
 message string
 user string
}

var recvBuffer [140]byte

func listen(conn net.Conn) {
 for {

 messBuff := make([]byte,1024)
 n, err := conn.Read(messBuff)
 if err != nil {
 fmt.Println("Read error",err)
 }
 message := string(messBuff[:n])
 message = message[0:]

 fmt.Println(strings.TrimSpace(message))
 fmt.Print("> ")
 }

}

func talk(conn net.Conn, mS chan Message) {

 for {
 command := bufio.NewReader(os.Stdin)
 fmt.Print("> ")
 line, err := command.ReadString('\n')

 line = strings.TrimRight(line, " \t\r\n")
 _, err = conn.Write([]byte(line))
 if err != nil {
 conn.Close()
 break

 }
 doNothing(command)
 }

}

Chapter 5

[483]

func doNothing(bf *bufio.Reader) {
 // A temporary placeholder to address io reader usage

}
func main() {

 messageServer := make(chan Message)

 userName := os.Args[1]

 fmt.Println("Connecting to host as",userName)

 clientClosed := make(chan bool)

 conn, err := net.Dial("tcp","127.0.0.1:9000")
 if err != nil {
 fmt.Println("Could not connect to server!")
 }
 conn.Write([]byte(userName))
 introBuff := make([]byte,1024)
 n, err := conn.Read(introBuff)
 if err != nil {

 }
 message := string(introBuff[:n])
 fmt.Println(message)

 go talk(conn,messageServer)
 go listen(conn)

 <- clientClosed
}

Blocking method 2 – the select statement
in a loop
Have you noticed yet that the select statement itself blocks? Fundamentally, the
select statement is not different from an open listening channel; it's just wrapped
in conditional code.

Locks, Blocks, and Better Channels

[484]

The <- myChannel channel operates the same way as the following code snippet:

select {
 case mc := <- myChannel:
 // do something
}

An open listening channel is not a deadlock as long as there are no goroutines
sleeping. You'll find this on channels that are listening but will never receive
anything, which is another method of basically waiting.

These are useful shortcuts for long-running applications you wish to keep alive
but you may not necessarily need to send anything along that channel.

Cleaning up goroutines
Any channel that is left waiting and/or left receiving will result in a deadlock.
Luckily, Go is pretty adept at recognizing these and you will almost without fail
end up in a panic when running or building the application.

Many of our examples so far have utilized the deferred close() method of
immediately and cleanly grouping together similar pieces of code that should
execute at different points.

While garbage collection handles a lot of the cleanup, we're largely left to take
care of open channels to ensure we don't have a process waiting to receive and/or
something waiting to send, both waiting at the same time for each other. Luckily,
we'll be unable to compile any such program with a detectable deadlock condition,
but we also need to manage closing channels that are left waiting.

Quite a few of the examples so far have ended with a generic integer or Boolean
channel that just waits—this is employed almost exclusively for the channel's
blocking effect and allows us to demonstrate the effects and output of concurrent
code while the application is still running. In many cases, this generic channel is
an unnecessary bit of syntactical cruft as shown in the following lines of code:

<-youMayNotNeedToDoThis
close(youmayNotNeedToDoThis)

The fact that there's no assignment happening is a good indicator this is an example
of such cruft. If we had instead modified that to include an assignment, the previous
code would be changed to the following instead:

v := <-youMayNotNeedToDoThis

It might indicate that the value is useful and not just arbitrary blocking code.

Chapter 5

[485]

Blocking method 3 – network connections
and reads
If you run the code from our earlier chat server's client without starting the server,
you'll notice that the Dial function blocks any subsequent goroutine. We can test this
by imposing a longer-than-normal timeout on the connection or by simply closing
the client application after logging in, as we did not implement a method for closing
the TCP connection.

As the network reader we're using for the connection is buffered, we'll always have
a blocking mechanism while waiting for data via TCP.

Creating channels of channels
The preferred and sanctioned way of managing concurrency and state is exclusively
through channels.

We've demonstrated a few more complex types of channels, but we haven't looked
at what can become a daunting but powerful implementation: channels of channels.
This might at first sound like some unmanageable wormhole, but in some situations
we want a concurrent action to generate more concurrent actions; thus, our
goroutines should be capable of spawning their own.

As always, the way you manage this is through design while the actual code may
simply be an aesthetic byproduct here. Building an application this way should make
your code more concise and clean most of the time.

Let's revisit a previous example of an RSS feed reader to demonstrate how we could
manage this, as shown in the following code:

package main

import (
 "fmt"
)

type master chan Item

var feedChannel chan master
var done chan bool

Locks, Blocks, and Better Channels

[486]

type Item struct {
 Url string
 Data []byte
}
type Feed struct {
 Url string
 Name string
 Items []Item
}

var Feeds []Feed

func process(feedChannel *chan master, done *chan bool) {
 for _, i := range Feeds {
 fmt.Println("feed", i)
 item := Item{}
 item.Url = i.Url
 itemChannel := make(chan Item)
 *feedChannel <- itemChannel
 itemChannel <- item
 }
 *done <- true
}
func processItem(url string) {
 // deal with individual feed items here
 fmt.Println("Got url", url)
}

func main() {
 done := make(chan bool)
 Feeds = []Feed{Feed{Name: "New York Times", Url: "http://rss.nytimes.
com/services/xml/rss/nyt/HomePage.xml"},
 Feed{Name: "Wall Street Journal", Url: "http://feeds.wsjonline.com/
wsj/xml/rss/3_7011.xml"}}
 feedChannel := make(chan master)
 go func(done chan bool, feedChannel chan master) {
 for {
 select {
 case fc := <-feedChannel:
 select {
 case item := <-fc:
 processItem(item.Url)
 }

Chapter 5

[487]

 default:
 }
 }
 }(done, feedChannel)
 go process(&feedChannel, &done)
 <-done
 fmt.Println("Done!")
}

Here, we manage feedChannel as a custom struct that is itself a channel for our Item
type. This allows us to rely exclusively on channels for synchronization handled
through a semaphore-esque construct.

If we want to look at another way of handling a lower-level synchronization,
sync.atomic provides some simple iterative patterns that allow you to manage
synchronization directly in memory.

As per Go's documentation, these operations require great care and are prone to data
consistency errors, but if you need to touch memory directly, this is the way to do it.
When we talk about advanced concurrency features, we'll utilize this package directly.

Pprof – yet another awesome tool
Just when you think you've seen the entire spectrum of Go's amazing tool set, there's
always one more utility that, once you realize it exists, you'll wonder how you ever
survived without it.

Go format is great for cleaning up your code; the -race flag is essential for detecting
possible race conditions, but an even more robust, hands-in-the-dirt tool exists that is
used to analyze your final application, and that is pprof.

Google created pprof initially to analyze loop structures and memory allocation
(and related types) for C++ applications.

It's particularly useful if you think you have performance issues not uncovered by
the testing tools provided in the Go runtime. It's also a fantastic way to generate a
visual representation of the data structures in any application.

Some of this functionality also exists as part of the Go testing package and its
benchmarking tools—we'll explore that more in Chapter 7, Performance and Scalability.

Getting the runtime version of pprof to work requires a few pieces of setup first.
We'll need to include the runtime.pprof package and the flag package, which
allows command-line parsing (in this case, for the output of pprof).

Locks, Blocks, and Better Channels

[488]

If we take our chat server code, we can add a couple of lines and have the application
prepped for performance profiling.

Let's make sure we include those two packages along with our other packages. We
can use the underscore syntax to indicate to the compiler that we're only interested
in the package's side effects (meaning we get the package's initialization functions
and global variables) as shown in the following lines of code:

import
(
 "fmt"
...
 _ "runtime/pprof"
)

Next, in our main() function, we include a flag parser that will parse and interpret
the data produced by pprof as well as create the CPU profile itself if it does not exist
(and bailing if it cannot be created), as shown in the following code snippet:

var profile = flag.String("cpuprofile", "", "output pprof data to
 file")

func main() {
 flag.Parse()
 if *profile != "" {
 flag,err := os.Create(*profile)
 if err != nil {
 fmt.Println("Could not create profile",err)
 }
 pprof.StartCPUProfile(flag)
 defer pprof.StopCPUProfile()

 }
}

This tells our application to generate a CPU profiler if it does not exist, start the
profiling at the beginning of the execution, and defer the end of the profiling until
the application exits successfully.

With this created, we can run our binary with the cpuprofile flag, which tells the
program to generate a profile file as follows:

./chat-server -cpuprofile=chat.prof

For the sake of variety (and exploiting more resources arbitrarily), we'll abandon the
chat server for a moment and create a loop generating scores of goroutines before
exiting. This should give us a more exciting demonstration of profiling data than a
simple and long-living chat server would, although we'll return to that briefly:

Chapter 5

[489]

Here is our example code that generates more detailed and interesting profiling data:

package main

import (
 "flag"
 "fmt"
 "math/rand"
 "os"
 "runtime"
 "runtime/pprof"
)

const ITERATIONS = 99999
const STRINGLENGTH = 300

var profile = flag.String("cpuprofile", "", "output pprof data to
 file")

func generateString(length int, seed *rand.Rand, chHater chan
 string) string {
 bytes := make([]byte, length)
 for i := 0; i < length; i++ {
 bytes[i] = byte(rand.Int())
 }
 chHater <- string(bytes[:length])
 return string(bytes[:length])
}

func generateChannel() <-chan int {
 ch := make(chan int)
 return ch
}

func main() {

 goodbye := make(chan bool, ITERATIONS)
 channelThatHatesLetters := make(chan string)

 runtime.GOMAXPROCS(2)
 flag.Parse()
 if *profile != "" {
 flag, err := os.Create(*profile)
 if err != nil {
 fmt.Println("Could not create profile", err)
 }
 pprof.StartCPUProfile(flag)
 defer pprof.StopCPUProfile()

 }

Locks, Blocks, and Better Channels

[490]

 seed := rand.New(rand.NewSource(19))

 initString := ""

 for i := 0; i < ITERATIONS; i++ {
 go func() {
 initString = generateString(STRINGLENGTH, seed,
 channelThatHatesLetters)
 goodbye <- true
 }()

 }
 select {
 case <-channelThatHatesLetters:

 }
 <-goodbye

 fmt.Println(initString)

}

When we generate a profile file out of this, we can run the following command:

go tool pprof chat-server chat-server.prof

This will start the pprof application itself. This gives us a few commands that report
on the static, generated file as follows:

• topN: This shows the top N samples from the profile file, where N represents
the explicit number you want to see.

• web: This creates a visualization of data, exports it to SVG, and opens it in a
web browser. To get the SVG output, you'll need to install Graphviz as well
(http://www.graphviz.org/).

You can also run pprof with some flags directly to output in
several formats or launch a browser as follows:

• --text: This generates a text report
• --web: This generates an SVG and opens in the browser
• --gv: This generates the Ghostview postscript
• --pdf: This generates the PDF to output
• --SVG: This generates the SVG to output
• --gif: This generates the GIF to output

http://www.graphviz.org/

Chapter 5

[491]

The command-line results will be telling enough, but it's especially interesting to
see the blocking profile of your application presented in a descriptive, visual way as
shown in the following figure. When you're in the pprof tool, just type in web and a
browser will spawn with the CPU profiling detailed in SVG form.

The idea here is less about the text and more about the complexity

Locks, Blocks, and Better Channels

[492]

And voila, we suddenly have an insight into how our program utilizes the CPU time
consumption and a general view of how our application executes, loops, and exits.

In typical Go fashion, the pprof tool also exists in the net/http package, although
it's more data-centric than visual. This means that rather than dealing exclusively
with a command-line tool, you can output the results directly to the Web for analysis.

Like the command-line tool, you'll see block, goroutine, heap, and thread profiles
as well as a full stack outline directly through localhost, as shown in the following
screenshot:

To generate this server, you just need to include a few key lines of code in your
application, build it, and then run it. For this example, we've included the code in
our chat server application, which allows us to get the Web view of an otherwise
command-line-only application.

Make sure you have the net/http and log packages included. You'll also need the
http/pprof package. The code snippet is as follows:

import(_(_
 "net/http/pprof"
 "log"
 "net/http"
)

Then simply include this code somewhere in your application, ideally, near the top
of the main() function, as follows:

 go func() {
 log.Println(http.ListenAndServe("localhost:6060", nil))
 }()

Chapter 5

[493]

As always, the port is entirely a matter of preference.

You can then find a number of profiling tools at localhost:6060, including the
following:

• All tools can be found at http://localhost:6060/debug/pprof/

• Blocking profiles cab be found at http://localhost:6060/debug/pprof/
block?debug=1

• A profile of all goroutines can be found at http://localhost:6060/debug/
pprof/goroutine?debug=1

• A detailed profile of the heap can be found at http://localhost:6060/
debug/pprof/heap?debug=1

• A profile of threads created can be found at http://localhost:6060/
debug/pprof/threadcreate?debug=1

In addition to the blocking profile, you may find a utility to track down
inefficiency in your concurrent strategy through the thread creation profile. If
you find a seemingly abnormal amount of threads created, you can toy with the
synchronization structure as well as runtime parameters to streamline this.

Keep in mind that using pprof this way will also include some analyses and profiles
that can be attributed to the http or pprof packages rather than your core code.
You will find certain lines that are quite obviously not part of your application; for
example, a thread creation analysis of our chat server includes a few telling lines,
as follows:

0x7765e net/http.HandlerFunc.ServeHTTP+0x3e /usr/
local/go/src/pkg/net/http/server.go:1149
0x7896d net/http.(*ServeMux).ServeHTTP+0x11d /usr/
local/go/src/pkg/net/http/server.go:1416

Given that we specifically eschewed delivering our chat application via HTTP
or web sockets in this iteration, this should be fairly evident.

On top of that, there are even more obvious smoking guns, as follows:

0x139541 runtime/pprof.writeHeap+0x731 /usr/
local/go/src/pkg/runtime/pprof/pprof.go:447
0x137aa2 runtime/pprof.(*Profile).WriteTo+0xb2 /usr/
local/go/src/pkg/runtime/pprof/pprof.go:229
0x9f55f net/http/pprof.handler.ServeHTTP+0x23f /usr/
local/go/src/pkg/net/http/pprof/pprof.go:165
0x9f6a5 net/http/pprof.Index+0x135 /usr/
local/go/src/pkg/net/http/pprof/pprof.go:177

Locks, Blocks, and Better Channels

[494]

Some system and Go core mechanisms we will never be able to reduce out of our
final compiled binaries are as follows:

0x18d96 runtime.starttheworld+0x126
 /usr/local/go/src/pkg/runtime/proc.c:451

The hexadecimal value represents the address in the memory of
the function when run.

A note for Windows users: pprof is a breeze to use in *nix
environments but may take some more arduous tweaking under
Windows. Specifically, you may need a bash replacement such as
Cygwin. You may also find some necessary tweaks to pprof itself
(in actuality, a Perl script) may be in order. For 64-bit Windows
users, make sure you install ActivePerl and execute the pprof
Perl script directly using the 64-bit version of Perl.

At publish time, there are also some issues running this on 64-bit
OSX.

Handling deadlocks and errors
Anytime you encounter a deadlock error upon compilation in your code, you'll see
the familiar string of semi-cryptic errors explaining which goroutine was left holding
the bag, so to speak.

However, keep in mind you always have the ability to invoke your own panic
using Go's built-in panic, and this can be incredibly useful for building your own
error-catching safeguards to ensure data consistency and ideal operation. The code
is as follows:

package main

import
(
 "os"
)

func main() {
 panic("Oh No, we forgot to write a program!")
 os.Exit(1)
}

This can be utilized anywhere you wish to give detailed exit information to either
developers or end users.

Chapter 5

[495]

Summary
Having explored some new ways to examine the way that Go code can block and
deadlock, we also have some tools at our disposal that can be used to examine CPU
profiles and resource usage now.

Hopefully, by this point, you can build some complex concurrent systems with
simple goroutines and channels all the way up to multiplexed channels of structs,
interfaces, and other channels.

We've built some somewhat-functional applications so far, but next we're going
to utilize everything we've done to build a usable web server that solves a classic
problem and can be used to design intranets, file storage systems, and more.

In the next chapter, we'll take what we've done in this chapter with regard to
extensible channels and apply it to solving one of the oldest challenges the Internet
has to offer: concurrently serving 10,000 (or more) connections.

C10K – A Non-blocking
Web Server in Go

Up to this point, we've built a few usable applications; things we can start with
and leapfrog into real systems for everyday use. By doing so, we've been able to
demonstrate the basic and intermediate-level patterns involved in Go's concurrent
syntax and methodology.

However, it's about time we take on a real-world problem—one that has vexed
developers (and their managers and VPs) for a great deal of the early history
of the Web.

In addressing and, hopefully, solving this problem, we'll be able to develop a high-
performance web server that can handle a very large volume of live, active traffic.

For many years, the solution to this problem was solely to throw hardware
or intrusive caching systems at the problem; so, alternately, solving it with
programming methodology should excite any programmer.

We'll be using every technique and language construct we've learned so far, but we'll
do so in a more structured and deliberate way than we have up to now. Everything
we've explored so far will come into play, including the following points:

• Creating a visual representation of our concurrent application

• Utilizing goroutines to handle requests in a way that will scale

• Building robust channels to manage communication between goroutines
and the loop that will manage them

• Profiling and benchmarking tools (JMeter, ab) to examine the way our event
loop actually works

• Timeouts and concurrency controls—when necessary—to ensure data and
request consistency

C10K – A Non-blocking Web Server in Go

[498]

Attacking the C10K problem
The genesis of the C10K problem is rooted in serial, blocking programming, which
makes it ideal to demonstrate the strength of concurrent programming, especially
in Go.

The proposed problem came from developer Dan Kegel, who famously asked:

It's time for web servers to handle ten thousand clients simultaneously, don't you
think? After all, the web is a big place now.

- Dan Kegel (http://www.kegel.com/c10k.html)

When he asked this in 1999, for many server admins and engineers, serving 10,000
concurrent visitors was something that would be solved with hardware. The notion
that a single server on common hardware could handle this type of CPU and
network bandwidth without falling over seemed foreign to most.

The crux of his proposed solutions relied on producing non-blocking code. Of
course, in 1999, concurrency patterns and libraries were not widespread. C++ had
some polling and queuing options available via some third-party libraries and the
earliest predecessor to multithreaded syntaxes, later available through Boost and
then C++11.

Over the coming years, solutions to the problem began pouring in across various
flavors of languages, programming design, and general approaches. At the time of
publishing this book, the C10K problem is not one without solutions, but it is still an
excellent platform to conduct a very real-world challenge to high-performance Go.

Any performance and scalability problem will ultimately be bound to the underlying
hardware, so as always, your mileage may vary. Squeezing 10,000 concurrent
connections on a 486 processor with 500 MB of RAM will certainly be more
challenging than doing so on a barebones Linux server stacked with memory and
multiple cores.

It's also worth noting that a simple echo server would obviously be able to assume
more cores than a functional web server that returns larger amounts of data and
accepts greater complexity in requests, sessions, and so on, as we'll be dealing
with here.

Chapter 6

[499]

Failing of servers at 10,000 concurrent
connections
As you may recall, when we discussed concurrent strategies back in
Chapter 3, Developing a Concurrent Strategy, we talked a bit about Apache
and its load-balancing tools.

When the Web was born and the Internet commercialized, the level of interactivity
was pretty minimal. If you're a graybeard, you may recall the transition from
NNTP/IRC and the like and how extraordinarily rudimentary the Web was.

To address the basic proposition of [page request] → [HTTP response], the
requirements on a web server in the early 1990s were pretty lenient. Ignoring
all of the error responses, header readings and settings, and other essential
(but unrelated to the in → out mechanism) functions, the essence of the early
servers was shockingly simple, at least compared to the modern web servers.

The first web server was developed by the father of the Web, Tim
Berners-Lee.

Developed at CERN (such as WWW/HTTP itself), CERN httpd
handled many of the things you would expect in a web server
today—hunting through the code, you'll find a lot of notation
that will remind you that the very core of the HTTP protocol is
largely unchanged. Unlike most technologies, HTTP has had an
extraordinarily long shelf life.

Written in C in 1990, it was unable to utilize a lot of concurrency
strategies available in languages such as Erlang. Frankly, doing
so was probably unnecessary—the majority of web traffic was a
matter of basic file retrieval and protocol. The meat and potatoes
of a web server were not dealing with traffic, but rather dealing
with the rules surrounding the protocol itself.

You can still access the original CERN httpd site and download
the source code for yourself from http://www.w3.org/
Daemon/. I highly recommend that you do so as both a history
lesson and a way to look at the way the earliest web server
addressed some of the earliest problems.

However, the Web in 1990 and the Web when the C10K question was first posed
were two very different environments.

http://www.w3.org/Daemon/
http://www.w3.org/Daemon/

C10K – A Non-blocking Web Server in Go

[500]

By 1999, most sites had some level of secondary or tertiary latency provided by
third-party software, CGI, databases, and so on, all of which further complicated
the matter. The notion of serving 10,000 flat files concurrently is a challenge in itself,
but try doing so by running them on top of a Perl script that accesses a MySQL
database without any caching layer; the challenge is immediately exacerbated.

By the mid 1990s, the Apache web server had taken hold and largely controlled
the market (by 2009, it had become the first server software to serve more than
100 million websites).

Apache's approach was rooted heavily in the earliest days of the Internet. At its
launch, connections were initially handled first in, first out. Soon, each connection
was assigned a thread from the thread pool. There are two problems with the
Apache server. They are as follows:

• Blocking connections can lead to a domino effect, wherein one or more
slowly resolved connections could avalanche into inaccessibility

• Apache had hard limits on the number of threads/workers you could utilize,
irrespective of hardware constraints

It's easy to see the opportunity here, at least in retrospect. A concurrent server that
utilizes actors (Erlang), agents (Clojure), or goroutines (Go) seems to fit the bill
perfectly. Concurrency does not solve the C10k problem in itself, but it absolutely
provides a methodology to facilitate it.

The most notable and visible example of an approach to the C10K problem today is
Nginx, which was developed using concurrency patterns, widely available in C by
2002 to address—and ultimately solve—the C10k problem. Nginx, today, represents
either the #2 or #3 web server in the world, depending on the source.

Using concurrency to attack C10K
There are two primary approaches to handle a large volume of concurrent requests.
The first involves allocating threads per connection. This is what Apache (and a few
others) do.

On the one hand, allocating a thread to a connection makes a lot of sense—it's
isolated, controllable via the application's and kernel's context switching, and can
scale with increased hardware.

Chapter 6

[501]

One problem for Linux servers—on which the majority of the Web lives—is that
each allocated thread reserves 8 MB of memory for its stack by default. This can
(and should) be redefined, but this imposes a largely unattainable amount of
memory required for a single server. Even if you set the default stack size to 1 MB,
we're dealing with a minimum of 10 GB of memory just to handle the overhead.

This is an extreme example that's unlikely to be a real issue for a couple of reasons:
first, because you can dictate the maximum amount of resources available to each
thread, and second, because you can just as easily load balance across a few servers
and instances rather than add 10 GB to 80 GB of RAM.

Even in a threaded server environment, we're fundamentally bound to the issue that
can lead to performance decreases (to the point of a crash).

First, let's look at a server with connections bound to threads (as shown in the following
diagram), and visualize how this can lead to logjams and, eventually, crashes:

This is obviously what we want to avoid. Any I/O, network, or external process that
can impose some slowdown can bring about that avalanche effect we talked about,
such that our available threads are taken (or backlogged) and incoming requests
begin to stack up.

We can spawn more threads in this model, but as mentioned earlier, there are
potential risks there too, and even this will fail to mitigate the underlying problem.

C10K – A Non-blocking Web Server in Go

[502]

Taking another approach
In an attempt to create our web server that can handle 10,000 concurrent connections,
we'll obviously leverage our goroutine/channel mechanism to put an event loop in
front of our content delivery to keep new channels recycled or created constantly.

For this example, we'll assume we're building a corporate website and infrastructure
for a rapidly expanding company. To do this, we'll need to be able to serve both
static and dynamic content.

The reason we want to introduce dynamic content is not just for the purposes of
demonstration—we want to challenge ourselves to show 10,000 true concurrent
connections even when a secondary process gets in the way.

As always, we'll attempt to map our concurrency strategy directly to goroutines
and channels. In a lot of other languages and applications, this is directly analogous
to an event loop, and we'll approach it as such. Within our loop, we'll manage the
available goroutines, expire or reuse completed ones, and spawn new ones where
necessary.

In this example visualization, we show how an event loop (and corresponding
goroutines) can allow us to scale our connections without employing too many
hard resources such as CPU threads or RAM:

Chapter 6

[503]

The most important step for us here is to manage that event loop. We'll want to
create an open, infinite loop to manage the creation and expiration of our goroutines
and respective channels.

As part of this, we will also want to do some internal logging of what's happening,
both for benchmarking and debugging our application.

Building our C10K web server
Our web server will be responsible for taking requests, routing them, and serving
either flat files or dynamic files with templates parsed against a few different data
sources.

As mentioned earlier, if we exclusively serve flat files and remove much of the
processing and network latency, we'd have a much easier time with handling 10,000
concurrent connections.

Our goal is to approach as much of a real-world scenario as we can—very little of the
Web operates on a single server in a static fashion. Most websites and applications
utilize databases, CDNs (Content Delivery Networks), dynamic and uncached
template parsing, and so on. We need to replicate them whenever possible.

For the sake of simplicity, we'll separate our content by type and filter them through
URL routing, as follows:

• /static/[request]: This will serve request.html directly

• /template/[request]: This will serve request.tpl after its been parsed
through Go

• /dynamic/[request][number]: This will also serve request.tpl and parse
it against a database source's record

By doing this, we should get a better mixture of possible HTTP request types that
could impede the ability to serve large numbers of users simultaneously, especially
in a blocking web server environment.

We'll utilize the html/template package to do parsing—we've briefly looked at the
syntax before, and going any deeper is not necessarily part of the goals of this book.
However, you should look into it if you're going to parlay this example into something
you use in your environment or have any interest in building a framework.

You can find Go's exceptional library to generate safe data-driven
templating at http://golang.org/pkg/html/template/.

http://golang.org/pkg/html/template/

C10K – A Non-blocking Web Server in Go

[504]

By safe, we're largely referring to the ability to accept data and move it directly into
templates without worrying about the sort of injection issues that are behind a large
amount of malware and cross-site scripting.

For the database source, we'll use MySQL here, but feel free to experiment with other
databases if you're more comfortable with them. Like the html/template package,
we're not going to put a lot of time into outlining MySQL and/or its variants.

Benchmarking against a blocking web server
It's only fair to add some starting benchmarks against a blocking web server first
so that we can measure the effect of concurrent versus nonconcurrent architecture.

For our starting benchmarks, we'll eschew any framework, and we'll go with our old
stalwart, Apache.

For the sake of completeness here, we'll be using an Intel i5 3GHz machine with 8 GB
of RAM. While we'll benchmark our final product on Ubuntu, Windows, and OS X
here, we'll focus on Ubuntu for our example.

Our localhost domain will have three plain HTML files in /static, each trimmed
to 80 KB. As we're not using a framework, we don't need to worry about raw
dynamic requests, but only about static and dynamic requests in addition to data
source requests.

For all examples, we'll use a MySQL database (named master) with a table called
articles that will contain 10,000 duplicate entries. Our structure is as follows:

CREATE TABLE articles (
 article_id INT NOT NULL AUTO_INCREMENT,
 article_title VARCHAR(128) NOT NULL,
 article_text VARCHAR(128) NOT NULL,
 PRIMARY KEY (article_id)
)

With ID indexes ranging sequentially from 0-10,000, we'll be able to generate random
number requests, but for now, we just want to see what kind of basic response we
can get out of Apache serving static pages with this machine.

For this test, we'll use Apache's ab tool and then gnuplot to sequentially map the
request time as the number of concurrent requests and pages; we'll do this for our
final product as well, but we'll also go through a few other benchmarking tools for
it to get some better details.

Chapter 6

[505]

Apache's AB comes with the Apache web server itself. You
can read more about it at http://httpd.apache.org/
docs/2.2/programs/ab.html.

You can download it for Linux, Windows, OS X, and more from
http://httpd.apache.org/download.cgi.

The gnuplot utility is available for the same operating systems
at http://www.gnuplot.info/.

So, let's see how we did it. Have a look at the following graph:

Ouch! Not even close. There are things we can do to tune the connections available
(and respective threads/workers) within Apache, but this is not really our goal.
Mostly, we want to know what happens with an out-of-the-box Apache server.
In these benchmarks, we start to drop or refuse connections at around 800
concurrent connections.

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/download.cgi
http://www.gnuplot.info/

C10K – A Non-blocking Web Server in Go

[506]

More troubling is that as these requests start stacking up, we see some that exceed
20 seconds or more. When this happens in a blocking server, each request behind
it is queued; requests behind that are similarly queued and the entire thing starts
to fall apart.

Even if we cannot hit 10,000 concurrent connections, there's a lot of room for
improvement. While a single server of any capacity is no longer the way we expect a
web server environment to be designed, being able to squeeze as much performance
as possible out of that server, ostensibly with our concurrent, event-driven approach,
should be our goal.

Handling requests
In an earlier chapter, we handled URL routing with Gorilla, a compact but feature-full
framework. The Gorilla toolkit certainly makes this easier, but we should also know
how to intercept the functionality to impose our own custom handler.

Here is a simple web router wherein we handle and direct requests using a custom
http.Server struct, as shown in the following code:

var routes []string

type customRouter struct {

}

func (customRouter) ServeHTTP(rw http.ResponseWriter, r
 *http.Request) {

 fmt.Println(r.URL.Path);
}

func main() {

 var cr customRouter;

 server := &http.Server {
 Addr: ":9000",
 Handler:cr,
 ReadTimeout: 10 * time.Second,
 WriteTimeout: 10 * time.Second,
 MaxHeaderBytes: 1 << 20,
 }

 server.ListenAndServe()
}

Chapter 6

[507]

Here, instead of using a built-in URL routing muxer and dispatcher, we're creating
a custom server and custom handler type to accept URLs and route requests. This
allows us to be a little more robust with our URL handling.

In this case, we created a basic, empty struct called customRouter and passed it to
our custom server creation call.

We can add more elements to our customRouter type, but we really don't need to
for this simple example. All we need to do is to be able to access the URLs and pass
them along to a handler function. We'll have three: one for static content, one for
dynamic content, and one for dynamic content from a database.

Before we go so far though, we should probably see what our absolute barebones
HTTP server written in Go does when presented with the same traffic that we sent
Apache's way.

By old school, we mean that the server will simply accept a request and pass along
a static, flat file. You could do this using a custom router as we did earlier, taking
requests, opening files, and then serving them, but Go provides a much simpler
mode to handle this basic task in the http.FileServer method.

So, to get some benchmarks for the most basic of Go servers against Apache, we'll
utilize a simple FileServer and test it against a test.html page (which contains the
same 80 KB file that we had with Apache).

As our goal with this test is to improve our performance in serving
flat and dynamic pages, the actual specs for the test suite are
somewhat immaterial. We'd expect that while the metrics will not
match from environment to environment, we should see a similar
trajectory. That said, it's only fair we supply the environment used
for these tests; in this case, we used a MacBook Air with a 1.4 GHz i5
processor and 4 GB of memory.

C10K – A Non-blocking Web Server in Go

[508]

First, we'll do this with our absolute best performance out of the box with Apache,
which had 850 concurrent connections and 900 total requests.

The results are certainly encouraging as compared to Apache. Neither of our test
systems were tweaked much (Apache as installed and basic FileServer in Go), but
Go's FileServer handles 1,000 concurrent connections without so much as a blip,
with the slowest clocking in at 411 ms.

Apache has made a great number of strides pertaining to
concurrency and performance options in the last five years, but
to get there does require a bit of tuning and testing. The intent of
this experiment is not intended to denigrate Apache, which is well
tested and established. Instead, it's to compare the out-of-the-box
performance of the world's number 1 web server against what we
can do with Go.

Chapter 6

[509]

To really get a baseline of what we can achieve in Go, let's see if Go's FileServer
can hit 10,000 connections on a single, modest machine out of the box:

ab -n 10500 -c 10000 -g test.csv http://localhost:8080/a.html

We will get the following output:

Success! Go's FileServer by itself will easily handle 10,000 concurrent connections,
serving flat, static content.

Of course, this is not the goal of this particular project—we'll be implementing
real-world obstacles such as template parsing and database access, but this alone
should show you the kind of starting point that Go provides for anyone who needs
a responsive server that can handle a large quantity of basic web traffic.

Routing requests
So, let's take a step back and look again at routing our traffic through a traditional
web server to include not only our static content, but also the dynamic content.

C10K – A Non-blocking Web Server in Go

[510]

We'll want to create three functions that will route traffic from our
customRouter:serveStatic():: read function and serve a flat file
serveRendered():, parse a template to display serveDynamic():, connect to
MySQL, apply data to a struct, and parse a template.

To take our requests and reroute, we'll change the ServeHTTP method for our
customRouter struct to handle three regular expressions.

For the sake of brevity and clarity, we'll only be returning data on our three possible
requests. Anything else will be ignored.

In a real-world scenario, we can take this approach to aggressively and proactively
reject connections for requests we think are invalid. This would include spiders and
nefarious bots and processes, which offer no real value as nonusers.

Serving pages
First up are our static pages. While we handled this the idiomatic way earlier, there
exists the ability to rewrite our requests, better handle specific 404 error pages, and
so on by using the http.ServeFile function, as shown in the following code:

 path := r.URL.Path;

 staticPatternString := "static/(.*)"
 templatePatternString := "template/(.*)"
 dynamicPatternString := "dynamic/(.*)"

 staticPattern := regexp.MustCompile(staticPatternString)
 templatePattern := regexp.MustCompile(templatePatternString)
 dynamicDBPattern := regexp.MustCompile(dynamicPatternString)

 if staticPattern.MatchString(path) {
 page := staticPath + staticPattern.ReplaceAllString(path,
 "${1}") + ".html"

 http.ServeFile(rw, r, page)
 }

Here, we simply relegate all requests starting with /static/(.*) to match the
request in addition to the .html extension. In our case, we've named our test file
(the 80 KB example file) test.html, so all requests to it will go to /static/test.

We've prepended this with staticPath, a constant defined upcode. In our case,
it's /var/www/, but you'll want to modify it as necessary.

Chapter 6

[511]

So, let's see what kind of overhead is imposed by introducing some regular
expressions, as shown in the following graph:

How about that? Not only is there no overhead imposed, it appears that the
FileServer functionality itself is heavier and slower than a distinct FileServe() call.
Why is that? Among other reasons, not explicitly calling the file to open and serve
imposes an additional OS call, one which can cascade as requests mount up at the
expense of concurrency and performance.

Sometimes it's the little things

Other than strictly serving flat pages here, we're actually doing one
other task per request using the following line of code:

fmt.Println(r.URL.Path)

While this ultimately may have no impact on your final performance,
we should take care to avoid unnecessary logging or related activities
that may impart seemingly minimal performance obstacles that
become much larger ones at scale.

Parsing our template
In our next phase, we'll measure the impact of reading and parsing a template.
To effectively match the previous tests, we'll take our HTML static file and impose
some variables on it.

C10K – A Non-blocking Web Server in Go

[512]

If you recall, our goal here is to mimic real-world scenarios as closely as possible.
A real-world web server will certainly handle a lot of static file serving, but today,
dynamic calls make up the vast bulk of web traffic.

Our data structure will resemble the simplest of data tables without having access
to an actual database:

type WebPage struct {
 Title string
 Contents string
}

We'll want to take any data of this form and render a template with it. Remember
that Go creates the notion of public or private variables through the syntactical
sugar of capitalized (public) or lowercase (private) values.

If you find that the template fails to render but you're not given explicit errors in the
console, check your variable naming. A private value that is called from an HTML
(or text) template will cause rendering to stop at that point.

Now, we'll take that data and apply it to a template for any calls to a URL that begins
with the /(.*) template. We could certainly do something more useful with the
wildcard portion of that regular expression, so let's make it part of the title using the
following code:

 } else if templatePattern.MatchString(path) {

 urlVar := templatePattern.ReplaceAllString(path, "${1}")
 page := WebPage{ Title: "This is our URL: "+urlVar, Contents:
 "Enjoy our content" }
 tmp, _ := template.ParseFiles(staticPath+"template.html")
 tmp.Execute(rw,page)

 }

Hitting localhost:9000/template/hello should render a template with a primary
body of the following code:

<h1>{{.Title}}</h1>
<p>{{.Contents}}</p>

Chapter 6

[513]

We will do this with the following output:

One thing to note about templates is that they are not compiled; they remain
dynamic. That is to say, if you create a renderable template and start your server,
the template can be modified and the results are reflected.

This is noteworthy as a potential performance factor. Let's run our benchmarks
again, with template rendering as the added complexity to our application and
its architecture:

C10K – A Non-blocking Web Server in Go

[514]

Yikes! What happened? We've gone from easily hitting 10,000 concurrent requests to
barely handling 200.

To be fair, we introduced an intentional stumbling block, one not all that uncommon
in the design of any given CMS.

You'll notice that we're calling the template.ParseFiles() method on every
request. This is the sort of seemingly cheap call that can really add up when you
start stacking the requests.

It may then make sense to move the file operations outside of the request handler,
but we'll need to do more than that—to eliminate overhead and a blocking call,
we need to set an internal cache for the requests.

Most importantly, all of our template creation and parsing should happen outside
the actual request handler if you want to keep your server non-blocking, fast, and
responsive. Here's another take:

var customHTML string
var customTemplate template.Template
var page WebPage
var templateSet bool

func main() {
 var cr customRouter;
 fileName := staticPath + "template.html"
 cH,_ := ioutil.ReadFile(fileName)
 customHTML = string(cH[:])

 page := WebPage{ Title: "This is our URL: ", Contents: "Enjoy
 our content" }
 cT,_ := template.New("Hey").Parse(customHTML)
 customTemplate = *cT

Even though we're using the Parse() function prior to our request, we can still
modify our URL-specific variables using the Execute() method, which does not
carry the same overhead as Parse().

When we move this outside of the customRouter struct's ServeHTTP() method,
we're back in business. This is the kind of response we'll get with these changes:

Chapter 6

[515]

External dependencies
Finally, we need to bring in our biggest potential bottleneck, which is the database.
As mentioned earlier, we'll simulate random traffic by generating a random integer
between 1 and 10,000 to specify the article we want.

Randomization isn't just useful on the frontend—we'll want to work around any
query caching within MySQL itself to limit nonserver optimizations.

Connecting to MySQL
We can route our way through a custom connection to MySQL using native Go,
but as is often the case, there are a few third-party packages that make this process
far less painful. Given that the database here (and associated libraries) is tertiary
to the primary exercise, we'll not be too concerned about the particulars here.

The two mature MySQL driver libraries are as follows:

• Go-MySQL-Driver (https://github.com/go-sql-driver/mysql)

• MyMySQL (https://github.com/ziutek/mymysql)

For this example, we'll go with the Go-MySQL-Driver. We'll quickly install it using
the following command:

go get github.com/go-sql-driver/mysql

https://github.com/go-sql-driver/mysql
https://github.com/ziutek/mymysql

C10K – A Non-blocking Web Server in Go

[516]

Both of these implement the core SQL database connectivity package in Go, which
provides a standardized method to connect to a SQL source and iterate over rows.

One caveat is if you've never used the SQL package in Go but have in other
languages—typically, in other languages, the notion of an Open() method implies
an open connection. In Go, this simply creates the struct and relevant implemented
methods for a database. This means that simply calling Open() on sql.database
may not give you relevant connection errors such as username/password issues
and so on.

One advantage of this (or disadvantage depending on your vantage point) is that
connections to your database may not be left open between requests to your web
server. The impact of opening and reopening connections is negligible in the grand
scheme.

As we're utilizing a pseudo-random article request, we'll build a MySQL piggyback
function to get an article by ID, as shown in the following code:

func getArticle(id int) WebPage {
 Database,err := sql.Open("mysql", "test:test@/master")
 if err != nil {
 fmt.Println("DB error!!!")
 }

 var articleTitle string
 sqlQ := Database.QueryRow("SELECT article_title from articles
 where article_id=? LIMIT 1", 1).Scan(&articleTitle)
 switch {
 case sqlQ == sql.ErrNoRows:
 fmt.Printf("No rows!")
 case sqlQ != nil:
 fmt.Println(sqlQ)
 default:

 }

 wp := WebPage{}
 wp.Title = articleTitle
 return wp

}

Chapter 6

[517]

We will then call the function directly from our ServeHTTP() method, as shown in
the following code:

 }else if dynamicDBPattern.MatchString(path) {
 rand.Seed(9)
 id := rand.Intn(10000)
 page = getArticle(id)
 customTemplate.Execute(rw,page)
 }

How did we do here? Take a look at the following graph:

Slower, no doubt, but we held up to all 10,000 concurrent requests, entirely from
uncached MySQL calls.

Given that we couldn't hit 1,000 concurrent requests with a default installation
of Apache, this is nothing to sneeze at.

C10K – A Non-blocking Web Server in Go

[518]

Multithreading and leveraging multiple
cores
You may be wondering how performance may vary when invoking additional
processor cores—as mentioned earlier, this can sometimes have an unexpected effect.

In this case, we should expect only improved performance in our dynamic requests
and static requests. Any time the cost of context switching in the OS might outweigh
the performance advantages of additional cores, we can see paradoxical performance
degradation. In this case, we do not see this effect and instead see a relatively similar
line, as shown in the following graph:

Exploring our web server
Our final web server is capable of serving static, template-rendered, and dynamic
content well within the confines of the goal of 10,000 concurrent connections on
even the most modest of hardware.

The code—much like the code in this book—can be considered a jumping-off point
and will need refinement if put into production. This server lacks anything in the
form of error handling but can ably serve valid requests without any issue. Let's
take a look at the following server's code:

package main

import
(

Chapter 6

[519]

"net/http"
"html/template"
"time"
"regexp"
"fmt"
"io/ioutil"
"database/sql"
"log"
"runtime"
_ "github.com/go-sql-driver/mysql"
)

Most of our imports here are fairly standard, but note the MySQL line that is called
solely for its side effects as a database/SQL driver:

const staticPath string = "static/"

The relative static/ path is where we'll look for any file requests—as mentioned
earlier, this does no additional error handling, but the net/http package itself will
deliver 404 errors should a request to a nonexistent file hit it:

type WebPage struct {

 Title string
 Contents string
 Connection *sql.DB

}

Our WebPage type represents the final output page before template rendering. It can
be filled with static content or populated by data source, as shown in the following
code:

type customRouter struct {

}

func serveDynamic() {

}

func serveRendered() {

}

func serveStatic() {

}

C10K – A Non-blocking Web Server in Go

[520]

Use these if you choose to extend the web app—this makes the code cleaner and
removes a lot of the cruft in the ServeHTTP section, as shown in the following code:

func (customRouter) ServeHTTP(rw http.ResponseWriter, r
 *http.Request) {
 path := r.URL.Path;

 staticPatternString := "static/(.*)"
 templatePatternString := "template/(.*)"
 dynamicPatternString := "dynamic/(.*)"

 staticPattern := regexp.MustCompile(staticPatternString)
 templatePattern := regexp.MustCompile(templatePatternString)
 dynamicDBPattern := regexp.MustCompile(dynamicPatternString)

 if staticPattern.MatchString(path) {
 serveStatic()
 page := staticPath + staticPattern.ReplaceAllString(path,
 "${1}") + ".html"
 http.ServeFile(rw, r, page)
 }else if templatePattern.MatchString(path) {

 serveRendered()
 urlVar := templatePattern.ReplaceAllString(path, "${1}")

 page.Title = "This is our URL: " + urlVar
 customTemplate.Execute(rw,page)

 }else if dynamicDBPattern.MatchString(path) {

 serveDynamic()
 page = getArticle(1)
 customTemplate.Execute(rw,page)
 }

}

Chapter 6

[521]

All of our routing here is based on regular expression pattern matching. There are
a lot of ways you can do this, but regexp gives us a lot of flexibility. The only time
you may consider simplifying this is if you have so many potential patterns that it
could cause a performance hit—and this means thousands. The popular web servers,
Nginx and Apache, handle a lot of their configurable routing through regular
expressions, so it's fairly safe territory:

func gobble(s []byte) {

}

Go is notoriously cranky about unused variables, and while this isn't always the best
practice, you will end up, at some point, with a function that does nothing specific
with data but keeps the compiler happy. For production, this is not the way you'd
want to handle such data.

var customHTML string
var customTemplate template.Template
var page WebPage
var templateSet bool
var Database sql.DB

func getArticle(id int) WebPage {
 Database,err := sql.Open("mysql", "test:test@/master")
 if err != nil {
 fmt.Println("DB error!")
 }

 var articleTitle string
 sqlQ := Database.QueryRow("SELECT article_title from articles
 WHERE article_id=? LIMIT 1", id).Scan(&articleTitle)
 switch {
 case sqlQ == sql.ErrNoRows:
 fmt.Printf("No rows!")
 case sqlQ != nil:
 fmt.Println(sqlQ)
 default:

 }

 wp := WebPage{}
 wp.Title = articleTitle
 return wp

}

C10K – A Non-blocking Web Server in Go

[522]

Our getArticle function demonstrates how you can interact with the database/
sql package at a very basic level. Here, we open a connection and query a single row
with the QueryRow() function. There also exists the Query command, which is also
usually a SELECT command but one that could return more than a single row.

func main() {

 runtime.GOMAXPROCS(4)

 var cr customRouter;

 fileName := staticPath + "template.html"
 cH,_ := ioutil.ReadFile(fileName)
 customHTML = string(cH[:])

 page := WebPage{ Title: "This is our URL: ", Contents: "Enjoy
 our content" }
 cT,_ := template.New("Hey").Parse(customHTML)
 customTemplate = *cT

 gobble(cH)
 log.Println(page)
 fmt.Println(customTemplate)

 server := &http.Server {
 Addr: ":9000",
 Handler:cr,
 ReadTimeout: 10 * time.Second,
 WriteTimeout: 10 * time.Second,
 MaxHeaderBytes: 1 << 20,
 }

 server.ListenAndServe()

}

Our main function sets up the server, builds a default WebPage and customRouter,
and starts listening on port 9000.

Timing out and moving on
One thing we did not focus on in our server is the notion of lingering connection
mitigation. The reason we didn't worry much about it is because we were able to
hit 10,000 concurrent connections in all three approaches without too much issue,
strictly by utilizing Go's powerful built-in concurrency features.

Chapter 6

[523]

Particularly when working with third-party or external applications and services,
it's important to know that we can and should be prepared to call it quits on a
connection (if our application design permits it).

Note the custom server implementation and two notes-specific properties:
ReadTimeout and WriteTimeout. These allow us to handle this use case precisely.

In our example, this is set to an absurdly high 10 seconds. For a request to be
received, processed, and sent, up to 20 seconds can transpire. This is an eternity in
the Web world and has the potential to cripple our application. So, what does our
C10K look like with 1 second on each end? Let's take a look at the following graph:

Here, we've saved nearly 5 seconds off the tail end of our highest volume of
concurrent requests, almost certainly at the expense of complete responses to each.

It's up to you to decide how long it's acceptable to keep slow-running connections,
but it's another tool in the arsenal to keep your server swift and responsive.

There will always be a tradeoff when you decide to kill a connection—too early and
you'll have a bevy of complaints about a nonresponsive or error-prone server; too
late and you'll be unable to cope with the connection volume programmatically.
This is one of those considerations that will require QA and hard data.

C10K – A Non-blocking Web Server in Go

[524]

Summary
The C10K problem may seem like a relic today, but the call to action was
symptomatic of the type of approaches to systems' applications that were
primarily employed prior to the rapid expansion of concurrent languages
and application design.

Just 15 years ago, this seemed a largely insurmountable problem facing systems
and server developers worldwide; now, it's handled with only minor tweaking
and consideration by a server designer.

Go makes it easy to get there (with a little effort), but reaching 10,000 (or 100,000
or even 1,000,000) concurrent connections is only half the battle. We must know
what to do when problems arise, how to seek out maximum performance and
responsiveness out of our servers, and how to structure our external dependencies
such that they do not create roadblocks.

In our next chapter, we'll look at squeezing even more performance out of our
concurrent applications by testing some distributed computing patterns and best
utilizing memory management.

Performance and Scalability
To build a high-powered web server in Go with just a few hundred lines of code, you
should be quite aware of how concurrent Go provides us with exceptional tools for
performance and stability out of the box.

Our example in Chapter 6, C10K – A Non-blocking Web Server in Go, also showed how
imposing blocking code arbitrarily or inadvertently into our code can introduce
some serious bottlenecks and quickly torpedo any plans to extend or scale your
application.

What we'll look at in this chapter are a few ways that can better prepare us to take
our concurrent application and ensure that it's able to continuously scale in the
future and that it is capable of being expanded in scope, design, and/or capacity.

We'll expand a bit on pprof, the CPU profiling tool we looked at briefly in previous
chapters, as a way to elucidate the way our Go code is compiled and to locate
possible unintended bottlenecks.

Then we'll expand into distributed Go and into ways to offer some performance-
enhancing parallel-computing concepts to our applications. We'll also look at the
Google App Engine, and at how you can utilize it for your Go-based applications
to ensure scalability is placed in the hands of one of the most reliable hosting
infrastructures in the world.

Lastly, we'll look at memory utilization, preservation, and how Google's garbage
collector works (and sometimes doesn't). We'll finally delve a bit deeper into using
memory caching to keep data consistent as well as less ephemeral, and we will also
see how that dovetails with distributed computing in general.

Performance and Scalability

[526]

High performance in Go
Up to this point, we've talked about some of the tools we can use to help discover
slowdowns, leaks, and inefficient looping.

Go's compiler and its built-in deadlock detector keep us from making the kind of
mistake that's common and difficult to detect in other languages.

We've run time-based benchmarks based on specific changes to our concurrency
patterns, which can help us design our application using different methodologies
to improve overall execution speed and performance.

Getting deeper into pprof
The pprof tool was first encountered in Chapter 5, Locks, Blocks, and Better Channels,
and if it still feels a bit cryptic, that's totally understandable. What pprof shows you
in export is a call graph, and we can use this to help identify issues with loops or
expensive calls on the heap. These include memory leaks and processor-intensive
methods that can be optimized.

One of the best ways to demonstrate how something like this works is to build
something that doesn't. Or at least something that doesn't work the way it should.

You might be thinking that a language with garbage collection might be immune to
these kinds of memory issues, but there are always ways to hide mistakes that can
lead to memory leakage. If the GC can't find it, it can sometimes be a real pain to do
so yourself, leading to a lot of—often feckless—debugging.

To be fair, what constitutes a memory leak is sometimes debated among computer
science members and experts. A program that continuously consumes RAM may not
be leaking memory by technical definition if the application itself could re-access any
given pointers. But that's largely irrelevant when you have a program that crashes
and burns after consuming memory like an elephant at a buffet.

The basic premise of creating a memory leak in a garbage-collected language relies
on hiding the allocation from the compiler—indeed, any language in which you can
access and utilize memory directly provides a mechanism for introducing leaks.

We'll review a bit more about garbage collection and Go's implementation later in
this chapter.

So how does a tool like pprof help? Very simply put, by showing you where your
memory and CPU utilization goes.

Chapter 7

[527]

Let's first design a very obvious CPU hog as follows to see how pprof highlights this
for us:

package main

import (
"os"
"flag"
"fmt"
"runtime/pprof"
)

const TESTLENGTH = 100000
type CPUHog struct {
 longByte []byte
}

func makeLongByte() []byte {
 longByte := make([]byte,TESTLENGTH)

 for i:= 0; i < TESTLENGTH; i++ {
 longByte[i] = byte(i)
 }
 return longByte
}

var profile = flag.String("cpuprofile", "", "output pprof data to
 file")

func main() {
 var CPUHogs []CPUHog

 flag.Parse()
 if *profile != "" {
 flag,err := os.Create(*profile)
 if err != nil {
 fmt.Println("Could not create profile",err)
 }
 pprof.StartCPUProfile(flag)
 defer pprof.StopCPUProfile()

 }

 for i := 0; i < TESTLENGTH; i++ {
 hog := CPUHog{}
 hog.longByte = makeLongByte()
 _ = append(CPUHogs,hog)
 }
}

Performance and Scalability

[528]

The output of the preceding code is shown in the following diagram:

In this case, we know where our stack resource allocation is going, because
we willfully introduced the loop (and the loop within that loop).

Chapter 7

[529]

Imagine that we didn't intentionally do that and had to locate resource hogs. In this
case, pprof makes this pretty easy, showing us the creation and memory allocation
of simple strings comprising the majority of our samples.

We can modify this slightly to see the changes in the pprof output. In an effort to
allocate more and more memory to see whether we can vary the pprof output, we
might consider heavier types and more memory.

The easiest way to accomplish that is to create a slice of a new type that includes a
significant amount of these heavier types such as int64. We're blessed with Go: in
that, we aren't prone to common C issues such as buffer overflows and memory
protection and management, but this makes debugging a little trickier when we
cannot intentionally break the memory management system.

The unsafe package

Despite the built-in memory protection provided, there is still another
interesting tool provided by Go: the unsafe package. As per Go's
documentation:

 Package unsafe contains operations that step around the type safety of
 Go programs.
This might seem like a curious library to include—indeed, while many
low-level languages allow you to shoot your foot off, it's fairly unusual
to provide a segregated language.

Later in this chapter, we'll examine unsafe.Pointer, which allows
you to read and write to arbitrary bits of memory allocation. This
is obviously extraordinarily dangerous (or useful and nefarious,
depending on your goal) functionality that you would generally try to
avoid in any development language, but it does allow us to debug and
understand our programs and the Go garbage collector a bit better.

So to increase our memory usage, let's switch our string allocation as follows, for
random type allocation, specifically for our new struct MemoryHog:

type MemoryHog struct {
 a,b,c,d,e,f,g int64
 h,i,j,k,l,m,n float64
 longByte []byte
}

There's obviously nothing preventing us from extending this into some ludicrously
large set of slices, huge arrays of int64s, and so on. But our primary goal is solely
to change the output of pprof so that we can identify movement in the call graph's
samples and its effect on our stack/heap profiles.

Performance and Scalability

[530]

Our arbitrarily expensive code looks as follows:

type MemoryHog struct {
 a,b,c,d,e,f,g int64
 h,i,j,k,l,m,n float64
 longByte []byte
}

func makeMemoryHog() []MemoryHog {

 memoryHogs := make([]MemoryHog,TESTLENGTH)

 for i:= 0; i < TESTLENGTH; i++ {
 m := MemoryHog{}
 _ = append(memoryHogs,m)
 }

 return memoryHogs
}

var profile = flag.String("cpuprofile", "", "output pprof data to
 file")

func main() {
 var CPUHogs []CPUHog

 flag.Parse()
 if *profile != "" {
 flag,err := os.Create(*profile)
 if err != nil {
 fmt.Println("Could not create profile",err)
 }
 pprof.StartCPUProfile(flag)
 defer pprof.StopCPUProfile()

 }

 for i := 0; i < TESTLENGTH; i++ {
 hog := CPUHog{}
 hog.mHog = makeMemoryHog()
 _ = append(CPUHogs,hog)
 }
}

Chapter 7

[531]

With this in place, our CPU consumption remains about the same (due to the
looping mechanism remaining largely unchanged), but our memory allocation
has increased—unsurprisingly—by about 900 percent. It's unlikely that you will
precisely duplicate these results, but the general trend of a small change leading to a
major difference in resource allocation is reproducible. Note that memory utilization
reporting is possible with pprof, but it's not what we're doing here; the memory
utilization observations here happened outside of pprof.

If we took the extreme approach suggested previously—to create absurdly large
properties for our struct—we could carry that out even further, but let's see what
the aggregate impact is on our CPU profile on execution. The impact is shown in the
following diagram:

On the left-hand side, we have our new allocation approach, which invokes our
larger struct instead of an array of strings. On the right-hand side, we have our
initial application.

A pretty dramatic flux, don't you think? While neither of these programs is wrong in
design, we can easily toggle our methodologies to see where resources are going and
discern how we can reduce their consumption.

Performance and Scalability

[532]

Parallelism's and concurrency's impact on
I/O pprof
One issue you'll likely run into pretty quickly when using pprof is when you've
written a script or application that is especially bound to efficient runtime
performance. This happens most frequently when your program executes too
quickly to properly profile.

A related issue involves network applications that require connections to profile;
in this case, you can simulate traffic either in-program or externally to allow
proper profiling.

We can demonstrate this easily by replicating something like the preceding example
with goroutines as follows:

const TESTLENGTH = 20000

type DataType struct {
 a,b,c,d,e,f,g int64
 longByte []byte
}

func (dt DataType) init() {

}

var profile = flag.String("cpuprofile", "", "output pprof data to
 file")

func main() {

 flag.Parse()
 if *profile != "" {
 flag,err := os.Create(*profile)
 if err != nil {
 fmt.Println("Could not create profile",err)
 }
 pprof.StartCPUProfile(flag)
 defer pprof.StopCPUProfile()
 }

Chapter 7

[533]

 var wg sync.WaitGroup

 numCPU := runtime.NumCPU()
 runtime.GOMAXPROCS(numCPU)

 wg.Add(TESTLENGTH)

 for i := 0; i < TESTLENGTH; i++ {
 go func() {
 for y := 0; y < TESTLENGTH; y++ {
 dT := DataType{}
 dT.init()
 }
 wg.Done()
 }()
 }

 wg.Wait()

 fmt.Println("Complete.")
}

The following diagram shows the pprof output of the preceding code:

It's not nearly as informative, is it?

Performance and Scalability

[534]

If we want to get something more valuable about the stack trace of our goroutines,
Go—as usual—provides some additional functionality.

In the runtime package, there is a function and a method that allow us to access and
utilize the stack traces of our goroutines:

• runtime.Lookup: This function returns a profile based on name
• runtime.WriteTo: This method sends the snapshot to the I/O writer

If we add the following line to our program, we won't see the output in the pprof
Go tool, but we can get a detailed analysis of our goroutines in the console.

pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)

The previous code line gives us some more of the abstract goroutine memory
location information and package detail, which will look something like the
following screenshot:

But an even faster way to get this output is by utilizing the http/pprof tool, which
keeps the results of our application active via a separate server. We've gone with port
6000 here as shown in the following code, though you can modify this as necessary:

 go func() {
 log.Println(http.ListenAndServe("localhost:6000", nil))
 }()

While you cannot get an SVG output of the goroutine stack call, you can see
it live in your browser by going to http://localhost:6060/debug/pprof/
goroutine?debug=1.

Chapter 7

[535]

Using the App Engine
While not right for every project, Google's App Engine can open up a world of
scalability when it comes to concurrent applications, without the hassle of VM
provisioning, reboots, monitoring, and so on.

The App Engine is not entirely dissimilar to Amazon Web Services, DigitalOcean,
and the ilk, except for the fact that you do not need to necessarily involve yourself
in the minute details of direct server setup and maintenance. All of them provide a
single spot to acquire and utilize virtual computing resources for your applications.

Rather, it can be a more abstract environment within Google's architecture with
which to house and run your code in a number of languages, including—no surprise
here—the Go language itself.

While large-scale apps will cost you, Google provides a free tier with reasonable
quotas for experimentation and small applications.

The benefits as they relate to scalability here are two-fold: you're not responsible
for ensuring uptime on the instances as you would be in an AWS or DigitalOcean
scenario. Who else but Google will have not only the architecture to support
anything you can throw at it, but also have the fastest updates to the Go core itself?

There are some obvious limitations here that coincide with the advantages, of course,
including the fact that your core application will be available exclusively via http
(although it will have access to plenty of other services).

To deploy apps to the App Engine, you'll need the SDK for Go,
available for Mac OS X, Linux, and Windows, at https://
developers.google.com/appengine/downloads#Google_
App_Engine_SDK_for_Go.

Once you've installed the SDK, the changes you'll need to make to your code are
minor—the most noteworthy point is that for most cases, your Go tool command
will be supplanted by goapp, which handles serving your application locally and
then deploying it.

https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Go
https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Go
https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Go

Performance and Scalability

[536]

Distributed Go
We've certainly covered a lot about concurrent and parallel Go, but one of the biggest
infrastructure challenges for developers and system architects today has to do with
cooperative computing.

Some of the applications and designs that we've mentioned previously scale from
parallelism to distributed computing.

Memcache(d) is a form of in-memory caching, which can be used as a queue among
several systems.

Our master-slave and producer-consumer models we presented in Chapter 4, Data
Integrity in an Application, have more to do with distributed computing than single-
machine programming in Go, which manages concurrency idiomatically. These
models are typical concurrency models in many languages, but can be scaled to
help us design distributed systems as well, utilizing not just many cores and vast
resources but also redundancy.

The basic premise of distributed computing is to share, spread, and best absorb
the various burdens of any given application across many systems. This not only
improves performance on aggregate, but provides some sense of redundancy for
the system itself.

This all comes at some cost though, which are as follows:

• Potential for network latency
• Creating slowdowns in communication and in application execution
• Overall increase in complexity both in design and in maintenance
• Potential for security issues at various nodes along the distributed route(s)
• Possible added cost due to bandwidth considerations

This is all to say, simply, that while building a distributed system can provide great
benefits to a large-scale application that utilizes concurrency and ensures data
consistency, it's by no means right for every example.

Types of topologies
Distributed computing recognizes a slew of logical topologies for distributed design.
Topology is an apt metaphor, because the positioning and logic of the systems
involved can often represent physical topology.

Out of the box, not all of the accepted topologies apply to Go. When we design
concurrent, distributed applications using Go, we'll generally rely on a few of the
simpler designs, which are as follows.

Chapter 7

[537]

Type 1 – star
The star topology (or at least this particular form of it), resembles our master-slave
or producer-consumer models as outlined previously.

The primary method of data passing involves using the master as a message-passing
conduit; in other words, all requests and commands are coordinated by a single
instance, which uses some routing method to pass messages. The following diagram
shows the star topology:

We can actually very quickly design a goroutine-based system for this. The following
code is solely the master's (or distributed destination's) code and lacks any sort of
security considerations, but shows how we can parlay network calls to goroutines:

package main

import
(
 "fmt"
 "net"

)

Our standard, basic libraries are defined as follows:

type Subscriber struct {
 Address net.Addr
 Connection net.Conn
 do chan Task
}

type Task struct {
 name string
}

Performance and Scalability

[538]

These are the two custom types we'll use here. A Subscriber type is any distributed
helper that comes into the fray, and a Task type represents any given distributable
task. We've left that undefined here because it's not the primary goal of demonstration,
but you could ostensibly have Task do anything by communicating standardized
commands across the TCP connection. The Subscriber type is defined as follows:

var SubscriberCount int
var Subscribers []Subscriber
var CurrentSubscriber int
var taskChannel chan Task

func (sb Subscriber) awaitTask() {
 select {
 case t := <-sb.do:
 fmt.Println(t.name,"assigned")

 }
}

func serverListen (listener net.Listener) {
 for {
 conn,_ := listener.Accept()

 SubscriberCount++

 subscriber := Subscriber{ Address: conn.RemoteAddr(),
 Connection: conn }
 subscriber.do = make(chan Task)
 subscriber.awaitTask()
 _ = append(Subscribers,subscriber)

 }
}

func doTask() {
 for {
 select {
 case task := <-taskChannel:
 fmt.Println(task.name,"invoked")
 Subscribers[CurrentSubscriber].do <- task
 if (CurrentSubscriber+1) > SubscriberCount {
 CurrentSubscriber = 0
 }else {

Chapter 7

[539]

 CurrentSubscriber++
 }
 }

 }
}

func main() {

 destinationStatus := make(chan int)

 SubscriberCount = 0
 CurrentSubscriber = 0

 taskChannel = make(chan Task)

 listener, err := net.Listen("tcp", ":9000")
 if err != nil {
 fmt.Println ("Could not start server!",err)
 }
 go serverListen(listener)
 go doTask()

 <-destinationStatus
}

This essentially treats every connection as a new Subscriber, which gets its
own channel based on its index. This master server then iterates through existing
Subscriber connections using the following very basic round-robin approach:

if (CurrentSubscriber+1) > SubscriberCount {
 CurrentSubscriber = 0
}else {
 CurrentSubscriber++
}

As mentioned previously, this lacks any sort of security model, which means that any
connection to port 9000 would become a Subscriber and could get network messages
assigned to it (and ostensibly could invoke new messages too). But you may have
noticed an even bigger omission: this distributed application doesn't do anything.
Indeed, this is just a model for assignment and management of subscribers. Right now,
it doesn't have any path of action, but we'll change that later in this chapter.

Performance and Scalability

[540]

Type 2 – mesh
The mesh is very similar to the star with one major difference: each node is able
to communicate not just through the master, but also directly with other nodes
as well. This is also known as a complete graph. The following diagram shows a
mesh topology:

For practical purposes, the master must still handle assignments and pass
connections back to the various nodes.

This is actually not particularly difficult to add through the following simple
modification of our previous server code:

func serverListen (listener net.Listener) {
 for {
 conn,_ := listener.Accept()

 SubscriberCount++

 subscriber := Subscriber{ Address: conn.RemoteAddr(),
 Connection: conn }
 subscriber.awaitTask()
 _ = append(Subscribers,subscriber)
 broadcast()
 }
}

Chapter 7

[541]

Then, we add the following corresponding broadcast function to share all available
connections to all other connections:

func broadcast() {
 for i:= range Subscribers {
 for j:= range Subscribers {
 Subscribers[i].Connection.Write
 ([]byte("Subscriber:",Subscriber[j].Address))
 }
 }
}

The Publish and Subscribe model
In both the previous topologies, we've replicated a Publish and Subscribe model with
a central/master handling delivery. Unlike in a single-system, concurrent pattern,
we lack the ability to use channels directly across separate machines (unless we use
something like Go's Circuit as described in Chapter 4, Data Integrity in an Application).

Without direct programmatic access to send and receive actual commands, we rely
on some form of API. In the previous examples, there is no actual task being sent or
executed, but how could we do this?

Obviously, to create tasks that can be formalized into non-code transmission, we'll
need a form of API. We can do this one of two ways: serialization of commands,
ideally via JSONDirect transmission, and execution of code.

As we'll always be dealing with compiled code, the serialization of commands
option might seem like you couldn't include Go code itself. This isn't exactly true,
but passing full code in any language is fairly high on lists of security concerns.

But let's look at two ways of sending data via API in a task by removing a URL
from a slice of URLs for retrieval. We'll first need to initialize that array in our main
function as shown in the following code:

type URL struct {
 URI string
 Status int
 Assigned Subscriber
 SubscriberID int
}

Every URL in our array will include the URI, its status, and the subscriber address to
which it's been assigned. We'll formalize the status points as 0 for unassigned, 1 for
assigned and waiting, and 2 for assigned and complete.

Performance and Scalability

[542]

Remember our CurrentSubscriber iterator? That represents the next-in-line round
robin assignment which will fulfill the SubscriberID value for our URL struct.

Next, we'll create an arbitrary array of URLs that will represent our overall job here.
Some suspension of incredulity may be necessary to assume that the retrieval of
four URLs should require any distributed system; in reality, this would introduce
significant slowdown by virtue of network transmission. We've handled this in a
purely single-system, concurrent application before:

 URLs = []URL{ {Status:0,URL:"http://golang.org/"},
 {Status:0,URL:"http://play.golang.org/"},
 {Status:0,URL:"http://golang.org/doc/"},
 {Status:0,URL:"http://blog.golang.org/"} }

Serialized data
In our first option in the API, we'll send and receive serialized data in JSON. Our
master will be responsible for formalizing its command and associated data. In this
case, we'll want to transmit a few things: what to do (in this case, retrieve) with the
relevant data, what the response should be when it is complete, and how to address
errors.

We can represent this in a custom struct as follows:

type Assignment struct {
 command string
 data string
 successResponse string
 errorResponse string
}
...
 asmnt := Assignment{command:"process",
 url:"http://www.golang.org",successResponse:"success",
 errorResponse:"error"}
 json, _ := json.Marshal(asmnt)
 send(string(json))

Remote code execution
The remote code execution option is not necessarily separate from serialization
of commands, but instead of structured and interpreted formatted responses,
the payload could be code that will be run via a system command.

Chapter 7

[543]

As an example, code from any language could be passed through the network and
executed from a shell or from a syscall library in another language, like the following
Python example:

from subprocess import call
call([remoteCode])

The disadvantages to this approach are many: it introduces serious security issues
and makes error detection within your client nearly impossible.

The advantages are you do not need to come up with a specific format and
interpreter for responses as well as potential speed improvements. You can also
offload the response code to another external process in any number of languages.

In most cases, serialization of commands is far preferable over the remote code
execution option.

Other topologies
There exist quite a few topology types that are more complicated to manage as part
of a messaging queue.

The following diagram shows the bus topology:

The bus topology network is a unidirectional transmission system. For our purposes,
it's neither particularly useful nor easily managed, as each added node needs to
announce its availability, accept listener responsibility, and be ready to cede that
responsibility when a new node joins.

The advantage of a bus is quick scalability. This comes with serious disadvantages
though: lack of redundancy and single point of failure.

Even with a more complex topology, there will always be some issue with potentially
losing a valuable cog in the system; at this level of modular redundancy, some
additional steps will be necessary to have an always-available system, including
automatic double or triple node replication and failovers. That's a bit more than we'll
get into here, but it's important to note that the risk will be there in any event, although
it would be a little more vulnerable with a topology like the bus.

Performance and Scalability

[544]

The following diagram shows the ring topology:

The ring topology looks similar to our mesh topology, but lacks a master. It essentially
requires the same communication process (announce and listen) as does a bus. Note
one significant difference: instead of a single listener, communication can happen
between any node without the master.

This simply means that all nodes must both listen and announce their presence to
other nodes.

Message Passing Interface
There exists a slightly more formalized version of what we built previously, called
Message Passing Interface. MPI was borne from early 1990s academia as a standard
for distributed communication.

Originally written with FORTRAN and C in mind, it is still a protocol, so it's largely
language agnostic.

MPI allows the management of topology above and beyond the basic topologies we
were able to build for a resource management system, including not only the line
and ring but also the common bus topology.

For the most part, MPI is used by the scientific community; it is a highly concurrent
and analogous method for building large-scale distributed systems. Point-to-point
operations are more rigorously defined with error handling, retries, and dynamic
spawning of processes all built in.

Chapter 7

[545]

Our previous basic examples lend no prioritization to processors, for example, and
this is a core effect of MPI.

There is no official implementation of MPI for Go, but as there exists one for both C
and C++, it's entirely possible to interface with it through that.

There is also a simple and incomplete binding written in Go by Marcus
Thierfelder that you can experiment with. It is available at https://
github.com/marcusthierfelder/mpi.

You can read more about and install OpenMPI from http://www.
open-mpi.org/.

Also you can read more about MPI and MPICH implementations at
http://www.mpich.org/.

Some helpful libraries
There's little doubt that Go provides some of the best ancillary tools available
to any compiled language out there. Compiling to native code on a myriad of
systems, deadlock detection, pprof, fmt, and more allow you to not just build
high-performance applications, but also test them and format them.

This hasn't stopped the community from developing other tools that can be used
for debugging or aiding your concurrent and/or distributed code. We'll take a look
at a few great tools that may prove worthy of inclusion in your app, particularly if
it's highly visible or performance critical.

Nitro profiler
As you are probably now well aware, Go's pprof is extremely powerful and useful,
if not exactly user-friendly.

If you love pprof already, or even if you find it arduous and confusing, you may
love Nitro profiler twice as much. Coming from Steve Francia of spf13, Nitro profiler
allows you to produce even cleaner analyses of your application and its functions
and steps, as well as providing more usable a/b tests of alternate functions.

Read more about Nitro profiler at http://spf13.com/project/
nitro.

You can get it via github.com/spf13/nitro.

https://github.com/marcusthierfelder/mpi
https://github.com/marcusthierfelder/mpi
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.mpich.org/
http://spf13.com/project/nitro
http://spf13.com/project/nitro
github.com/spf13/nitro

Performance and Scalability

[546]

As with pprof, Nitro automatically injects flags into your application, and you'll see
them in the results themselves.

Unlike pprof, your application does not need to be compiled to get profile analysis
from it. Instead, you can simply append -stepAnalysis to the go run command.

Heka
Heka is a data pipeline tool that can be used to gather, analyze, and distribute raw
data. Available from Mozilla, Heka is more a standalone application rather than a
library, but when it comes to acquiring, analyzing, and distributing data such as
server logfiles across multiple servers, Heka can prove itself worthy.

Heka is also written in Go, so make sure to check out the source to see how Mozilla
utilizes concurrency and Go in real-time data analysis.

You can visit the Heka home page at http://heka-docs.
readthedocs.org/en/latest/ and the Heka source page
at https://github.com/mozilla-services/heka.

GoFlow
Finally, there's GoFlow, a flow-based programming paradigm tool that lets you
segment your application into distinct components, each capable of being bound
to ports, channels, the network, or processes.

While not itself a performance tool, GoFlow might be an appropriate approach
to extending concurrency for some applications.

Visit GoFlow at https://github.com/trustmaster/goflow.

Memory preservation
At the time of this writing, Go 1.2.2's compiler utilizes a naive mark/sweep garbage
collector, which assigns a reference rank to objects and clears them when they are
no longer in use. This is noteworthy only to point out that it is widely considered
a relatively poor garbage collection system.

http://heka-docs.readthedocs.org/en/latest/
http://heka-docs.readthedocs.org/en/latest/
https://github.com/mozilla-services/heka
https://github.com/trustmaster/goflow

Chapter 7

[547]

So why does Go use it? As Go has evolved; language features and compiler speed
have largely taken precedence over garbage collection. While it's a long-term
development timeline for Go, for the time being, this is where we are. The tradeoff
is a good one, though: as you well know by now, compiling Go code is light years
faster than, say, compiling C or C++ code. Good enough for now is a fair description
for the GC. But there are some things you can do to augment and experiment within
the garbage collection system.

Garbage collection in Go
To get an idea of how the garbage collector is managing the stack at any time, take a
look at the runtime.MemProfileRecord object, which keeps track of presently living
objects in the active stack trace.

You can call the profile record when necessary and then utilize it against the
following methods to get a few interesting pieces of data:

• InUseBytes(): This method has the bytes used presently as per the
memory profile

• InUseObjects():This method has the number of live objects in use

• Stack(): This method has the full stack trace

You can place the following code in a heavy loop in your application to get a peek
at all of these:

 var mem runtime.MemProfileRecord
 obj := mem.InUseObjects();
 bytes := mem.InUseBytes();
 stack := mem.Stack();
 fmt.Println(i,obj,bytes)

Summary
We can now build some pretty high-performance applications and then utilize some
of Go's built-in tools and third-party packages to seek out the most performance in a
single instance application as well as across multiple, distributed systems.

In the next chapter, we're going to wrap everything together to design and build a
concurrent server application that can work quickly and independently, and easily
scale in performance and scope.

Concurrent Application
Architecture

By now, we've designed small bits of concurrent programs, primarily in a single
piece keeping concurrency largely isolated. What we haven't done yet is tie
everything together to build something a little more robust, complex, and more
daunting to manage from an administrator's perspective.

Simple chat applications and web servers are fine and dandy. However, you will
eventually need more complexity and require external software to meet all of the
more advanced requirements.

In this case, we'll build something that's satisfied by a few dissonant services: a file
manager with revision control that supplies web and shell access. Services such as
Dropbox and Google Drive allow users to keep and share files among peers. On
the other hand, GitHub and its ilk allow for a similar platform but with the critical
added benefit of revision control.

Many organizations face problems with the following sharing and distribution options:

• Limitations on repositories, storage, or number of files
• Potential inaccessibility if the services are down

• Security concerns, particularly for sensitive information

Simple sharing applications such as Dropbox and Google Drive are great at storing
data without a large amount of revision control options. GitHub is an excellent
collaborative revision control and distribution system, but comes with many costs and
the mistakes by developers can lead to large and potentially serious security lapses.

Concurrent Application Architecture

[550]

We'll be combining the aims of version control (and the GitHub ideal) with
Dropbox's / Google Drive's simplicity and openness. This type of application will
be perfect as an intranet replacement—wholly isolated and accessible with custom
authentication that doesn't necessarily rely on cloud services. The ability to keep
it all in-house removes any potential for network security concerns and allows
an administrator to design permanent backup solutions in a way that fits their
organization.

File sharing within the organization will allows forking, backups, file locking, and
revision control all from the command line but also through a simple web interface.

Designing our concurrent application
When designing a concurrent application, we will have three components running in
separate processes. A file listener will be alerted to make changes to files in specified
locations. A web-CLI interface will allow users to augment or modify files, and
a backup process will be bound to the listener to provide automated copies of
new file changes. With that in mind, these three processes will look a bit like
what is shown in the following diagram:

Our file listener process will do the following three things:

• Keep an eye on any file changes
• Broadcast to our web/CLI servers and the backup process

• Maintain the state of any given file in our database / data store

Chapter 8

[551]

The backup process will accept any broadcasts from the file listener (#2) and create
a backup file in an iterative design.

Our general server (web and CLI) will report details on individual files and allow
versioning forward and backward with a customizable syntax. This part of the
application will also have to broadcast back to the file listener when new files are
committed or revisions are requested.

Identifying our requirements
The most critical step in our architectural design process is really zooming in on the
required features, packages, and technologies that we'll need to implement. For our
file management and revision control application, there are a few key points that
will stand out:

• A web interface that allows file uploads, downloads, and revisions.
• A command-line interface that allows us to roll back changes and modify

files directly.
• A filesystem listener that finds changes made to a shared location.
• A data store system that has strong Go tie-in and allows us to maintain

information about files and users in a mostly consistent manner. This
system will also maintain user records.

• A concurrent log system that maintains and cycles logs of changed files.

We're somewhat complicating things by allowing the following three different ways
to interface with the overall application:

• Via the Web that requires a user and login. This also allows our users to
access and modify files even if they happen to be somewhere not connected
to the shared drive.

• Via the command line. This is archaic but also extremely valuable anytime a
user is traversing a filesystem, particularly power users not in a GUI.

• Via the filesystem that changes itself. This is the shared drive mechanism
wherein we assume that any user with access to this will be making valid
modifications to any files.

Concurrent Application Architecture

[552]

To handle all of this, we can identify a few critical technologies as follows:

• A database or data store to manage revisions to our filesystem. When
choosing between transactional, ACID-compliant SQL and fast document
stores in NoSQL, the tradeoff is often performance versus consistency.
However, since most of our locking mechanism will exist in the application,
duplicating locks (even at the row level) will add a level of potential
slowness and cruft that we don't need. So, we will utilize a NoSQL solution.

• This solution will need to play well with concurrency.

• We'll be using a web interface, one that brings in powerful and clean
routing/muxing and plays well with Go's robust built-in templating system.

• A filesystem notification library that allows us to monitor changes to files
as well as backing up revisions.

Any solutions we uncover or build to satisfy these requirements will need to be
highly concurrent and non-blocking. We'll want to make sure that we do not
allow simultaneous changes to files, including changes to our internal revisions
themselves.

With all of this in mind, let's identify our pieces one-by-one and decide how they
will play in our application.

We'll also present a few alternatives with options that can be swapped without
compromising the functionality or core requirements. This will allow some flexibility
in cases where platform or preference makes our primary option unpalatable. Any
time we're designing an application, it's a good idea to know
what else is out there in case the software (or terms of its use) change or it is no
longer satisfactory to use at a future scale.

Let's start with our data store.

Using NoSQL as a data store in Go
One of the biggest concessions with using NoSQL is, obviously, the lack of
standardization when it comes to CRUD operations (create, read, update, and
delete). SQL has been standardized since 1986 and is pretty airtight across a
number of databases—from MySQL to SQL Server and from Microsoft and
Oracle all the way down to PostgreSQL.

Chapter 8

[553]

You can read more about NoSQL and various NoSQL platforms
at http://nosql-database.org/.

Martin Fowler has also written a popular introduction to the
concept and some use cases in his book NoSQL Distilled at
http://martinfowler.com/books/nosql.html.

Depending on the NoSQL platform, you can also lose ACID compliance and
durability. This means that your data is not 100 percent secure—there can be
transactional loss if a server crashes, if reads happen on outdated or non-existent
data, and so on. The latter of which is known as a dirty read.

This is all noteworthy as it applies to our application and with concurrency
specifically because we've talked about one of those big potential third-party
bottlenecks in the previous chapters.

For our file-sharing application in Go, we will utilize NoSQL to store metadata about
files as well as the users that modify/interact with those files.

We have quite a few options when it comes to a NoSQL data store to use here, and
almost all of the big ones have a library or interface in Go. While we're going to go
with Couchbase here, we'll briefly talk about some of the other big players in the
game as well as the merits of each.

The code snippets in the following sections should also give you some idea of how
to switch out Couchbase for any of the others without too much angst. While we
don't go deeply into any of them, the code for maintaining the file and modifying
information will be as generic as possible to ensure easy exchange.

MongoDB
MongoDB is one of the most popular NoSQL platforms available. Written in 2009,
it's also one of the most mature platforms, but comes with a number of tradeoffs
that have pushed it somewhat out of favor in the recent years.

Even so, Mongo does what it does in a reliable fashion and with a great deal of
speed. Utilizing indices, as is the case with most databases and data stores, improves
query speed on reads greatly.

Mongo also allows for some very granular control of guarantees as they apply to
reads, writes, and consistency. You can think of this as a very vague analog to any
language and/or engine that supports syntactical dirty reads.

http://nosql-database.org/
http://martinfowler.com/books/nosql.html

Concurrent Application Architecture

[554]

Most importantly, Mongo supports concurrency easily within Go and is implicitly
designed to work in distributed systems.

The biggest Go interface for Mongo is mgo, which is available at:
http://godoc.org/labix.org/v2/mgo.

Should you wish to experiment with Mongo in Go, it's a relatively straightforward
process to take your data store record and inject it into a custom struct. The following
is a quick and dirty example:

import
(
 "labix.org/v2/mgo"
 "labix.org/v2/mgo/bson"
)

type User struct {
 name string
}

func main() {
 servers, err := mgo.Dial("localhost")
 defer servers.Close()
 data := servers.DB("test").C("users")
 result := User{}
 err = c.Find(bson.M{"name": "John"}).One(&result)
}

One downside to Mongo compared to other NoSQL solutions is that it does
not come with any GUI by default. This means we either need to tie in another
application or web service, or stick to the command line to manage its data store.
For many applications, this isn't a big deal, but we want to keep this project as
compartmentalized and provincial as possible to limit points of failure.

Mongo has also gotten a bit of a bad rap as it pertains to fault tolerance and data loss,
but this is equally true of many NoSQL solutions. In addition, it's in many ways a
feature of a fast data store—so often catastrophe recovery comes at the expense of
speed and performance.

http://godoc.org/labix.org/v2/mgo

Chapter 8

[555]

It's also fair to say this is a generally overblown critique of Mongo and its peers.
Can something bad happen with Mongo? Sure. Can it also happen with a managed
Oracle-based system? Absolutely. Mitigating massive failures in this realm is more
the responsibility of a systems administrator than the software itself, which can only
provide the tools necessary to design such a contingency plan.

All that said, we'll want something with a quick and highly-available management
interface, so Mongo is out for our requirements but could easily be plugged into this
solution if those are less highly valued.

Redis
Redis is another key/value data store and, as of recently, took the number one spot
in terms of total usage and popularity. In an ideal Redis world, an entire dataset is
held in memory. Given the size of many datasets, this isn't always possible; however,
coupled with Redis' ability to eschew durability, this can result in some very high
performance results when used in concurrent applications.

Another useful feature of Redis is the fact that it can inherently hold different data
structures. While you can make abstractions of such data by unmarshalling JSON
objects/arrays in Mongo (and other data stores), Redis can handle sets, strings,
arrays, and hashes.

There are two major accepted libraries for Redis in Go:

• Radix: This is a minimalist client that's barebones, quick, and dirty.
To install Radix, run the following command:
go get github.com/fzzy/radix/redis

• Redigo: This more robust and a bit more complex, but provides a lot of the
more intricate functionality that we'll probably not need for this project. To
install Redigo, run the following command:

go get github.com/garyburd/redigo/redis

We'll now see a quick example of getting a user's name from the data store of Users
in Redis using Redigo:

package main

import
(
 "fmt"
 "github.com/garyburd/redigo/redis"
)

Concurrent Application Architecture

[556]

func main() {

 connection,_ := dial()
 defer connection.Close()

 data, err := redis.Values(connection.Do("SORT", "Users", "BY",
"User:*->name",
 "GET", "User:*->name"))

 if (err) {
 fmt.Println("Error getting values", err)
 }

 for i:= range data {
 var Uname string
 data,err := redis.Scan(data, &Uname)
 if (err) {
 fmt.Println("Error getting value",err)
 }else {
 fmt.Println("Name Uname")
 }
 }
}

Looking over this, you might note some non programmatic access syntax, such as
the following:

 data, err := redis.Values(connection.Do("SORT", "Users", "BY",
"User:*->name",
 "GET", "User:*->name"))

This is indeed one of the reasons why Redis in Go will not be our choice for this
project—both libraries here provide an almost API-level access to certain features
with some more detailed built-ins for direct interaction. The Do command passes
straight queries directly to Redis, which is fine if you need to use the library,
but a somewhat inelegant solution across the board.

Both the libraries play very nicely with the concurrent features of Go, and you'll have
no problem making non-blocking networked calls to Redis through either of them.

It's worth noting that Redis only supports an experimental build for Windows,
so this is mostly for use on *nix platforms. The port that does exist comes from
Microsoft and can be found at https://github.com/MSOpenTech/redis.

https://github.com/MSOpenTech/redis

Chapter 8

[557]

Tiedot
If you've worked a lot with NoSQL, then the preceding engines all likely seemed
very familiar to you. Redis, Couch, Mongo, and so on are all virtual stalwarts in
what is a relatively young technology.

Tiedot, on the other hand, probably isn't as familiar. We're including it here only
because the document store itself is written in Go directly. Document manipulation
is handled primarily through a web interface, and it's a JSON document store like
several other NoSQL solutions.

As document access and handling is governed via HTTP, there's a somewhat
counterintuitive workflow, shown as follows:

As that introduces a potential spot for latency or failure, this keeps from being an
ideal solution for our application here. Keep in mind that this is also a feature of
a few of the other solutions mentioned earlier, but since Tiedot is written in Go, it
would be significantly easier to connect to it and read/modify data using a package.
While this book was being written, this did not exist.

Unlike other HTTP- or REST-focused alternatives such as CouchDB, Tiedot relies
on URL endpoints to dictate actions, not HTTP methods.

You can see in the following code how we might handle something like this through
standard libraries:

package main

import
(
 "fmt"
 "json"
 "http"
)

type Collection struct {
 Name string
}

Concurrent Application Architecture

[558]

This, simply, is a data structure for any record you wish to bring into your Go
application via data selects, queries, and so on. You saw this in our previous
usage of SQL servers themselves, and this is not any different:

func main() {

 Col := Collection{
 Name: ''
 }

 data, err := http.Get("http://localhost:8080/all")
 if (err != nil) {
 fmt.Println("Error accessing tiedot")
 }
 collections,_ = json.Unmarshal(data,&Col)
}

While not as robust, powerful, or scalable as many of its peers, Tiedot is certainly
worth playing with or, better yet, contributing to.

You can find Tiedot at https://github.com/HouzuoGuo/
tiedot.

CouchDB
CouchDB from Apache Incubator is another one of the big boys in NoSQL big data.
As a JSON document store, CouchDB offers a great deal of flexibility when it comes
to your data store approach.

CouchDB supports ACID semantics and can do so concurrently, which provides
a great deal of performance benefit if one is bound to those properties. In our
application, that reliance on ACID consistency is somewhat flexible. By design,
it will be failure tolerant and recoverable, but for many, even the possibility of
data loss with recoverability is still considered catastrophic.

Interfacing with CouchDB happens via HTTP, which means there is no need for a
direct implementation or Go SQL database hook to use it. Interestingly, CouchDB
uses HTTP header syntax to manipulate data, as follows:

• GET: This represents read operations

• PUT: This represents creation operations

• DELETE: This represents deletion and update operations

https://github.com/HouzuoGuo/tiedot
https://github.com/HouzuoGuo/tiedot

Chapter 8

[559]

These are, of course, what the header methods were initially intended in HTTP 1.1,
but so much of the Web has focused on GET/POST that these tend to get lost in
the fray.

Couch also comes with a convenient web interface for management. When CouchDB
is running, you're able to access this at http://localhost:5984/_utils/, as shown
in the following screenshot:

That said, there are a few wrappers that provide a level of abstraction for some of the
more complicated and advanced features.

Cassandra
Cassandra, another Apache Foundation project, isn't technically a NoSQL solution
but a clustered (or cluster-able) database management platform.

Like many NoSQL applications, there is a limitation in the traditional query methods
in Cassandra, for example, subqueries and joins are generally not supported.

We're mentioning it here primarily because of its focus on distributed computing
as well as the ability to programmatically tune whether data consistency or
performance is more important. Much of that is equally expressed in our solution,
Couchbase, but Cassandra has a deeper focus on distributed data stores.

Cassandra does, however, support a subset of SQL that will make it far more familiar
to developers who have dabbled in MySQL, PostgreSQL, or the ilk. Cassandra's
built-in handling of highly concurrent integrations makes it in many ways ideal for
Go, although it is an overkill for this project.

The most noteworthy library to interface with Cassandra is gocql, which focuses on
speed and a clean connection to the Cassandra connection. Should you choose to use
Cassandra in lieu of Couchbase (or other NoSQL), you'll find a lot of the methods
that can be simply replaced.

Concurrent Application Architecture

[560]

The following is an example of connecting to a cluster and writing a simple query:

package main

import
(
 "github.com/gocql/gocql"
 "log"
)

func main() {

 cass := gocql.NewCluster("127.0.0.1")
 cass.Keyspace = "filemaster"
 cass.Consistency = gocql.LocalQuorum

 session, _ := cass.CreateSession()
 defer session.Close()

 var fileTime int;

 if err := session.Query(`SELECT file_modified_time FROM filemaster
 WHERE filename = ? LIMIT 1`,
 "test.txt").Consistency(gocql.One).Scan(&fileTime); err != nil {
 log.Fatal(err)
 }
 fmt.Println("Last modified",fileTime)
}

Cassandra may be an ideal solution if you plan on rapidly scaling this application,
distributing it widely, or are far more comfortable with SQL than data store /
JSON access.

For our purposes here, SQL is not a requirement and we value speed over anything
else, including durability.

Couchbase
Couchbase is a relative newcomer in the field, but it was built by people from both
CouchDB and memcached. Written in Erlang, it shares many of the same focuses on
concurrency, speed, and non-blocking behavior that we've come to expect from a
great deal of our Go applications.

Couchbase also supports a lot of the other features we've discussed in the previous
chapters, including easy distribution-based installations, tuneable ACID compliance,
and low-resource consumption.

Chapter 8

[561]

One caveat on Couchbase is it doesn't run well (or at all) on some lower-resourced
machines or VMs. Indeed, 64-bit installations require an absolute minimum of 4
GB of memory and four cores, so forget about launching this on tiny, small, or even
medium-grade instances or older hardware.

While most NoSQL solutions presented here (or elsewhere) offer performance
benefits over their SQL counterparts in general, Couchbase has done very well
against its peers in the NoSQL realm itself.

Couchbase, such as CouchDB, comes with a web-based graphical interface that
simplifies the process of both setup and maintenance. Among the advanced features
that you'll have available to you in the setup include your base bucket storage engine
(Couchbase or memcached), your automated backup process (replicas), and the level
of read-write concurrency.

In addition to configuration and management tools, it also presents some real-time
monitoring in the web dashboard as shown in the following screenshot:

Concurrent Application Architecture

[562]

While not a replacement for full-scale server management (what happens when this
server goes down and you have no insight), it's incredibly helpful to know exactly
where your resources are going without needing a command-line method or an
external tool.

The vernacular in Couchbase varies slightly, as it tends to in many of these solutions.
The nascent desire to slightly separate NoSQL from stodgy old SQL solutions will
pop its head from time to time.

With Couchbase, a database is a data bucket and records are documents. However,
views, an old transactional SQL standby, bring a bit of familiarity to the table. The
big takeaway here is views allow you to create more complex queries using simple
JavaScript, in some cases, replicating otherwise difficult features such as joins,
unions, and pagination.

Each view created in Couchbase becomes an HTTP access point. So a view that
you name select_all_files will be accessible via a URL such as http://
localhost:8092/file_manager/_design/select_all_files/_view/Select%20
All%20Files?connection_timeout=60000&limit=10&skip=0.

The most noteworthy Couchbase interface library is Go Couchbase, which, if nothing
else, might save you from some of the redundancy of making HTTP calls in your
code to access CouchDB.

Go Couchbase can be found at https://github.com/
couchbaselabs/go-couchbase.

Go Couchbase makes interfacing with Couchbase through a Go abstraction simple
and powerful. The following code connects and grabs information about the various
data pools in a lean way that feels native:

package main

import
(
 "fmt"
 "github.com/couchbaselabs/go-couchbase"
)

func main() {

 conn, err := couchbase.Connect("http://localhost:8091")
 if err != nil {
 fmt.Println("Error:",err)
 }

https://github.com/couchbaselabs/go-couchbase
https://github.com/couchbaselabs/go-couchbase

Chapter 8

[563]

 for _, pn := range conn.Info.Pools {
 fmt.Printf("Found pool: %s -> %s\n", pn.Name, pn.URI)
 }
}

Setting up our data store
After installing Couchbase, you can access its administration panel by default
at localhost and port 8091.

You'll be given an opportunity to set up an administrator, other IPs to connect
(if you're joining a cluster), and general data store design.

After that, you'll need to set up a bucket, which is what we'll use to store all
information about individual files. Here is what the interface for the bucket
setup looks like:

Concurrent Application Architecture

[564]

In our example, we're working on a single machine, so replicas (also known as
replication in database vernacular) are not supported. We've named it file_
manager, but this can obviously be called anything that makes sense.

We're also keeping our data usage pretty low—there's no need for much more than
256 MB of memory when we're storing file operations and logging older ones. In
other words, we're not necessarily concerned with keeping the modification history
of test.txt in memory forever.

We'll also stick with Couchbase for a storage engine equivalent, although you can
flip back and forth with memcache(d) without much noticeable change.

Let's start by creating a seed document: one we'll delete later, but that will represent
the schema of our data store. We can create this document with an arbitrary JSON
structured object, as shown in the following screenshot:

Since everything stored in this data store should be valid JSON, we can mix and
match strings, integers, bools, arrays, and objects. This affords us some flexibility
in what data we're using. The following is an example document:

{
 "file_name": "test.txt",
 "hash": "",
 "created": 1,
 "created_user": 0,
 "last_modified": "",
 "last_modified_user": "",
 "revisions": [],
 "version": 1
}

Chapter 8

[565]

Monitoring filesystem changes
When it came to NoSQL options, we had a vast variety of solutions at our disposal.
This is not the case when it comes to applications that monitor filesystem changes.
While Linux flavors have a fairly good built-in solution in inotify, this does restrict
the portability of the application.

So it's incredibly helpful that a cross-platform library for handling this exists in
Chris Howey's fsnotify.

Fsnotify works on Linux, OSX, and Windows and allows us to detect when files
in any given directory are created, deleted, modified, or renamed, which is more
than enough for our purposes.

Implementing fsnotify couldn't be easier, either. Best of all it's all non-blocking,
so if we throw the listener behind a goroutine, we can have this run as part of
the primary server application code.

The following code shows a simple directory listener:

package main

import (
 "github.com/howeyc/fsnotify"
 "fmt"
 "log""
)

func main() {

 scriptDone := make(chan bool)
 dirSpy, err := fsnotify.NewWatcher()
 if err != nil {
 log.Fatal(err)
 }

 go func() {
 for {
 select {
 case fileChange := <-dirSpy.Event:
 log.Println("Something happened to a file:",
 fileChange)
 case err := <-dirSpy.Error:
 log.Println("Error with fsnotify:", err)
 }

Concurrent Application Architecture

[566]

 }
 }()

 err = dirSpy.Watch("/mnt/sharedir")
 if err != nil {
 fmt.Println(err)
 }

 <-scriptDone

 dirSpy.Close()
}

Managing logfiles
Like many basic features in a developer's toolbox, Go provides a fairly complete
solution built-in for logging. It handles many of the basics, such as creating
timestamp-marked log items and saving to disk or to console.

One thing the basic package misses out on is built-in formatting and log rotation,
which are key requirements for our file manager application.

Remember that key requirements for our application include the ability to work
seamlessly in our concurrent environment and be ready to scale to a distributed
network if need be. This is where the fine log4go application comes in handy. Log4go
allows logging to file, console, and memory and handles log rotation inherently.

Log4go can be found at https://code.google.com/p/
log4go/.

To install Log4go, run the following command:
go get code.google.com/p/log4go

Creating a logfile that handles warnings, notices, debug information, and critical
errors is simple and appending log rotation to that is similarly simple, as shown
in the following code:

package main

import
(
 logger "code.google.com/p/log4go"
)
func main() {
 logMech := make(logger.Logger);

https://code.google.com/p/log4go/
https://code.google.com/p/log4go/

Chapter 8

[567]

 logMech.AddFilter("stdout", logger.DEBUG,
 logger.NewConsoleLogWriter())

 fileLog := logger.NewFileLogWriter("log_manager.log", false)
 fileLog.SetFormat("[%D %T] [%L] (%S) %M")
 fileLog.SetRotate(true)
 fileLog.SetRotateSize(256)
 fileLog.SetRotateLines(20)
 fileLog.SetRotateDaily(true)
 logMech.AddFilter("file", logger.FINE, fileLog)

 logMech.Trace("Received message: %s)", "All is well")
 logMech.Info("Message received: ", "debug!")
 logMech.Error("Oh no!","Something Broke")
}

Handling configuration files
When it comes to configuration files and parsing them, you have a lot of options,
from simple to complicated.

We could, of course, simply store what we want in JSON, but that format is a little
tricky to work directly for humans—it will require escaping characters and so on,
which makes it vulnerable to errors.

Instead, we'll keep things simple by using a standard ini config file library in gcfg,
which handles gitconfig files and traditional, old school .ini format, as shown in
the following code snippet:

[revisions]
count = 2
revisionsuffix = .rev
lockfiles = false

[logs]
rotatelength = 86400

[alarms]
emails = sysadmin@example.com,ceo@example.com

You can find gcfg at https://code.google.com/p/gcfg/.

https://code.google.com/p/gcfg/

Concurrent Application Architecture

[568]

Essentially, this library takes the values of a config file and pushes them into a struct
in Go. An example of how we'll do that is as follows:

package main

import
(
 "fmt"
 "code.google.com/p/gcfg"
)

type Configuration struct {
 Revisions struct {
 Count int
 Revisionsuffix string
 Lockfiles bool
 }
 Logs struct {
 Rotatelength int
 }
 Alarms struct {
 Emails string
 }
}

func main() {
 configFile := Configuration{}
 err := gcfg.ReadFileInto(&configFile, "example.ini")
 if err != nil {
 fmt.Println("Error",err)
 }
 fmt.Println("Rotation duration:",configFile.Logs.Rotatelength)
}

Detecting file changes
Now we need to focus on our file listener. You may recall this is the part of
the application that will accept client connections from our web server and our
backup application and announce any changes to files.

The basic flow of this part is as follows:

1. Listen for changes to files in a goroutine.
2. Accept connections and add to the pool in a goroutine.

3. If any changes are detected, announce them to the entire pool.

Chapter 8

[569]

All three happen concurrently, and the first and the third can happen without any
connections in the pool, although we assume there will be a connection that is always
on with both our web server and our backup application.

Another critical role the file listener will fulfill is analyzing the directory on first load
and reconciling it with our data store in Couchbase. Since the Go Couchbase library
handles the get, update, and add operations, we won't need any custom views. In the
following code, we'll examine the file listener process and show how we listen on a
folder for changes:

package main

import
(
 "fmt"
 "github.com/howeyc/fsnotify"
 "net"
 "time"
 "io"
 "io/ioutil"
 "github.com/couchbaselabs/go-couchbase"
 "crypto/md5"
 "encoding/hex"
 "encoding/json"
 "strings"

)

var listenFolder = "mnt/sharedir"

type Client struct {
 ID int
 Connection *net.Conn
}

Here, we've declared our shared folder as well as a connecting Client struct.
In this application, Client is either a web listener or a backup listener, and we'll
pass messages in one direction using the following JSON-encoded structure:

type File struct {
 Hash string "json:hash"
 Name string "json:file_name"
 Created int64 "json:created"
 CreatedUser int "json:created_user"
 LastModified int64 "json:last_modified"
 LastModifiedUser int "json:last_modified_user"
 Revisions int "json:revisions"
 Version int "json:version"
}

Concurrent Application Architecture

[570]

If this looks familiar, it could be because it's also the example document format we
set up initially.

If you're not familiar with the syntactical sugar expressed earlier, these
are known as struct tags. A tag is just a piece of additional metadata
that can be applied to a struct field for key/value lookups via the
reflect package. In this case, they're used to map our struct fields to
JSON fields.

Let's first look at our overall Message struct:

type Message struct {
 Hash string "json:hash"
 Action string "json:action"
 Location string "json:location"
 Name string "json:name"
 Version int "json:version"
}

We compartmentalize our file into a message, which alerts our other two processes
of changes:

func generateHash(name string) string {

 hash := md5.New()
 io.WriteString(hash,name)
 hashString := hex.EncodeToString(hash.Sum(nil))

 return hashString
}

This is a somewhat unreliable method to generate a hash reference to a file and will
fail if a filename changes. However, it allows us to keep track of files that are created,
deleted, or modified.

Sending changes to clients
Here is the broadcast message that goes to all existing connections. We pass along
our JSON-encoded Message struct with the current version, the current location,
and the hash for reference. Our other servers will then react accordingly:

func alertServers(hash string, name string, action string, location
string, version int) {

Chapter 8

[571]

 msg :=
 Message{Hash:hash,Action:action,Location:location,Name:name,
 Version:version}
 msgJSON,_ := json.Marshal(msg)

 fmt.Println(string(msgJSON))

 for i := range Clients {
 fmt.Println("Sending to clients")
 fmt.Fprintln(*Clients[i].Connection,string(msgJSON))
 }
}

Our backup server will create a copy of that file with the .[VERSION] extension
in the backup folder.

Our web server will simply alert the user via our web interface that the file
has changed:

func startServer(listener net.Listener) {
 for {
 conn,err := listener.Accept()
 if err != nil {

 }
 currentClient := Client{ ID: 1, Connection: &conn}
 Clients = append(Clients,currentClient)
 for i:= range Clients {
 fmt.Println("Client",Clients[i].ID)
 }
 }

}

Does this code look familiar? We've taken almost our exact chat server Client
handler and brought it over here nearly intact:

func removeFile(name string, bucket *couchbase.Bucket) {
 bucket.Delete(generateHash(name))
}

The removeFile function does one thing only and that's removing the file from
our Couchbase data store. As it's reactive, we don't need to do anything on the
file-server side because the file is already deleted. Also, there's no need to delete
any backups, as this allows us to recover. Next, let's look at our function that
updates an existing file:

Concurrent Application Architecture

[572]

func updateExistingFile(name string, bucket *couchbase.Bucket) int {
 fmt.Println(name,"updated")
 hashString := generateHash(name)

 thisFile := Files[hashString]
 thisFile.Hash = hashString
 thisFile.Name = name
 thisFile.Version = thisFile.Version + 1
 thisFile.LastModified = time.Now().Unix()
 Files[hashString] = thisFile
 bucket.Set(hashString,0,Files[hashString])
 return thisFile.Version
}

This function essentially overwrites any values in Couchbase with new ones,
copying an existing File struct and changing the LastModified date:

func evalFile(event *fsnotify.FileEvent, bucket *couchbase.Bucket) {
 fmt.Println(event.Name,"changed")
 create := event.IsCreate()
 fileComponents := strings.Split(event.Name,"\\")
 fileComponentSize := len(fileComponents)
 trueFileName := fileComponents[fileComponentSize-1]
 hashString := generateHash(trueFileName)

 if create == true {
 updateFile(trueFileName,bucket)
 alertServers(hashString,event.Name,"CREATE",event.Name,0)
 }
 delete := event.IsDelete()
 if delete == true {
 removeFile(trueFileName,bucket)
 alertServers(hashString,event.Name,"DELETE",event.Name,0)
 }
 modify := event.IsModify()
 if modify == true {
 newVersion := updateExistingFile(trueFileName,bucket)
 fmt.Println(newVersion)
 alertServers(hashString,trueFileName,"MODIFY",event.Name,
 newVersion)
 }
 rename := event.IsRename()
 if rename == true {

 }
}

Chapter 8

[573]

Here, we react to any changes to the filesystem in our watched directory. We aren't
reacting to renames, but you can handle those as well. Here's how we'd approach the
general updateFile function:

func updateFile(name string, bucket *couchbase.Bucket) {
 thisFile := File{}
 hashString := generateHash(name)

 thisFile.Hash = hashString
 thisFile.Name = name
 thisFile.Created = time.Now().Unix()
 thisFile.CreatedUser = 0
 thisFile.LastModified = time.Now().Unix()
 thisFile.LastModifiedUser = 0
 thisFile.Revisions = 0
 thisFile.Version = 1

 Files[hashString] = thisFile

 checkFile := File{}
 err := bucket.Get(hashString,&checkFile)
 if err != nil {
 fmt.Println("New File Added",name)
 bucket.Set(hashString,0,thisFile)
 }
}

Checking records against Couchbase
When it comes to checking for existing records against Couchbase, we check whether
a hash exists in our Couchbase bucket. If it doesn't, we create it. If it does, we do
nothing. To handle shutdowns more robustly, we should also ingest existing records
into our application. The code for doing this is as follows:

var Clients []Client
var Files map[string] File

func main() {
 Files = make(map[string]File)
 endScript := make(chan bool)

 couchbaseClient, err := couchbase.Connect("http://localhost:8091/")
 if err != nil {

Concurrent Application Architecture

[574]

 fmt.Println("Error connecting to Couchbase", err)
 }
 pool, err := couchbaseClient.GetPool("default")
 if err != nil {
 fmt.Println("Error getting pool",err)
 }
 bucket, err := pool.GetBucket("file_manager")
 if err != nil {
 fmt.Println("Error getting bucket",err)
 }

 files, _ := ioutil.ReadDir(listenFolder)
 for _, file := range files {
 updateFile(file.Name(),bucket)
 }

 dirSpy, err := fsnotify.NewWatcher()
 defer dirSpy.Close()

 listener, err := net.Listen("tcp", ":9000")
 if err != nil {
 fmt.Println ("Could not start server!",err)
 }

 go func() {
 for {
 select {
 case ev := <-dirSpy.Event:
 evalFile(ev,bucket)
 case err := <-dirSpy.Error:
 fmt.Println("error:", err)
 }
 }
 }()
 err = dirSpy.Watch(listenFolder)
 startServer(listener)

 <-endScript
}

Finally, main() handles setting up our connections and goroutines, including a file
watcher, our TCP server, and connecting to Couchbase.

Now, let's look at another step in the whole process where we will automatically
create backups of our modified files.

Chapter 8

[575]

Backing up our files
Since we're sending our commands on the wire, so to speak, our backup process
needs to listen on that wire and respond with any changes. Given that modifications
will be sent via localhost, we should have minimal latency on both the network and
the file side.

We'll also return some information as to what happened with the file, although at this
point we're not doing much with that information. The code for this is as follows:

package main

import
(
 "fmt"
 "net"
 "io"
 "os"
 "strconv"
 "encoding/json"
)

var backupFolder = "mnt/backup/"

Note that we have a separate folder for backups, in this case, on a Windows machine.
If we happen to accidentally use the same directory, we run the risk of infinitely
duplicating and backing up files. In the following code snippet, we'll look at the
Message struct itself and the backup function, the core of this part of the application:

type Message struct {
 Hash string "json:hash"
 Action string "json:action"
 Location string "json:location"
 Name string "json:name"
 Version int "json:version"
}

func backup (location string, name string, version int) {

 newFileName := backupFolder + name + "." +
 strconv.FormatInt(int64(version),10)
 fmt.Println(newFileName)
 org,_ := os.Open(location)
 defer org.Close()
 cpy,_ := os.Create(newFileName)
 defer cpy.Close()
 io.Copy(cpy,org)
}

Concurrent Application Architecture

[576]

Here is our basic file operation. Go doesn't have a one-step copy function; instead
you need to create a file and then copy the contents of another file into it with
io.Copy:

func listen(conn net.Conn) {
 for {

 messBuff := make([]byte,1024)
 n, err := conn.Read(messBuff)
 if err != nil {

 }

 resultMessage := Message{}
 json.Unmarshal(messBuff[:n],&resultMessage)

 if resultMessage.Action == "MODIFY" {
 fmt.Println("Back up file",resultMessage.Location)
 newVersion := resultMessage.Version + 1
 backup(resultMessage.Location,resultMessage.Name,newVersion)
 }

 }

}

This code is nearly verbatim for our chat client's listen() function, except that
we take the contents of the streamed JSON data, unmarshal it, and convert it to a
Message{} struct and then a File{} struct. Finally, let's look at the main function
and TCP initialization:

func main() {
 endBackup := make(chan bool)
 conn, err := net.Dial("tcp","127.0.0.1:9000")
 if err != nil {
 fmt.Println("Could not connect to File Listener!")
 }
 go listen(conn)

 <- endBackup
}

Chapter 8

[577]

Designing our web interface
To interact with the filesystem, we'll want an interface that displays all of the current
files with the version, last modified time, and alerts to changes, and allows drag-and-
drop creation/replacement of files.

Getting a list of files will be simple, as we'll grab them directly from our file_manager
Couchbase bucket. Changes will be sent through our file manager process via TCP,
which will trigger an API call, illuminating changes to the file for our web user.

A few of the methods we've used here are duplicates of the ones we used in
the backup process and could certainly benefit from some consolidation; still,
the following is the code for the web server, which allows uploads and shows
notifications for changes:

package main

import
(
 "net"
 "net/http"
 "html/template"
 "log"
 "io"
 "os"
 "io/ioutil"
 "github.com/couchbaselabs/go-couchbase"
 "time"
 "fmt"
 "crypto/md5"
 "encoding/hex"
 "encoding/json"
)

type File struct {
 Hash string "json:hash"
 Name string "json:file_name"
 Created int64 "json:created"
 CreatedUser int "json:created_user"
 LastModified int64 "json:last_modified"
 LastModifiedUser int "json:last_modified_user"
 Revisions int "json:revisions"
 Version int "json:version"
}

Concurrent Application Architecture

[578]

This, for example, is the same File struct we use in both the file listener and the
backup process:

type Page struct {
 Title string
 Files map[string] File
}

Our Page struct represents generic web data that gets converted into corresponding
variables for our web page's template:

type ItemWrapper struct {

 Items []File
 CurrentTime int64
 PreviousTime int64

}

type Message struct {
 Hash string "json:hash"
 Action string "json:action"
 Location string "json:location"
 Name string "json:name"
 Version int "json:version"
}

The ItemWrapper struct is simply a JSON wrapper that will keep an array that's
converted from our Files struct. This is essential to loop through the API's JSON
on the client side. Our Message struct is a duplicate of the same type we saw in our
file listener and backup processes. In the following code snippet, we'll dictate some
general configuration variables and our hash generation function:

var listenFolder = "/wamp/www/shared/"
var Files map[string] File
var webTemplate = template.Must(template.ParseFiles("ch8_html.html"))
var fileChange chan File
var lastChecked int64

func generateHash(name string) string {

 hash := md5.New()
 io.WriteString(hash,name)
 hashString := hex.EncodeToString(hash.Sum(nil))

 return hashString
}

Chapter 8

[579]

Our md5 hashing method is the same for this application as well. It's worth noting
that we derive a lastChecked variable that is the Unix-style timestamp from each
time we get a signal from our file listener. We use this to compare with file changes
on the client side to know whether to alert the user on the Web. Let's now look at
the updateFile function for the web interface:

func updateFile(name string, bucket *couchbase.Bucket) {
 thisFile := File{}
 hashString := generateHash(name)

 thisFile.Hash = hashString
 thisFile.Name = name
 thisFile.Created = time.Now().Unix()
 thisFile.CreatedUser = 0
 thisFile.LastModified = time.Now().Unix()
 thisFile.LastModifiedUser = 0
 thisFile.Revisions = 0
 thisFile.Version = 1

 Files[hashString] = thisFile

 checkFile := File{}
 err := bucket.Get(hashString,&checkFile)
 if err != nil {
 fmt.Println("New File Added",name)
 bucket.Set(hashString,0,thisFile)
 }else {
 Files[hashString] = checkFile
 }
}

This is the same function as our backup process, except that instead of creating a
duplicate file, we simply overwrite our internal File struct to allow it represent its
updated LastModified value when the /api is next called. And as with our last
example, let's check out the listen() function:

func listen(conn net.Conn) {
 for {

 messBuff := make([]byte,1024)
 n, err := conn.Read(messBuff)
 if err != nil {

Concurrent Application Architecture

[580]

 }
 message := string(messBuff[:n])
 message = message[0:]

 resultMessage := Message{}
 json.Unmarshal(messBuff[:n],&resultMessage)

 updateHash := resultMessage.Hash
 tmp := Files[updateHash]
 tmp.LastModified = time.Now().Unix()
 Files[updateHash] = tmp
 }

}

Here is where our message is read, unmarshalled, and set to its hashed map's key.
This will create a file if it doesn't exist or update our current one if it does. Next, we'll
look at the main() function, which sets up our application and the web server:

func main() {
 lastChecked := time.Now().Unix()
 Files = make(map[string]File)
 fileChange = make(chan File)
 couchbaseClient, err := couchbase.Connect("http://localhost:8091/")
 if err != nil {
 fmt.Println("Error connecting to Couchbase", err)
 }
 pool, err := couchbaseClient.GetPool("default")
 if err != nil {
 fmt.Println("Error getting pool",err)
 }
 bucket, err := pool.GetBucket("file_manager")
 if err != nil {
 fmt.Println("Error getting bucket",err)
 }

 files, _ := ioutil.ReadDir(listenFolder)
 for _, file := range files {
 updateFile(file.Name(),bucket)
 }

 conn, err := net.Dial("tcp","127.0.0.1:9000")
 if err != nil {
 fmt.Println("Could not connect to File Listener!")
 }

Chapter 8

[581]

 go listen(conn)

 http.HandleFunc("/api", func(w http.ResponseWriter, r
 *http.Request) {
 apiOutput := ItemWrapper{}
 apiOutput.PreviousTime = lastChecked
 lastChecked = time.Now().Unix()
 apiOutput.CurrentTime = lastChecked

 for i:= range Files {
 apiOutput.Items = append(apiOutput.Items,Files[i])
 }
 output,_ := json.Marshal(apiOutput)
 fmt.Fprintln(w,string(output))

 })
 http.HandleFunc("/", func(w http.ResponseWriter, r
 *http.Request) {
 output := Page{Files:Files,Title:"File Manager"}
 tmp, _ := template.ParseFiles("ch8_html.html")
 tmp.Execute(w, output)
 })
 http.HandleFunc("/upload", func(w http.ResponseWriter, r
 *http.Request) {
 err := r.ParseMultipartForm(10000000)
 if err != nil {
 return
 }
 form := r.MultipartForm

 files := form.File["file"]
 for i, _ := range files {
 newFileName := listenFolder + files[i].Filename
 org,_:= files[i].Open()
 defer org.Close()
 cpy,_ := os.Create(newFileName)
 defer cpy.Close()
 io.Copy(cpy,org)
 }
 })

 log.Fatal(http.ListenAndServe(":8080",nil))

}

Concurrent Application Architecture

[582]

In our web server component, main() takes control of setting up the connection to
the file listener and Couchbase and creating a web server (with related routing).

If you upload a file by dragging it to the Drop files here to upload box, within a few
seconds you'll see that the file is noted as changed in the web interface, as shown in
the following screenshot:

We haven't included the code for the client side of the web interface; the key points,
though, are retrieval via an API. We used a JavaScript library called Dropzone.js
that allows a drag-and-drop upload, and jQuery for API access.

Reverting a file's history – command line
The final component we'd like to add to this application suite is a command-line
file revision process. We can keep this one fairly simple, as we know where a file is
located, where its backups are located, and how to replace the former with the latter.
As with before, we have some global configuration variables and a replication of our
generateHash() function:

Chapter 8

[583]

var liveFolder = "/mnt/sharedir "
var backupFolder = "/mnt/backup

func generateHash(name string) string {

 hash := md5.New()
 io.WriteString(hash,name)
 hashString := hex.EncodeToString(hash.Sum(nil))

 return hashString
}

func main() {
 revision := flag.Int("r",0,"Number of versions back")
 fileName := flag.String("f","","File Name")
 flag.Parse()

 if *fileName == "" {

 fmt.Println("Provide a file name to use!")
 os.Exit(0)
 }

 couchbaseClient, err := couchbase.Connect("http://localhost:8091/")
 if err != nil {
 fmt.Println("Error connecting to Couchbase", err)
 }
 pool, err := couchbaseClient.GetPool("default")
 if err != nil {
 fmt.Println("Error getting pool",err)
 }
 bucket, err := pool.GetBucket("file_manager")
 if err != nil {
 fmt.Println("Error getting bucket",err)
 }

 hashString := generateHash(*fileName)
 checkFile := File{}
 bucketerr := bucket.Get(hashString,&checkFile)
 if bucketerr != nil {

Concurrent Application Architecture

[584]

 }else {
 backupLocation := backupFolder + checkFile.Name + "." +
 strconv.FormatInt(int64(checkFile.Version-*revision),10)
 newLocation := liveFolder + checkFile.Name
 fmt.Println(backupLocation)
 org,_ := os.Open(backupLocation)
 defer org.Close()
 cpy,_ := os.Create(newLocation)
 defer cpy.Close()
 io.Copy(cpy,org)
 fmt.Println("Revision complete")
 }

}

This application accepts up to two parameters:

• -f: This denotes the filename
• -r: This denotes the number of versions to revert

Note that this itself creates a new version and thus a backup, so -2 would need to
become -3, and then -6, and so on in order to continuously back up recursively.

As an example, if you wished to revert example.txt back three versions, you could
use the following command:

fileversion -f example.txt -r -3

Using Go in daemons and as a service
A minor note on running something like this part of the application—you'll ideally
wish to keep these applications as active, restartable services instead of standalone,
manually executed background processes. Doing so will allow you to keep the
application active and manage its life from external or server processes.

This sort of application suite would be best suited on a Linux box (or boxes) and
managed with a daemon manager such as daemontools or Ubuntu's built-in Upstart
service. The reason for this is that any long-term downtime can result in lost data
and inconsistency. Even storing file data details in the memory (Couchbase and
memcached) provides a vulnerability for lost data.

Chapter 8

[585]

Checking the health of our server
Of the many ways to check general server health, we're in a good position here without
having to build our own system, thanks in great part to Couchbase itself. If you visit
the Couchbase web admin, under your cluster, server, and bucket views, clicking on
any will present some real-time statistics, as shown in the following screenshot:

These areas are also available via REST if you wish to include them in the application
to make your logging and error handling more comprehensive.

Concurrent Application Architecture

[586]

Summary
We now have a top to bottom application suite that is highly concurrent, ropes
in several third-party libraries, and mitigates potential failures with logging and
catastrophe recovery.

At this point, you should have no issue constructing a complex package of software
with a focus on maintaining concurrency, reliability, and performance in Go. Our file
monitoring application can be easily modified to do more, use alternative services, or
scale to a robust, distributed environment.

In the next chapter, we'll take a closer look at testing our concurrency and
throughput, explore the value of panic and recover, as well as dealing with logging
vital information and errors in a safe, concurrent manner in Go.

Logging and Testing
Concurrency in Go

At this stage, you should be fairly comfortable with concurrency in Go and should
be able to implement basic goroutines and concurrent mechanisms with ease.

We have also dabbled in some distributed concurrency patterns that are managed
not only through the application itself, but also through third-party data stores for
networked applications that operate concurrently in congress.

Earlier in this book, we examined some preliminary and basic testing and logging.
We looked at the simpler implementations of Go's internal test tool, performed
some race condition testing using the race tool, and performed some rudimentary
load and performance testing.

However, there's much more to be looked at here, particularly as it relates to the
potential black hole of concurrent code—we've seen unexpected behavior among
code that runs in goroutines and is non-blocking.

In this chapter, we'll further investigate load and performance testing, look at
unit testing in Go, and experiment with more advanced tests and debugging.
We'll also look at best practices for logging and reporting, as well as take a
closer look at panicking and recovering.

Lastly, we'll want to see how all of these things can be applied not just to our
standalone concurrent code, but also to distributed systems.

Along the way, we'll introduce a couple of frameworks for unit testing in a
variety of different styles.

Logging and Testing Concurrency in Go

[588]

Handling errors and logging
Though we haven't specifically mentioned it, the idiomatic nature of error handling
in Go makes debugging naturally easier by mandate.

One good practice for any large-scale function inside Go code is to return an error
as a return value—for many smaller methods and functions, this is potentially
burdensome and unnecessary. Still, it's a matter for consideration whenever we're
building something that involves a lot of moving pieces.

For example, consider a simple Add() function:

func Add(x int, y int) int {
 return x + y
}

If we wish to follow the general rule of "always return an error value", we may be
tempted to convert this function to the following code:

package main
import
(
 "fmt"
 "errors"
 "reflect"
)

func Add(x int, y int) (int, error) {
 var err error

 xType := reflect.TypeOf(x).Kind()
 yType := reflect.TypeOf(y).Kind()
 if xType != reflect.Int || yType != reflect.Int {
 fmt.Println(xType)
 err = errors.New("Incorrect type for integer a or b!")
 }
 return x + y, err
}

func main() {

 sum,err := Add("foo",2)
 if err != nil {
 fmt.Println("Error",err)
 }
 fmt.Println(sum)
}

Chapter 9

[589]

You can see that we're (very poorly) reinventing the wheel. Go's internal compiler
kills this long before we ever see it. So, we should focus on things that the compiler
may not catch and that can cause unexpected behavior in our applications,
particularly when it comes to channels and listeners.

The takeaway is to let Go handle the errors that the compiler would handle, unless
you wish to handle the exceptions yourself, without causing the compiler specific
grief. In the absence of true polymorphism, this is often cumbersome and requires
the invocation of interfaces, as shown in the following code:

type Alpha struct {

}

type Numeric struct {

}

You may recall that creating interfaces and structs allows us to route our function
calls separately based on type. This is shown in the following code:

func (a Alpha) Add(x string, y string) (string, error) {
 var err error
 xType := reflect.TypeOf(x).Kind()
 yType := reflect.TypeOf(y).Kind()
 if xType != reflect.String || yType != reflect.String {
 err = errors.New("Incorrect type for strings a or b!")
 }
 finalString := x + y
 return finalString, err
}

func (n Numeric) Add(x int, y int) (int, error) {
 var err error

 xType := reflect.TypeOf(x).Kind()
 yType := reflect.TypeOf(y).Kind()
 if xType != reflect.Int || yType != reflect.Int {
 err = errors.New("Incorrect type for integer a or b!")
 }
 return x + y, err
}

Logging and Testing Concurrency in Go

[590]

func main() {
 n1 := Numeric{}
 a1 := Alpha{}
 z,err := n1.Add(5,2)
 if err != nil {
 log.Println("Error",err)
 }
 log.Println(z)

 y,err := a1.Add("super","lative")
 if err != nil {
 log.Println("Error",err)
 }
 log.Println(y)
}

This still reports what will eventually be caught by the compiler, but also handles some
form of error on what the compiler cannot see: external input. We're routing our Add()
function through an interface, which provides some additional standardization by
directing the struct's parameters and methods more explicitly.

If, for example, we take user input for our values and need to evaluate the type of
that input, we may wish to report an error in this way as the compiler will never
know that our code can accept the wrong type.

Breaking out goroutine logs
One way of handling messaging and logging that keeps a focus on concurrency and
isolation is to shackle our goroutine with its own logger that will keep everything
separate from the other goroutines.

At this point, we should note that this may not scale—that is, it may at some point
become expensive to create thousands or tens of thousands of goroutines that have
their own loggers, but at a minimal size, this is totally doable and manageable.

To do this logging individually, we'll want to tie a Logger instance to each goroutine,
as shown in the following code:

package main

import
(
 "log"

Chapter 9

[591]

 "os"
 "strconv"
)

const totalGoroutines = 5

type Worker struct {
 wLog *log.Logger
 Name string
}

We'll create a generic Worker struct that will ironically do no work (at least not in
this example) other than hold onto its own Logger object. The code is as follows:

func main() {
 done := make(chan bool)

 for i:=0; i< totalGoroutines; i++ {

 myWorker := Worker{}
 myWorker.Name = "Goroutine " + strconv.FormatInt(int64(i),10) + ""
 myWorker.wLog = log.New(os.Stderr, myWorker.Name, 1)
 go func(w *Worker) {

 w.wLog.Print("Hmm")

 done <- true
 }(&myWorker)
 }

Each goroutine is saddled with its own log routine through Worker. While we're
spitting our output straight to the console, this is largely unnecessary. However, if we
want to siphon each to its own logfile, we could do so by using the following code:

 log.Println("...")

 <- done
}

Logging and Testing Concurrency in Go

[592]

Using the LiteIDE for richer and easier
debugging
In the earlier chapters of this book, we briefly addressed IDEs and gave a few
examples of IDEs that have a tight integration with Go.

As we're examining logging and debugging, there's one IDE we previously and
specifically didn't mention before, primarily because it's intended for a very small
selection of languages—namely, Go and Lua. However, if you end up working
primarily or exclusively in Go, you'll find it absolutely essential, primarily as it
relates to debugging, logging, and feedback capabilities.

LiteIDE is cross-platform and works well on OS X, Linux, and Windows. The
number of debugging and testing benefits it presents in a GUI form are invaluable,
particularly if you're already very comfortable with Go. That last part is important
because developers often benefit most from "learning the hard way" before diving in
with tools that simplify the programming process. It's almost always better to know
how and why something works or doesn't work at the core before being presented
with pretty icons, menus, and pop-up windows. Having said that, LiteIDE is a
fantastic, free tool for the advanced Go programmer.

By formalizing a lot of the tools and error reporting from Go, we can easily plow
through some of the more vexing debugging tasks by seeing them onscreen.

LiteIDE also brings context awareness, code completion, go fmt, and more into
our workspace. You can imagine how an IDE tuned specifically for Go can help
you keep your code clean and bug free. Refer to the following screenshot:

Chapter 9

[593]

LiteIDE showing output and automatic code completion on Windows

LiteIDE for Linux, OS X, and Windows can be found
at https://code.google.com/p/liteide/.

Sending errors to screen
Throughout this book, we have usually handled soft errors, warnings, and general
messages with the fmt.Println syntax by sending a message to the console.

While this is quick and easy for demonstration purposes, it's probably ideal to
use the log package to handle these sorts of things. This is because we have more
versatility, as log relates to where we want our messages to end up.

https://code.google.com/p/liteide/

Logging and Testing Concurrency in Go

[594]

As for our purposes so far, the messages are ethereal. Switching out a simple Println
statement to Logger is extremely simple.

We've been relaying messages before using the following line of code:

fmt.Println("Horrible error:",err)

You'll notice the change to Logger proves pretty similar:

myLogger.Println("Horrible error:", err)

This is especially useful for goroutines, as we can create either a global Logger
interface that can be accessed anywhere or pass the logger's reference to individual
goroutines and ensure our logging is handled concurrently.

One consideration for having a single logger for use across our entire application is
the possibility that we may want to log individual processes separately for clarity in
analysis. We'll talk a bit more about that later in this chapter.

To replicate passing messages to the command line, we can simply use the following
line of code:

log.Print("Message")

With defaults to stdout as its io.writer—recall that we can set any io.writer as
the log's destination.

However, we will also want to be able to log to file quickly and easily. After all, any
application running in the background or as a daemon will need to have something
a little more permanent.

Logging errors to file
There are a lot of ways to send an error to a logfile—we can, after all, handle this
with built-in file operation OS calls. In fact, this is what many people do.

However, the log package offers some standardization and potential symbiosis
between the command-line feedback and more permanent storage of errors,
warnings, and general information.

The simplest way to do this is to open a file using the os.OpenFile() method
(and not the os.Open() method) and pass that reference to our log instantiation
as io.Writer.

Chapter 9

[595]

Let's take a look at such functionality in the following example:

package main

import (
 "log"
 "os"
)

func main() {
 logFile, _ := os.OpenFile("/var/www/test.log", os.O_RDWR, 0755)

 log.SetOutput(logFile)
 log.Println("Sending an entry to log!")

 logFile.Close()
}

In our preceding goroutine package, we could assign each goroutine its own file and
pass a file reference as an io Writer (we'll need to have write access to the destination
folder). The code is as follows:

 for i:=0; i< totalGoroutines; i++ {

 myWorker := Worker{}
 myWorker.Name = "Goroutine " + strconv.FormatInt(int64(i),10)
 + ""
 myWorker.FileName = "/var/www/"+strconv.FormatInt(int64(i),10)
 + ".log"
 tmpFile,_ := os.OpenFile(myWorker.FileName, os.O_CREATE,
 0755)
 myWorker.File = tmpFile
 myWorker.wLog = log.New(myWorker.File, myWorker.Name, 1)
 go func(w *Worker) {

 w.wLog.Print("Hmm")

 done <- true
 }(&myWorker)
 }

Logging and Testing Concurrency in Go

[596]

Logging errors to memory
When we talk about logging errors to memory, we're really referring to a data store,
although there's certainly no reason other than volatility and limited resources to
reject logging to memory as a viable option.

While we'll look at a more direct way to handle networked logging through
another package in the next section, let's delineate our various application errors in
a concurrent, distributed system without a lot of hassle. The idea is to use shared
memory (such as Memcached or a shared memory data store) to pass our log messages.

While these will technically still be logfiles (most data stores keep individual
records or documents as JSON-encoded hard files), it has a distinctively different
feel than traditional logging.

Going back to our old friend from the previous chapter—CouchDB—passing our
logging messages to a central server can be done almost effortlessly, and it allows
us to track not just individual machines, but their individual concurrent goroutines.
The code is as follows:

package main

import
(
 "github.com/couchbaselabs/go-couchbase"
 "io"
 "time"
 "fmt"
 "os"
 "net/http"
 "crypto/md5"
 "encoding/hex"
)
type LogItem struct {
 ServerID string "json:server_id"
 Goroutine int "json:goroutine"
 Timestamp time.Time "json:time"
 Message string "json:message"
 Page string "json:page"
}

Chapter 9

[597]

This is what will eventually become our JSON document that will be sent to our
Couchbase server. We'll use the Page, Timestamp, and ServerID as a combined,
hashed key to allow multiple, concurrent requests to the same document against
separate servers to be logged separately, as shown in the following code:

var currentGoroutine int

func (li LogItem) logRequest(bucket *couchbase.Bucket) {

 hash := md5.New()
 io.WriteString(hash,li.ServerID+li.Page+li.Timestamp.Format("Jan
 1, 2014 12:00am"))
 hashString := hex.EncodeToString(hash.Sum(nil))
 bucket.Set(hashString,0,li)
 currentGoroutine = 0
}

When we reset currentGoroutine to 0, we use an intentional race condition to
allow goroutines to report themselves by numeric ID while executing concurrently.
This allows us to debug an application that appears to work correctly until it invokes
some form of concurrent architecture. Since goroutines will be self-identified by an
ID, it allows us to add more granular routing of our messages.

By designating a different log location by goroutine ID, timestamp, and serverID,
any concurrency issues that arise can be quickly plucked from logfiles. This is done
using the following code:

func main() {
 hostName, _ := os.Hostname()
 currentGoroutine = 0

 logClient, err := couchbase.Connect("http://localhost:8091/")
 if err != nil {
 fmt.Println("Error connecting to logging client", err)
 }
 logPool, err := logClient.GetPool("default")
 if err != nil {
 fmt.Println("Error getting pool",err)
 }
 logBucket, err := logPool.GetBucket("logs")
 if err != nil {
 fmt.Println("Error getting bucket",err)
 }

Logging and Testing Concurrency in Go

[598]

 http.HandleFunc("/", func(w http.ResponseWriter, r
 *http.Request) {
 request := LogItem{}
 request.Goroutine = currentGoroutine
 request.ServerID = hostName
 request.Timestamp = time.Now()
 request.Message = "Request to " + r.URL.Path
 request.Page = r.URL.Path
 go request.logRequest(logBucket)

 })

 http.ListenAndServe(":8080",nil)

}

Using the log4go package for robust
logging
As with most things in Go, where there's something satisfactory and extensible
in the core page, it can be taken to the next level by a third party—Go's wonderful
logging package is truly brought to life with log4go.

Using log4go greatly simplifies the process of file logging, console logging, and
logging via TCP/UDP.

For more information on log4go, visit https://code.google.
com/p/log4go/.

Each instance of a log4go Logger interface can be configured by an XML
configuration file and can have filters applied to it to dictate where messaging
goes. Let's look at a simple HTTP server to show how we can direct specific logs
to location, as shown in the following code:

package main

import (
 "code.google.com/p/log4go"
 "net/http"
 "fmt"
 "github.com/gorilla/mux"
)

https://code.google.com/p/log4go/
https://code.google.com/p/log4go/

Chapter 9

[599]

var errorLog log4go.Logger
var errorLogWriter log4go.FileLogWriter

var accessLog log4go.Logger
var accessLogWriter *log4go.FileLogWriter

var screenLog log4go.Logger

var networkLog log4go.Logger

In the preceding code, we created four distinct log objects—one that writes errors
to a logfile, one that writes accesses (page requests) to a separate file, one that sends
directly to console (for important notices), and one that passes a log message across
the network.

The last two obviously do not need FileLogWriter, although it's entirely possible
to replicate the network logging using a shared drive if we can mitigate issues with
concurrent access, as shown in the following code:

func init() {
 fmt.Println("Web Server Starting")
}

func pageHandler(w http.ResponseWriter, r *http.Request) {
 pageFoundMessage := "Page found: " + r.URL.Path
 accessLog.Info(pageFoundMessage)
 networkLog.Info(pageFoundMessage)
 w.Write([]byte("Valid page"))
}

Any request to a valid page goes here, sending the message to the web-access.log
file accessLog.

func notFound(w http.ResponseWriter, r *http.Request) {
 pageNotFoundMessage := "Page not found / 404: " + r.URL.Path
 errorLog.Info(pageNotFoundMessage)
 w.Write([]byte("Page not found"))
}

As with the accessLog file, we'll take any 404 / page not found request and route
it directly to the notFound() method, which saves a fairly generic error message
along with the invalid / missing URL requested. Let's look at what we'll do with
extremely important errors and messages in the following code:

func restricted(w http.ResponseWriter, r *http.Request) {
 message := "Restricted directory access attempt!"

Logging and Testing Concurrency in Go

[600]

 errorLog.Info(message)
 accessLog.Info(message)
 screenLog.Info(message)
 networkLog.Info(message)
 w.Write([]byte("Restricted!"))

}

The restricted() function and corresponding screenLog represents a message
we deem as critical and worthy of going to not only the error and the access logs,
but also to screen and passed across the wire as a networkLog item. In other words,
it's a message so important that everybody gets it.

In this case, we're detecting attempts to get at our .git folder, which is a fairly
common accidental security vulnerability that people have been known to commit in
automatic file uploads and updates. Since we have cleartext passwords represented
in files and may expose that to the outside world, we'll catch this on request and pass
to our critical and noncritical logging mechanisms.

We might also look at this as a more open-ended bad request notifier—one worthy
of immediate attention from a network developer. In the following code, we'll start
creating a few loggers:

func main() {

 screenLog = make(log4go.Logger)
 screenLog.AddFilter("stdout", log4go.DEBUG, log4go.
NewConsoleLogWriter())

 errorLogWriter := log4go.NewFileLogWriter("web-errors.log",
 false)
 errorLogWriter.SetFormat("%d %t - %M (%S)")
 errorLogWriter.SetRotate(false)
 errorLogWriter.SetRotateSize(0)
 errorLogWriter.SetRotateLines(0)
 errorLogWriter.SetRotateDaily(true)

Since log4go opens up a bevy of additional logging options, we can play a bit with
how our logs rotate and are formatted without having to draw that out specifically
with Sprintf or something similar.

Chapter 9

[601]

The options here are simple and expressive:

• SetFormat: This allows us to specify how our individual log lines will look.

• SetRotate: This permits automatic rotation based on the size of the file and/or
the number of lines in log. The SetRotateSize() option sets rotation on bytes
in the message and SetRotateLines() sets the maximum number of lines.
The SetRotateDaily() function lets us create new logfiles based on the day
regardless of our settings in the previous functions. This is a fairly common
logging technique and can generally be burdensome to code by hand.

The output of our logging format ends up looking like the following line of code:

04/13/14 10:46 - Page found%!(EXTRA string=/valid)
 (main.pageHandler:24)

The %S part is the source, and that gives us the line number and our method trace
for the part of our application that invoked the log:

 errorLog = make(log4go.Logger)
 errorLog.AddFilter("file", log4go.DEBUG, errorLogWriter)

 networkLog = make(log4go.Logger)
 networkLog.AddFilter("network", log4go.DEBUG,
 log4go.NewSocketLogWriter("tcp", "localhost:3000"))

Our network log sends JSON-encoded messages via TCP to the address we provide.
We'll show a very simple handling server for this in the next section of code that
translates the log messages into a centralized logfile:

 accessLogWriter = log4go.NewFileLogWriter("web-access.log",false)
 accessLogWriter.SetFormat("%d %t - %M (%S)")
 accessLogWriter.SetRotate(true)
 accessLogWriter.SetRotateSize(0)
 accessLogWriter.SetRotateLines(500)
 accessLogWriter.SetRotateDaily(false)

Our accessLogWriter is similar to the errorLogWriter except that instead of
rotating daily, we rotate it every 500 lines. The idea here is that access logs would
of course be more frequently touched than an error log—hopefully. The code is
as follows:

 accessLog = make(log4go.Logger)
 accessLog.AddFilter("file",log4go.DEBUG,accessLogWriter)

 rtr := mux.NewRouter()
 rtr.HandleFunc("/valid", pageHandler)

Logging and Testing Concurrency in Go

[602]

 rtr.HandleFunc("/.git/", restricted)
 rtr.NotFoundHandler = http.HandlerFunc(notFound)

In the preceding code, we used the Gorilla Mux package for routing. This gives us
easier access to the 404 handler, which is less than simplistic to modify in the basic
http package built directly into Go. The code is as follows:

 http.Handle("/", rtr)
 http.ListenAndServe(":8080", nil)
}

Building the receiving end of a network logging system like this is also incredibly
simple in Go, as we're building nothing more than another TCP client that can
handle the JSON-encoded messages.

We can do this with a receiving server that looks remarkably similar to our TCP
chat server from an earlier chapter. The code is as follows:

package main

import
(
 "net"
 "fmt"
)

type Connection struct {

}

func (c Connection) Listen(l net.Listener) {
 for {
 conn,_ := l.Accept()
 go c.logListen(conn)
 }
}

As with our chat server, we bind our listener to a Connection struct, as shown in
the following code:

func (c *Connection) logListen(conn net.Conn) {
 for {
 buf := make([]byte, 1024)
 n, _ := conn.Read(buf)
 fmt.Println("Log Message",string(n))
 }
}

Chapter 9

[603]

In the preceding code, we receive log messages delivered via JSON. At this point, we're
not unmarshalling the JSON, but we've shown how to do that in an earlier chapter.

Any message sent will be pushed into the buffer—for this reason, it may make sense
to expand the buffer's size depending on how detailed the information is.

func main() {
 serverClosed := make(chan bool)

 listener, err := net.Listen("tcp", ":3000")
 if err != nil {
 fmt.Println ("Could not start server!",err)
 }

 Conn := Connection{}

 go Conn.Listen(listener)

 <-serverClosed
}

You can imagine how network logging can be useful, particularly in server clusters
where you might have a selection of, say, web servers and you don't want to reconcile
individual logfiles into a single log.

Panicking
With all the discussion of capturing errors and logging them, we should probably
consider the panic() and recover() functionality in Go.

As briefly discussed earlier, panic() and recover() operate as a more basic,
immediate, and explicit error detection methodology than, say, try/catch/finally
or even Go's built-in error return value convention. As designed, panic() unwinds
the stack and leads to program exit unless recover() is invoked. This means that
unless you explicitly recover, your application will end.

So, how is this useful other than for stopping execution? After all, we can catch an
error and simply end the application manually through something similar to the
following code:

package main

import
(
 "fmt"

Logging and Testing Concurrency in Go

[604]

 "os"
)

func processNumber(un int) {

 if un < 1 || un > 4 {
 fmt.Println("Now you've done it!")
 os.Exit(1)
 }else {
 fmt.Println("Good, you can read simple instructions.")
 }
}

func main() {
 userNum := 0
 fmt.Println("Enter a number between 1 and 4.")
 _,err := fmt.Scanf("%d",&userNum)
 if err != nil {}

 processNumber(userNum)
}

However, while this function does sanity checking and enacts a permanent,
irreversible application exit, panic() and recover() allow us to reflect errors
from a specific package and/or method, save those, and then resume gracefully.

This is very useful when we're dealing with methods that are called from other
methods that are called from other methods, and so on. The types of deeply
embedded or recursive functions that make it hard to discern a specific error
are where panic() and recover() are most advantageous. You can also
imagine how well this functionality can play with logging.

Recovering
The panic() function on its own is fairly simple, and it really becomes useful when
paired with recover() and defer().

Take, for example, an application that returns meta information about a file from
the command line. The main part of the application will listen for user input, pass
this into a function that will open the file, and then pass that file reference to another
function that will get the file's details.

Chapter 9

[605]

Now, we can obviously stack errors as return elements straight through the process,
or we can panic along the way, recover back down the steps, and gather our errors
at the bottom for logging and/or reporting directly to console.

Avoiding spaghetti code is a welcomed side effect of this approach versus the former
one. Think of this in a general sense (this is pseudo code):

func getFileDetails(fileName string) error {
 return err
}

func openFile(fileName string) error {
 details,err := getFileDetails(fileName)
 return err
}

func main() {

 file,err := openFile(fileName)

}

With a single error, it's entirely manageable to approach our application in this way.
However, when each individual function has one or more points of failure, we will
require more and more return values and a way of reconciling them all into a single
overall error message or messages. Check the following code:

package main

import
(
 "os"
 "fmt"
 "strconv"
)

func gatherPanics() {
 if rec := recover(); rec != nil {
 fmt.Println("Critical Error:", rec)
 }
}

Logging and Testing Concurrency in Go

[606]

This is our general recovery function, which is called before every method on which
we wish to capture any panic. Let's look at a function to deduce the file's details:

func getFileDetails(fileName string) {
 defer gatherPanics()
 finfo,err := os.Stat(fileName)
 if err != nil {
 panic("Cannot access file")
 }else {
 fmt.Println("Size: ", strconv.FormatInt(finfo.Size(),10))
 }
}

func openFile(fileName string) {
 defer gatherPanics()
 if _, err := os.Stat(fileName); err != nil {
 panic("File does not exist")
 }

}

The two functions from the preceding code are merely an attempt to open a file and
panic if the file does not exist. The second method, getFileDetails(), is called from
the main() function such that it will always execute, regardless of a blocking error in
openFile().

In the real world, we will often develop applications where a nonfatal error stops
just a portion of the application from working, but will not cause the application
as a whole to break. Check the following code:

func main() {
 var fileName string
 fmt.Print("Enter filename>")
 _,err := fmt.Scanf("%s",&fileName)
 if err != nil {}
 fmt.Println("Getting info for",fileName)

 openFile(fileName)
 getFileDetails(fileName)

}

If we were to remove the recover() code from our gatherPanics() method,
the application would crash if/when the file didn't exist.

Chapter 9

[607]

This may seem ideal, but imagine a scenario where a user selects a nonexistent file
for a directory that they lack the rights to view. When they solve the first problem,
they will be presented with the second instead of seeing all potential issues at
one time.

The value of expressive errors can't be overstated from a user experience standpoint.
Gathering and presenting expressive errors is made easier through this methodology—
even a try/catch/finally requires that we (as developers) explicitly do something
with the returned error in the catch clause.

Logging our panics
In the preceding code, we can integrate a logging mechanism pretty simply in addition
to catching our panics.

One consideration about logging that we haven't discussed is the notion of when
to log. As our previous examples illustrate, we can sometimes run into problems
that should be logged but may be mitigated by future user action. As such, we
can choose to log our errors immediately or save it until the end of execution
or a greater function.

The primary benefit of logging immediately is that we're not susceptible to an
actual crash preventing our log from being saved. Take the following example:

type LogItem struct {
 Message string
 Function string
}

var Logs []LogItem

We've created a log struct and a slice of LogItems using the following code:

func SaveLogs() {
 logFile := log4go.NewFileLogWriter("errors.log",false)
 logFile.SetFormat("%d %t - %M (%S)")
 logFile.SetRotate(true)
 logFile.SetRotateSize(0)
 logFile.SetRotateLines(500)
 logFile.SetRotateDaily(false)

 errorLog := make(log4go.Logger)
 errorLog.AddFilter("file",log4go.DEBUG,logFile)

Logging and Testing Concurrency in Go

[608]

 for i:= range Logs {
 errorLog.Info(Logs[i].Message + " in " + Logs[i].Function)
 }

}

This, ostensibly, is where all of our captured LogItems will be turned into a good
collection of line items in a logfile. There is a problem, however, as illustrated in the
following code:

func registerError(block chan bool) {

 Log := LogItem{ Message:"An Error Has Occurred!", Function:
 "registerError()"}
 Logs = append(Logs,Log)
 block <- true
}

Executed in a goroutine, this function is non-blocking and allows the main thread's
execution to continue. The problem is with the following code that runs after the
goroutine, which causes us to log nothing at all:

func separateFunction() {
 panic("Application quitting!")
}

Whether invoked manually or by the binary itself, the application quitting prematurely
precludes our logfiles from being written, as that method is deferred until the end of
the main() method. The code is as follows:

func main() {
 block := make(chan bool)
 defer SaveLogs()
 go func(block chan bool) {

 registerError(block)

 }(block)

 separateFunction()

}

Chapter 9

[609]

The tradeoff here, however, is performance. If we execute a file operation every
time we want to log something, we're potentially introducing a bottleneck into
our application. In the preceding code, errors are sent via goroutine but written
in blocking code—if we introduce the log writing directly into registerError(),
it can slow down our final application.

As mentioned previously, one opportunity to mitigate these issues and allow the
application to still save all of our log entries is to utilize either memory logging or
network logging.

Catching stack traces with concurrent code
In earlier Go releases, the ability to properly execute a stack trace from our source was
a daunting task, which is emblematic of some of the many complaints and concerns
users had early on about general error handling in Go.

While the Go team has remained vigilant about the right way to do this (as they have
with several other key language features such as a lack of generics), stack traces and
stack info have been tweaked a bit as the language has grown.

Using the runtime package for granular
stack traces
In an effort to capture stack traces directly, we can glean some helpful pieces of
information from the built-in runtime package.

Specifically, Go provides a couple of tools to give us insight into the invocation
and/or breakpoints of a goroutine. The following are the functions within the
runtime package:

• runtime.Caller(): This returns information about the parent function of
a goroutine

• runtime.Stack(): This allocates a buffer for the amount of data in a stack
trace and then fills that with the trace

• runtime.NumGoroutine(): This returns the total number of open goroutines

We can utilize all three preceding tools to better describe the inner workings of any
given goroutine and related errors.

Logging and Testing Concurrency in Go

[610]

Using the following code, we'll spawn some random goroutines doing random
things and log not only the goroutine's log message, but also the stack trace and
the goroutine's caller:

package main

import
(
 "os"
 "fmt"
 "runtime"
 "strconv"
 "code.google.com/p/log4go"
)

type LogItem struct {
 Message string
}

var LogItems []LogItem

func saveLogs() {
 logFile := log4go.NewFileLogWriter("stack.log", false)
 logFile.SetFormat("%d %t - %M (%S)")
 logFile.SetRotate(false)
 logFile.SetRotateSize(0)
 logFile.SetRotateLines(0)
 logFile.SetRotateDaily(true)

 logStack := make(log4go.Logger)
 logStack.AddFilter("file", log4go.DEBUG, logFile)
 for i := range LogItems {
 fmt.Println(LogItems[i].Message)
 logStack.Info(LogItems[i].Message)
 }
}

Chapter 9

[611]

The saveLogs() function merely takes our map of LogItems and applies them to
file per log4go, as we did earlier in the chapter. Next, we'll look at the function that
supplies details on our goroutines:

func goDetails(done chan bool) {
 i := 0
 for {
 var message string
 stackBuf := make([]byte,1024)
 stack := runtime.Stack(stackBuf, false)
 stack++
 _, callerFile, callerLine, ok := runtime.Caller(0)
 message = "Goroutine from " + string(callerLine) + "" +
 string(callerFile) + " stack:" + string(stackBuf)
 openGoroutines := runtime.NumGoroutine()

 if (ok == true) {
 message = message + callerFile
 }

 message = message +
 strconv.FormatInt(int64(openGoroutines),10) + " goroutines
 active"

 li := LogItem{ Message: message}

 LogItems = append(LogItems,li)
 if i == 20 {
 done <- true
 break
 }

 i++
 }
}

This is where we gather more details about a goroutine. The runtime.Caller()
function provides a few returned values: its pointer, the filename of the caller, the
line of the caller. The last return value indicates whether the caller could be found.

Logging and Testing Concurrency in Go

[612]

As mentioned previously, runtime.NumGoroutine() gives us the number of extant
goroutines that have not yet been closed.

Then, in runtime.Stack(stackBuf, false), we fill our buffer with the stack trace.
Note that we're not trimming this byte array to length.

All three are passed into LogItem.Message for later use. Let's look at the setup in the
main() function:

func main() {
 done := make(chan bool)

 go goDetails(done)
 for i:= 0; i < 10; i++ {
 go goDetails(done)
 }

 for {
 select {
 case d := <-done:
 if d == true {
 saveLogs()
 os.Exit(1)
 }
 }
 }

}

Finally, we loop through some goroutines that are doing loops themselves and exit
upon completion.

When we examine our logfile, we're given far more verbose details on our goroutines
than we have previously, as shown in the following code:

04/16/14 23:25 - Goroutine from + /var/log/go/ch9_11_stacktrace.
goch9_11_stacktrace.go stack:goroutine 4 [running]:
main.goDetails(0xc08400b300)
 /var/log/go/ch9_11_stacktrace.goch9_11_stacktrace.go:41 +0x8e
created by main.main
 /var/log/go/ch9_11_stacktrace.goch9_11_stacktrace.go:69 +0x4c

 /var/log/go/ch9_11_stacktrace.goch9_11_stacktrace.go14 goroutines
active (main.saveLogs:31)

For more information on the runtime package,
go to http://golang.org/pkg/runtime/.

http://golang.org/pkg/runtime/

Chapter 9

[613]

Summary
Debugging, testing, and logging concurrent code can be particularly cumbersome,
often when concurrent goroutines fail in a seemingly silent fashion or fail to execute
whatsoever.

We looked at various methods of logging, from file to console to memory to
network logging, and examined how concurrent application pieces can fit into
these various implementations.

By now, you should be comfortable and natural in creating robust and expressive
logs that rotate automatically, impose no latency or bottlenecks, and assist in
debugging your applications.

You should feel comfortable with the basics of the runtime package. We'll dive
into the testing package, controlling goroutines more explicitly, and unit testing
as we dig deeper in the next chapter.

In addition to further examining the testing and runtime packages, in our final
chapter, we'll also broach the topic of more advanced concurrency topics in Go
as well as review some overall best practices as they relate to programming in
the Go language.

Advanced Concurrency
and Best Practices

Once you're comfortable with the basic and intermediate usage of concurrency
features in Go, you may find that you're able to handle the majority of your
development use cases with bidirectional channels and standard concurrency tools.

In Chapter 2, Understanding the Concurrency Model, and Chapter 3, Developing a
Concurrent Strategy, we looked at the concurrency models, not just of Go but of other
languages as well, and compared the way they—and distributed models—can work.
In this chapter, we'll touch on those and some higher level concepts with regard to
designing and managing your concurrent application.

In particular, we're going to look at central management of goroutines and their
associated channels—out of the box you may find goroutines to be a set-it-and-
forget-it proposition; however, there are cases where we might want more granular
control of a channel's state.

We've also looked quite a bit at testing and benchmarking from a high level, but
we'll look at some more detailed and complex methods for testing. We'll also explore
a primer on the Google App Engine, which will give us access to some specific
testing tools we haven't yet used.

Finally, we'll touch upon some general best practices for Go, which will surely
pertain not just to concurrent application design but your future work in general
with the language.

Advanced Concurrency and Best Practices

[616]

Going beyond the basics with channels
We've talked about quite a few different channel implementations—channels of
different type (interfaces, functions, structs, and channels)—and touched upon the
differences in buffered and unbuffered channels. However, there's still a lot more
we can do with the design and flow of our channels and goroutines.

By design, Go wants you to keep things simple. And that's fantastic for 90 percent
of what you'll do with Go. But there are other times where you'll need to dig a
little deeper for a solution, or when you'll need to save resources by preserving
the amount of open goroutine processes, channels, and more.

You may, at some point, want some hands on control of the size and state, and
also the control of a running or closed goroutine, so we'll look at doing that.

Just as importantly, designing your goroutines to work in concert with the
application design as a whole can be critical to unit testing, which is a topic
we'll touch on in this final chapter.

Building workers
Earlier in this book, we talked about concurrency patterns and a bit about workers.
We even brought the workers concept into play in the previous chapter, when we
were building our logging systems.

Truly speaking, "worker" is a fairly generic and ambiguous concept, not just in Go,
but in general programming and development. In some languages, it's an object/
instantiated class, and in others it's a concurrent actor. In functional programming
languages, worker is a graduated function return passed to another.

If we go back to the preface, we will see that we have literally used the Go gopher as
an example of a worker. In short, a worker is something more complex than a single
function call or programmatic action that will perform a task one or more times.

So why are we talking about it now? When we build our channels, we are creating
a mechanism to do work. When we have a struct or an interface, we're combining
methods and values at a single place, and then doing work using that object as both
a mechanism for the work as well as a place to store information about that work.

This is particularly useful in application design, as we're able to delegate various
elements of an application's functionality to distinct and well-defined workers.
Consider, for example, a server pinging application that has specific pieces doing
specific things in a self-contained, compartmentalized manner.

Chapter 10

[617]

We'll attempt to check for server availability via the HTTP package, check the status
code and errors, and back off if we find problems with any particular server. You can
probably see where this is going—this is the most basic approach to load balancing.
But an important design consideration is the way in which we manage our channels.

We'll have a master channel, where all important global transactions should be
accumulated and evaluated, but each individual server will also have its own
channels for handling tasks that are important only to that individual struct.

The design in the following code can be considered as a rudimentary pipeline,
which is roughly akin to the producer/consumer model we talked about in the
previous chapters:

package main

import
(
 "fmt"
 "time"
 "net/http"
)

const INIT_DELAY = 3000
const MAX_DELAY = 60000
const MAX_RETRIES = 4
const DELAY_INCREMENT = 5000

The preceding code gives the configuration part of the application, setting scope on
how frequently to check servers, the maximum amount of time for backing off, and
the maximum amount of retries before giving up entirely.

The DELAY_INCREMENT value represents how much time we will add to our server
checking process each time we discover a problem. Let's take a look at how to create
a server in the following section:

var Servers []Server

type Server struct {
 Name string
 URI string
 LastChecked time.Time
 Status bool
 StatusCode int
 Delay int
 Retries int
 Channel chan bool
}

Advanced Concurrency and Best Practices

[618]

Now, we design the basic server (using the following code), which contains its
current status, the last time it was checked, the present delay between checks,
its own channel for evaluating statuses and establishing the new status, and
updated retry delay:

func (s *Server) checkServerStatus(sc chan *Server) {
 var previousStatus string

 if s.Status == true {
 previousStatus = "OK"
 }else {
 previousStatus = "down"
 }

 fmt.Println("Checking Server",s.Name)
 fmt.Println("\tServer was",previousStatus,"on last check
 at",s.LastChecked)

 response, err := http.Get(s.URI)
 if err != nil {
 fmt.Println("\tError: ",err)
 s.Status = false
 s.StatusCode = 0
 }else {
 fmt.Println(response.Status)
 s.StatusCode = response.StatusCode
 s.Status = true
 }

 s.LastChecked = time.Now()
 sc <- s
}

The checkServerStatus() method is the meat and potatoes of our application
here. We pass all of our servers through this method in the main() function to our
cycleServers() loop, after which it becomes self-fulfilling.

If our Status is set to true, we send the state to the console as OK (otherwise down)
and set our Server status code with s.StatusCode as either the HTTP code or 0 if
there was a network or other error.

Chapter 10

[619]

Finally, set the last-checked time of Server to Now() and pass Server through the
serverChan channel. In the following code, we'll demonstrate how we'll rotate
through our available servers:

func cycleServers(sc chan *Server) {

 for i := 0; i < len(Servers); i++ {
 Servers[i].Channel = make(chan bool)
 go Servers[i].updateDelay(sc)
 go Servers[i].checkServerStatus(sc)
 }

}

This is our initial loop, called from main. It simply loops through our available
servers and initializes its listening goroutine as well as sending the first
checkServerStatus request.

It's worth noting two things here: first, the channel invoked by Server will never
actually die, but instead the application will stop checking the server. That's fine for
all practical purposes here, but if we have thousands and thousands of servers to
check, we're wasting resources on what essentially amounts to an unclosed channel
and a map element that has not been removed. Later, we'll broach the concept
of manually killing goroutines, something we've only been able to do through
abstraction by stopping the communication channel. Let's now take a look at the
following code that controls a server's status and its next steps:

func (s *Server) updateDelay(sc chan *Server) {
 for {
 select {
 case msg := <- s.Channel:

 if msg == false {
 s.Delay = s.Delay + DELAY_INCREMENT
 s.Retries++
 if s.Delay > MAX_DELAY {
 s.Delay = MAX_DELAY
 }

Advanced Concurrency and Best Practices

[620]

 }else {
 s.Delay = INIT_DELAY
 }
 newDuration := time.Duration(s.Delay)

 if s.Retries <= MAX_RETRIES {
 fmt.Println("\tWill check server again")
 time.Sleep(newDuration * time.Millisecond)
 s.checkServerStatus(sc)

 }else {
 fmt.Println("\tServer not reachable
 after",MAX_RETRIES,"retries")
 }

 default:
 }
 }
}

This is where each Server will listen for changes in its status, as reported by
checkServerStatus(). When any given Server struct receives a message that a
change in status has been reported via our initial loop, it will evaluate that message
and act accordingly.

If the Status is set to false, we know that the server was inaccessible for some
reason. The Server reference itself will then add a delay to the next time it's checked.
If it's set to true, the server was accessible and the delay will either be set or reset to
the default retry value of INIT_DELAY.

It finally sets a sleep mode on that goroutine before reinitializing the
checkServerStatus() method on itself, passing the serverChan reference along in
the initial goroutine loop in the main() function:

func main() {

 endChan := make(chan bool)
 serverChan := make(chan *Server)

Servers = []Server{ {Name: "Google", URI: "http://www.google.com",
Status: true, Delay: INIT_DELAY}, {Name: "Yahoo", URI: "http://www.
yahoo.com", Status: true, Delay: INIT_DELAY}, {Name: "Bad Amazon",
URI: "http://amazon.zom", Status: true, Delay: INIT_DELAY} }

Chapter 10

[621]

One quick note here—in our slice of Servers, we intentionally introduced a typo
in the last element. You'll notice amazon.zom, which will provoke an HTTP error in
the checkServerStatus() method. The following is the function to cycle through
servers to find an appropriate match:

 go cycleServers(serverChan)

 for {
 select {
 case currentServer := <- serverChan:
 currentServer.Channel <- false
 default:

 }
 }

 <- endChan

}

The following is an example of the output with the typo included:

Checking Server Google

 Server was OK on last check at 0001-01-01 00:00:00 +0000 UTC

 200 OK

 Will check server again

Checking Server Yahoo

 Server was OK on last check at 0001-01-01 00:00:00 +0000 UTC

 200 OK

 Will check server again

Checking Server Amazon

 Server was OK on last check at 0001-01-01 00:00:00 +0000 UTC

 Error: Get http://amazon.zom: dial tcp: GetAddrInfoW: No such
host is known.

 Will check server again

Checking Server Google

 Server was OK on last check at 2014-04-23 12:49:45.6575639 -0400
EDT

We'll be taking the preceding code for one last spin through some concurrency
patterns later in this chapter, turning it into something a bit more practical.

Advanced Concurrency and Best Practices

[622]

Implementing nil channel blocks
One of the bigger problems in designing something like a pipeline or producer/
consumer model is there's somewhat of a black hole when it comes to the state
of any given goroutine at any given time.

Consider the following loop, wherein a producer channel creates an arbitrary set
of consumer channels and expects each to do one and only one thing:

package main

import (
 "fmt"
 "time"
)

const CONSUMERS = 5

func main() {

 Producer := make(chan (chan int))

 for i := 0; i < CONSUMERS; i++ {
 go func() {
 time.Sleep(1000 * time.Microsecond)
 conChan := make(chan int)

 go func() {
 for {
 select {
 case _,ok := <-conChan:
 if ok {
 Producer <- conChan
 }else {
 return
 }
 default:
 }
 }
 }()

 conChan <- 1
 close(conChan)
 }()
 }

Chapter 10

[623]

Given a random amount of consumers to produce, we attach a channel to each and
pass a message upstream to the Producer via that consumer's channel. We send just
a single message (which we could handle with a buffered channel), but we simply
close the channel after.

Whether in a multithreaded application, a distributed application, or a highly
concurrent application, an essential attribute of a producer-consumer model is
the ability for data to move across a queue/channel in a steady, reliable fashion.
This requires some modicum of mutual knowledge to be shared between both the
producer and consumers.

Unlike environments that are distributed (or multicore), we do possess some
inherent awareness of the status on both ends of that arrangement. We'll next look
at a listening loop for producer messages:

 for {
 select {
 case consumer, ok := <-Producer:
 if ok == false {
 fmt.Println("Goroutine closed?")
 close(Producer)
 } else {
 log.Println(consumer)
 // consumer <- 1
 }
 fmt.Println("Got message from secondary channel")
 default:
 }
 }
}

The primary issue is that one of the Producer channel doesn't know much about
any given Consumer, including when it's actively running. If we uncommented the
// consumer <- 1 line, we'll get a panic, because we're attempting to send
a message on a closed channel.

As a message is passed across a secondary goroutine's channel, upstream to the
channel of the Producer, we get an appropriate reception, but cannot detect when
the downstream goroutine is closed.

Knowing when a goroutine has terminated is in many cases inconsequential, but
consider an application that spawns new goroutines when a certain number of tasks
are complete, effectively breaking a task into mini tasks. Perhaps each chunk is
dependent on the total completion of the last chunk, and a broadcaster must know
the status of the current goroutines before moving on.

Advanced Concurrency and Best Practices

[624]

Using nil channels
In the earlier versions of Go, you could communicate across uninitialized, thus nil
or 0-value channels without a panic (although your results would be unpredictable).
Starting from Go Version 1, communication across nil channels produced a
consistent but sometimes confusing effect.

It's vital to note that within a select switch, transmission on a nil channel on its own
will still cause a deadlock and panic. This is something that will most often creep
up when utilizing global channels and not ever properly initializing them. The
following is an example of such transmission on a nil channel:

func main() {

 var channel chan int

 channel <- 1

 for {
 select {
 case <- channel:

 default:
 }
 }

}

As the channel is set to its 0 value (nil, in this case), it blocks perpetually and the Go
compiler will detect this, at least in more recent versions. You can also duplicate this
outside of a select statement, as shown in the following code:

 var done chan int
 defer close(done)
 defer log.Println("End of script")
 go func() {
 time.Sleep(time.Second * 5)
 done <- 1
 }()

 for {
 select {
 case <- done:
 log.Println("Got transmission")
 return
 default:
 }
 }

Chapter 10

[625]

The preceding code will block forever without the panic, due to the default in the
select statement keeping the main loop active while waiting for communication on
the channel. If we initialize the channel, however, the application runs as expected.

With these two fringe cases—closed channels and nil channels—we need a way for
a master channel to understand the state of a goroutine.

Implementing more granular control over
goroutines with tomb
As with many such problems—both niche and common—there exists a third-party
utility for grabbing your goroutines by the horns.

Tomb is a library that provides diagnostics to go along with any goroutine and
channel—it can tell a master channel if another goroutine is dead or dying.

In addition, it allows you to explicitly kill a goroutine, which is a bit more nuanced
than simply closing the channel it is attached to. As previously mentioned, closing the
channel is effectively neutering a goroutine, although it could ultimately still be active.

You are about to find a simple fetch-and-grab body script that takes a slice of URL
structs (with status and URI) and attempts to grab the HTTP response for each and
apply it to the struct. But instead of just reporting information from the goroutines,
we'll have the ability to send "kill messages" to each of a "master" struct's child
goroutines.

In this example, we'll run the script for 10 seconds, and if any of the goroutines fail
to do their job in that allotted time, it will respond that it was unable to get the URL's
body due to a kill send from the master struct that invoked it:

package main

import (
 "fmt"
 "io/ioutil"
 "launchpad.net/tomb"
 "net/http"
 "strconv"
 "sync"
 "time"
)

var URLS []URL

type GoTomb struct {
 tomb tomb.Tomb
}

Advanced Concurrency and Best Practices

[626]

This is the minimum necessary structure required to create a parent or a master
struct for all of your spawned goroutines. The tomb.Tomb struct is simply a mutex,
two channels (one for dead and dying), and a reason error struct. The structure of
the URL struct looks like the following code:

type URL struct {
 Status bool
 URI string
 Body string
}

Our URL struct is fairly basic—Status, set to false by default and true when the
body has been retrieved. It consists of the URI variable—which is the reference to
the URL—and the Body variable for storing the retrieved data. The following
function allows us to execute a "kill" on a GoTomb struct:

func (gt GoTomb) Kill() {

 gt.tomb.Kill(nil)

}

The preceding method invokes tomb.Kill on our GoTomb struct. Here, we have set
the sole parameter to nil, but this can easily be changed to a more descriptive error,
such as errors.New("Time to die, goroutine"). Here, we'll show the listener
for the GoTomb struct:

func (gt *GoTomb) TombListen(i int) {

 for {
 select {
 case <-gt.tomb.Dying():
 fmt.Println("Got kill command from tomb!")
 if URLS[i].Status == false {
 fmt.Println("Never got data for", URLS[i].URI)
 }
 return
 }
 }
}

Chapter 10

[627]

We invoke TombListen attached to our GoTomb, which sets a select that listens for
the Dying() channel, as shown in the following code:

func (gt *GoTomb) Fetch() {
 for i := range URLS {
 go gt.TombListen(i)

 go func(ii int) {

 timeDelay := 5 * ii
 fmt.Println("Waiting ", strconv.FormatInt(int64(timeDelay),
 10), " seconds to get", URLS[ii].URI)
 time.Sleep(time.Duration(timeDelay) * time.Second)
 response, _ := http.Get(URLS[ii].URI)
 URLS[ii].Status = true
 fmt.Println("Got body for ", URLS[ii].URI)
 responseBody, _ := ioutil.ReadAll(response.Body)
 URLS[ii].Body = string(responseBody)
 }(i)
 }
}

When we invoke Fetch(), we also set the tomb to TombListen(), which receives
those "master" messages across all spawned goroutines. We impose an intentionally
long wait to ensure that our last few attempts to Fetch() will come after the Kill()
command. Finally, our main() function, which handles the overall setup:

func main() {

 done := make(chan int)

 URLS = []URL{{Status: false, URI: "http://www.google.com", Body:
""}, {Status: false, URI: "http://www.amazon.com", Body: ""}, {Status:
false, URI: "http://www.ubuntu.com", Body: ""}}

 var MasterChannel GoTomb
 MasterChannel.Fetch()

 go func() {

 time.Sleep(10 * time.Second)
 MasterChannel.Kill()
 done <- 1
 }()

Advanced Concurrency and Best Practices

[628]

 for {
 select {
 case <-done:
 fmt.Println("")
 return
 default:
 }
 }
}

By setting time.Sleep to 10 seconds and then killing our goroutines, we guarantee
that the 5 second delays between Fetch() prevent the last of our goroutines from
successfully finishing before being killed.

For the tomb package, go to http://godoc.org/
launchpad.net/tomb and install it using the go get
launchpad.net/tomb command.

Timing out with channels
One somewhat critical point with channels and select loops that we haven't
examined particularly closely is the ability—and often necessity—to kill a select
loop after a certain timeout.

Many of the applications we've written so far are long-running or perpetually-running,
but there are times when we'll want to put a finite time limit on how long goroutines
can operate.

The for { select { } } switch we've used so far will either live perpetually
(with a default case) or wait to be broken from one or more of the cases.

There are two ways to manage interval-based tasks—both as part of the time
package, unsurprisingly.

The time.Ticker struct allows for any given operation after the specified period
of time. It provides C, a blocking channel that can be used to detect activity sent
after that period of time; refer to the following code:

package main

import (
 "log"
 "time"
)

http://godoc.org/launchpad.net/tomb
http://godoc.org/launchpad.net/tomb

Chapter 10

[629]

func main() {

 timeout := time.NewTimer(5 * time.Second)
 defer log.Println("Timed out!")

 for {
 select {
 case <-timeout.C:
 return
 default:
 }
 }

}

We can extend this to end channels and concurrent execution after a certain amount
of time. Take a look at the following modifications:

package main

import (
 "fmt"
 "time"
)

func main() {

 myChan := make(chan int)

 go func() {
 time.Sleep(6 * time.Second)
 myChan <- 1
 }()

 for {
 select {
 case <-time.After(5 * time.Second):
 fmt.Println("This took too long!")
 return
 case <-myChan:
 fmt.Println("Too little, too late")
 }
 }
}

Advanced Concurrency and Best Practices

[630]

Building a load balancer with concurrent
patterns
When we built our server pinging application earlier in this chapter, it was probably
pretty easy to imagine taking this to a more usable and valuable space.

Pinging a server is often the first step in a health check for a load balancer. Just as
Go provides a usable out-of-the-box web server solution, it also presents a very clean
Proxy and ReverseProxy struct and methods, which makes creating a load balancer
rather simple.

Of course, a round-robin load balancer will need a lot of background work,
specifically on checking and rechecking as it changes the ReverseProxy
location between requests. We'll handle these with the goroutines triggered
with each request.

Finally, note that we have some dummy URLs at the bottom in the configuration—
changing those to production URLs should immediately turn the server that runs
this into a working load balancer. Let's look at the main setup for the application:

package main

import (
 "fmt"
 "log"
 "net/http"
 "net/http/httputil"
 "net/url"
 "strconv"
 "time"
)

const MAX_SERVER_FAILURES = 10
const DEFAULT_TIMEOUT_SECONDS = 5
const MAX_TIMEOUT_SECONDS = 60
const TIMEOUT_INCREMENT = 5
const MAX_RETRIES = 5

Chapter 10

[631]

In the previous code, we defined our constants, much like we did previously. We
have a MAX_RETRIES, which limits how many failures we can have, MAX_TIMEOUT_
SECONDS, which defines the longest amount of time we'll wait before trying again,
and our TIMEOUT_INCREMENT for changing that value between failures. Next, let's
look at the basic construction of our Server struct:

type Server struct {
 Name string
 Failures int
 InService bool
 Status bool
 StatusCode int
 Addr string
 Timeout int
 LastChecked time.Time
 Recheck chan bool
}

As we can see in the previous code, we have a generic Server struct that maintains
the present state, the last status code, and information on the last time the server
was checked.

Note that we also have a Recheck channel that triggers the delayed attempt to check
the Server again for availability. Each Boolean passed across this channel will either
remove the server from the available pool or reannounce that it is still in service:

func (s *Server) serverListen(serverChan chan bool) {
 for {
 select {
 case msg := <-s.Recheck:
 var statusText string
 if msg == false {
 statusText = "NOT in service"
 s.Failures++
 s.Timeout = s.Timeout + TIMEOUT_INCREMENT
 if s.Timeout > MAX_TIMEOUT_SECONDS {
 s.Timeout = MAX_TIMEOUT_SECONDS
 }
 } else {

Advanced Concurrency and Best Practices

[632]

 if ServersAvailable == false {
 ServersAvailable = true
 serverChan <- true
 }
 statusText = "in service"
 s.Timeout = DEFAULT_TIMEOUT_SECONDS
 }

 if s.Failures >= MAX_SERVER_FAILURES {
 s.InService = false
 fmt.Println("\tServer", s.Name, "failed too many times.")
 } else {
 timeString := strconv.FormatInt(int64(s.Timeout), 10)
 fmt.Println("\tServer", s.Name, statusText, "will check
 again in", timeString, "seconds")
 s.InService = true
 time.Sleep(time.Second * time.Duration(s.Timeout))
 go s.checkStatus()
 }

 }
 }
}

This is the instantiated method that listens on each server for messages delivered
on the availability of a server at any given time. While running a goroutine, we
keep a perpetually listening channel open to listen to Boolean responses from
checkStatus(). If the server is available, the next delay is set to default; otherwise,
TIMEOUT_INCREMENT is added to the delay. If the server has failed too many times,
it's taken out of rotation by setting its InService property to false and no longer
invoking the checkStatus() method. Let's next look at the method for checking
the present status of Server:

func (s *Server) checkStatus() {
 previousStatus := "Unknown"
 if s.Status == true {
 previousStatus = "OK"
 } else {
 previousStatus = "down"
 }
 fmt.Println("Checking Server", s.Name)
 fmt.Println("\tServer was", previousStatus, "on last check at",
 s.LastChecked)

Chapter 10

[633]

 response, err := http.Get(s.Addr)
 if err != nil {
 fmt.Println("\tError: ", err)
 s.Status = false
 s.StatusCode = 0
 } else {
 s.StatusCode = response.StatusCode
 s.Status = true
 }

 s.LastChecked = time.Now()
 s.Recheck <- s.Status
}

Our checkStatus() method should look pretty familiar based on the server ping
example. We look for the server; if it is available, we pass true to our Recheck
channel; otherwise false, as shown in the following code:

func healthCheck(sc chan bool) {
 fmt.Println("Running initial health check")
 for i := range Servers {
 Servers[i].Recheck = make(chan bool)
 go Servers[i].serverListen(sc)
 go Servers[i].checkStatus()
 }
}

Our healthCheck function simply kicks off the loop of each server checking
(and re-checking) its status. It's run only one time, and initializes the Recheck
channel via the make statement:

func roundRobin() Server {
 var AvailableServer Server

 if nextServerIndex > (len(Servers) - 1) {
 nextServerIndex = 0
 }

 if Servers[nextServerIndex].InService == true {
 AvailableServer = Servers[nextServerIndex]
 } else {
 serverReady := false
 for serverReady == false {

Advanced Concurrency and Best Practices

[634]

 for i := range Servers {
 if Servers[i].InService == true {
 AvailableServer = Servers[i]
 serverReady = true
 }
 }

 }
 }
 nextServerIndex++
 return AvailableServer
}

The roundRobin function first checks the next available Server in the queue—if
that server happens to be down, it loops through the remaining to find the first
available Server. If it loops through all, it will reset to 0. Let's look at the global
configuration variables:

var Servers []Server
var nextServerIndex int
var ServersAvailable bool
var ServerChan chan bool
var Proxy *httputil.ReverseProxy
var ResetProxy chan bool

These are our global variables—our Servers slice of Server structs, the
nextServerIndex variable, which serves to increment the next Server to be
returned, ServersAvailable and ServerChan, which start the load balancer only
after a viable server is available, and then our Proxy variables, which tell our http
handler where to go. This requires a ReverseProxy method, which we'll look at
now in the following code:

func handler(p *httputil.ReverseProxy) func(http.ResponseWriter,
*http.Request) {
 Proxy = setProxy()
 return func(w http.ResponseWriter, r *http.Request) {

 r.URL.Path = "/"

 p.ServeHTTP(w, r)

 }
}

Chapter 10

[635]

Note that we're operating on a ReverseProxy struct here, which is different from our
previous forays into serving webpages. Our next function executes the round robin
and gets our next available server:

func setProxy() *httputil.ReverseProxy {

 nextServer := roundRobin()
 nextURL, _ := url.Parse(nextServer.Addr)
 log.Println("Next proxy source:", nextServer.Addr)
 prox := httputil.NewSingleHostReverseProxy(nextURL)

 return prox
}

The setProxy function is called after every request, and you can see it as the first
line in our handler. Next we have the general listening function that looks out for
requests we'll be reverse proxying:

func startListening() {
 http.HandleFunc("/index.html", handler(Proxy))
 _ = http.ListenAndServe(":8080", nil)

}

func main() {
 nextServerIndex = 0
 ServersAvailable = false
 ServerChan := make(chan bool)
 done := make(chan bool)

 fmt.Println("Starting load balancer")
 Servers = []Server{{Name: "Web Server 01", Addr: "http://www.google.
com", Status: false, InService: false}, {Name: "Web Server 02", Addr:
"http://www.amazon.com", Status: false, InService: false}, {Name: "Web
Server 03", Addr: "http://www.apple.zom", Status: false, InService:
false}}

 go healthCheck(ServerChan)

 for {
 select {
 case <-ServerChan:
 Proxy = setProxy()

Advanced Concurrency and Best Practices

[636]

 startListening()
 return

 }
 }

 <-done
}

With this application, we have a simple but extensible load balancer that works with
the common, core components in Go. Its concurrency features keep it lean and fast,
and we wrote it in a very small amount of code using exclusively standard Go.

Choosing unidirectional and bidirectional
channels
For the purpose of simplicity, we've designed most of our applications and sample
code with bidirectional channels, but of course any channel can be set unidirectionally.
This essentially turns a channel into a "read-only" or "write-only" channel.

If you're wondering why you should bother limiting the direction of a channel
when it doesn't save any resources or guarantee an issue, the reason boils down
to simplicity of code and limiting the potential for panics.

By now we know that sending data on a closed channel results in a panic, so if
we have a write-only channel, we'll never accidentally run into that problem in
the wild. Much of this can also be mitigated with WaitGroups, but in this case
that's a sledgehammer being used on a nail. Consider the following loop:

const TOTAL_RANDOMS = 100

func concurrentNumbers(ch chan int) {
 for i := 0; i < TOTAL_RANDOMS; i++ {
 ch <- i
 }
}

func main() {

 ch := make(chan int)

Chapter 10

[637]

 go concurrentNumbers(ch)

 for {
 select {
 case num := <- ch:
 fmt.Println(num)
 if num == 98 {
 close(ch)
 }
 default:
 }
 }
}

Since we're abruptly closing our ch channel one digit before the goroutine can finish,
any writes to it cause a runtime error.

In this case, we are invoking a read-only command, but it's in the select loop.
We can safeguard this a bit more by allowing only specific actions to be sent on
unidirectional channels. This application will always work up to the point where
in the channel is closed prematurely, one shy of the TOTAL_RANDOMS constant.

Using receive-only or send-only channels
When we limit the direction or the read/write capability of our channels, we also
reduce the potential for closed channel deadlocks if one or more of our processes
inadvertently sends on such a channel.

So the short answer to the question "When is it appropriate to use a unidirectional
channel?" is "Whenever you can."

Don't force the issue, but if you can set a channel to read/write only, it may preempt
issues down the road.

Using an indeterminate channel type
One trick that can often come in handy, and we haven't yet addressed, is the ability
to have what is effectively a typeless channel.

If you're wondering why that might be useful, the short answer is concise code and
application design thrift. Often this is a discouraged tactic, but you may find it useful
from time to time, especially when you need to communicate one or more disparate
concepts across a single channel. The following is an example of an indeterminate
channel type:

Advanced Concurrency and Best Practices

[638]

package main

import (

 "fmt"
 "time"
)

func main() {

 acceptingChannel := make(chan interface{})

 go func() {

 acceptingChannel <- "A text message"
 time.Sleep(3 * time.Second)
 acceptingChannel <- false
 }()

 for {
 select {
 case msg := <- acceptingChannel:
 switch typ := msg.(type) {
 case string:
 fmt.Println("Got text message",typ)
 case bool:
 fmt.Println("Got boolean message",typ)
 if typ == false {
 return
 }
 default:
 fmt.Println("Some other type of message")
 }

 default:

 }

 }

 <- acceptingChannel
}

Chapter 10

[639]

Using Go with unit testing
As with many of the basic and intermediate development and deployment
requirements you may have, Go comes with a built-in application for handling
unit tests.

The basic premise behind testing is that you create your package and then create
a testing package to run against the initial application. The following is a very
basic example:

mathematics.go
package mathematics

func Square(x int) int {

 return x * 3
}
mathematics_test.go
package mathematics

import
(
 "testing"
)

func Test_Square_1(t *testing.T) {
 if Square(2) != 4 {
 t.Error("Square function failed one test")
 }
}

A simple Go test in that subdirectory will give you the response you're looking for.
While this was admittedly simple—and purposefully flawed—you can probably see
how easy it is to break apart your code and test it incrementally. This is enough to do
very basic unit tests out of the box.

Correcting this would then be fairly simple—the same test would pass on the
following code:

func Square(x int) int {

 return x * x
}

The testing package is somewhat limited; however, as it provides basic pass/fails
without the ability to do assertions. There are two third-party packages that can
step in and help in this regard, and we'll explore them in the following sections.

Advanced Concurrency and Best Practices

[640]

GoCheck
GoCheck extends the basic testing package primarily by augmenting it with
assertions and verifications. You'll also get some basic benchmarking utility out
of it that works a little more fundamentally than anything you'd need to engineer
using Go.

For more details on GoCheck visit http://labix.org/gocheck
and install it using go get gopkg.in/check.v1.

Ginkgo and Gomega
Unlike GoCheck, Ginkgo (and its dependency Gomega) takes a different approach to
testing, utilizing the behavior-driven development (BDD) model. Behavior-driven
development is a general model for making sure your application does what it should
at every step, and Ginkgo formalizes that into some easily parseable properties.

BDD tends to complement test-driven development (for example, unit testing) rather
than replacement. It seeks to answer a few critical questions about the way people
(or other systems) will interact with your application. In that sense, we'll generally
describe a process and what we expect from that process in fairly human-friendly
terms. The following is a short snippet of such an example:

Describe("receive new remote TCP connection", func() {
 Context("user enters a number", func() {
 It("should be an integer", func() {
 })
 })
})

This allows testing to be as granular as unit testing, but also expands the way we
handle application usage in verbose and explicit behaviors.

If BDD is something you or your organization is interested in, this is a fantastic,
mature package for implementing deeper unit testing.

For more information on Ginkgo go to https://github.com/
onsi/ginkgo and install it using go get github.com/onsi/
ginkgo/ginkgo.

For more information on dependency, refer to go get github.com/
onsi/gomega.

http://labix.org/gocheck
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo

Chapter 10

[641]

Using Google App Engine
If you're unfamiliar with Google App Engine, the short version is it's a cloud
environment that allows for simple building and deployment of Platform-As-A-

Service (paas) solutions.

Compared to a lot of similar solutions, Google App Engine allows you to build and
test your applications in a very simple and straightforward way. Google App Engine
allows you to write and deploy in Python, Java, PHP, and of course, Go.

For the most part, Google App Engine provides a standard Go installation that
makes it easy to dovetail off of the http package. But it also gives you a few
noteworthy additional packages that are unique to Google App Engine itself:

Package Description

appengine/memcache This provides a distributed memcache
installation unique to Google App Engine

appengine/mail This allows you to send e-mails through an
SMTP-esque platform

appengine/log Given your storage may be more ephemeral
here, it formalizes a cloud version of the log

appengine/user This opens both identity and OAuth
capabilities

appengine/search This gives your application the power of
Google search on your own data via datastore

appengine/xmpp This provides Google Chat-like capabilities

appengine/urlfetch This is a crawler functionality

appengine/aetest This extends unit testing for Google App
Engine

While Go is still considered beta for Google App Engine, you can expect that if anyone
was able to competently deploy it in a cloud environment, it would be Google.

Utilizing best practices
The wonderful thing with Go when it comes to best practices is that even if you
don't necessarily do everything right, either Go will yell at you or provide you
with the tools necessary to fix it.

If you attempt to include code and not use it, or if you attempt to initialize a variable
and not use it, Go will stop you. If you want to clean up your code's formatting, Go
enables it with go fmt.

Advanced Concurrency and Best Practices

[642]

Structuring your code
One of the easiest things you can do when building a package from scratch is
to structure your code directories in an idiomatic way. The standard for a new
package would look something like the following code:

/projects/
 thisproject/
 bin/
 pkg/
 src/
 package/
 mypackage.go

Setting up your Go code like this is not just helpful for your own organization,
but allows you to distribute your package more easily.

Documenting your code
For anyone who has worked in a corporate or collaborative coding environment,
documentation is sacrosanct. As you may recall earlier, using the godoc command
allows you to quickly get information about a package at the command line or via
an ad hoc localhost server. The following are the two basic ways you may use godoc:

Using godoc Description

godoc fmt This brings fmt documentation to the screen
godoc -http=:3000 This hosts the documentation on port :3030

Go makes it super easy to document your code, and you absolutely should. By
simply adding single-line comments above each identifier (package, type, or
function), you'll append that to the contextual documentation, as shown in the
following code:

// A demo documentation package
package documentation

// The documentation struct object
// Chapter int represents a document's chapter
// Content represents the text of the documentation
type Documentation struct {
 Chapter int
 Content string
}

Chapter 10

[643]

// Display() outputs the content of any given Document by chapter
func (d Documentation) Display() {

}

When installed, this will allow anyone to run the godoc documentation on your
package and get as much detailed information as you're willing to supply.

You'll often see more robust examples of this in the Go core code itself, and it's
worth reviewing that to compare your style of documentation to Google's and
the Go community's.

Making your code available via go get
Assuming you've kept your code in a manner consistent with the organizational
techniques as listed previously, making your code available via code repositories
and hosts should be a cinch.

Using GitHub as the standard, here's how we might design our third-party
application:

1. Make sure you stick to the previous structural format.

2. Keep your source files under the directory structures they'll live in
remotely. In other words, expect that your local structure will reflect
the remote structure.

3. Perhaps obviously, commit only the files you wish to share in the
remote repository.

Assuming your repository is public, anyone should be able to get (go get)
and then install (go install) your package.

Keeping concurrency out of your packages
One last point that might seem somewhat out of place given the context of the
book—if you're building separate packages that will be imported, avoid including
concurrent code whenever possible.

This is not a hard-and-fast rule, but when you consider potential usage, it makes
sense—let the main application handle the concurrency unless your package
absolutely needs it. Doing so will prevent a lot of hidden and difficult-to-debug
behavior that may make your library less appealing.

Advanced Concurrency and Best Practices

[644]

Summary
It is my sincere hope that you've been able to explore, understand, and utilize the
depths of Go's powerful abilities with concurrency through this book.

We've gone over a lot, from the most basic, channel-free concurrent goroutines to
complex channel types, parallelism, and distributed computing, and we've brought
some example code along at every step.

By now, you should be fully equipped to build anything your heart desires in code,
in a manner that is highly concurrent, fast, and error-free. Beyond that, you should
be able to produce well-formed, properly-structured, and documented code that can
be used by you, your organization, or others to implement concurrency where it is
best utilized.

Concurrency itself is a vague concept; it's one that means slightly different things
to different people (and across multiple languages), but the core goal is always fast,
efficient, and reliable code that can provide performance boosts to any application.

Armed with a full understanding of both the implementation of concurrency in Go
as well as its inner workings, I hope you continue your Go journey as the language
evolves and grows, and similarly implore you to consider contributing to the Go
project itself as it develops.

645

Bibliography

This book is a blend of text and projects, all packaged up keeping your journey in mind. It
includes content from the following Packt books:

 f Learning Go Web Development, Nathan Kozyra

 f Go Programming Blueprints, Mat Ryer

 f Mastering Concurrency in Go, Nathan Kozyra

Thank you for buying
Go: Building Web Applications

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Please check www.PacktPub.com for information on our titles

www.packtpub.com
www.PacktPub.com

	Cover
	Copyright
	Credits
	Preface
	Table of Content
	Module 1: Learning Go Web Development
	Chapter 1: Introducing and Setting Up Go
	Installing Go
	Structuring a project
	Importing packages
	Introducing the net package
	Hello, Web
	Summary

	Chapter 2: Serving and Routing
	Serving files directly
	Basic routing
	Using more complex routing with Gorilla
	Redirecting requests
	Serving basic errors
	Summary

	Chapter 3: Connecting to Data
	Connecting to a database
	Using GUID for prettier URLs
	Handling 404s
	Summary

	Chapter 4: Using Templates
	Introducing templates, context,
and visibility
	HTML templates and text templates
	Displaying variables and security
	Using logic and control structures
	Summary

	Chapter 5: Frontend Integration with RESTful APIs
	Setting up the basic API endpoint
	RESTful architecture and best practices
	Creating our first API endpoint
	Implementing security
	Creating data with POST
	Modifying data with PUT
	Summary

	Chapter 6: Sessions and Cookies
	Setting cookies
	Capturing user information
	Initiating a server-side session
	Summary

	Chapter 7: Microservices and Communication
	Introducing the microservice approach
	Pros and cons of utilizing microservices
	Understanding the heart of microservices
	Communicating between microservices
	Putting a message on the wire
	Reading from another service
	Summary

	Chapter 8: Logging and Testing
	Introducing logging in Go
	Logging to IO
	Formatting your output
	Using panics and fatal errors
	Introducing testing in Go
	Summary

	Chapter 9: Security
	HTTPS everywhere – implementing TLS
	Preventing SQL injection
	Protecting against XSS
	Preventing cross-site request forgery (CSRF)
	Securing cookies
	Using the secure middleware
	Summary

	Chapter 10: Caching, Proxies and Improved Performance
	Identifying bottlenecks
	Implementing reverse proxies
	Implementing caching strategies
	Implementing HTTP/2
	Summary

	Module 2: Go Programming Blueprints
	Chapter 1: Chat Application with Web Sockets
	A simple web server
	Modeling a chat room and clients on
the server
	Building an HTML and JavaScript chat client
	Tracing code to get a look under the hood
	Summary

	Chapter 2: Adding Authentication
	Handlers all the way down
	Making a pretty social sign-in page
	Endpoints with dynamic paths
	OAuth2
	Tell the authentication providers about your app
	Implementing external logging in
	Summary

	Chapter 3: Three Ways to Implement Profile Pictures
	Avatars from the authentication server
	Implementing Gravatar
	Uploading an avatar picture
	Combining all three implementations
	Summary

	Chapter 4: Command-line Tools to Find Domain Names
	Pipe design for command-line tools
	Five simple programs
	Composing all five programs
	Summary

	Chapter 5: Building Distributed Systems and Working with Flexible Data
	System design
	Installing the environment
	Votes from Twitter
	Counting votes
	Running our solution
	Summary

	Chapter 6: Exposing Data and Functionality through a RESTful Data Web Service API
	RESTful API design
	Sharing data between handlers
	Wrapping handler functions
	Responding
	Understanding the request
	A simple main function to serve our API
	Handling endpoints
	A web client that consumes the API
	Running the solution
	Summary

	Chapter 7: Random Recommendations Web Service
	Project overview
	Representing data in code
	Generating random recommendations
	Summary

	Chapter 8: Filesystem Backup
	Solution design
	Backup package
	The user command-line tool
	The daemon backup tool
	Testing our solution
	Summary

	Module 3: Mastering Concurrency in Go
	Chapter 1: An Introduction to Concurrency in Go
	Introducing goroutines
	Implementing the defer control mechanism
	Understanding goroutines versus coroutines
	Implementing channels
	Closures and goroutines
	Building a web spider using goroutines and channels
	Summary

	Chapter 2: Understanding the Concurrency Model
	Understanding the working of goroutines
	Synchronous versus asynchronous goroutines
	Visualizing concurrency
	RSS in action
	A little bit about CSP
	Go and the actor model
	Object orientation
	Using concurrency
	Managing threads
	Using sync and mutexes to lock data
	Summary

	Chapter 3: Developing a Concurrent Strategy
	Applying efficiency in complex concurrency
	Identifying race conditions with race detection
	Synchronizing our concurrent operations
	The project – multiuser appointment calendar
	A multiuser Appointments Calendar
	A note on style
	A note on immutability
	Summary

	Chapter 4: Data Integrity in an Application
	Getting deeper with mutexes and sync
	The cost of goroutines
	Working with files
	Getting low – implementing C
	Distributed Go
	Some common consistency models
	Using memcached
	Summary

	Chapter 5: Locks, Blocks, and Better Channels
	Understanding blocking methods in Go
	Cleaning up goroutines
	Creating channels of channels
	Pprof – yet another awesome tool
	Handling deadlocks and errors
	Summary

	Chapter 6: C10K – A Non-blocking Web Server in Go
	Attacking the C10K problem
	Building our C10K web server
	Serving pages
	Multithreading and leveraging multiple cores
	Exploring our web server
	Summary

	Chapter 7: Performance and Scalability
	High performance in Go
	Using the App Engine
	Distributed Go
	Some helpful libraries
	Memory preservation
	Summary

	Chapter 8: Concurrent Application Architecture
	Designing our concurrent application
	Identifying our requirements
	Using NoSQL as a data store in Go
	Monitoring filesystem changes
	Managing logfiles
	Handling configuration files
	Detecting file changes
	Backing up our files
	Designing our web interface
	Reverting a file's history – command line
	Checking the health of our server
	Summary

	Chapter 9: Logging and Testing Concurrency in Go
	Handling errors and logging
	Using the log4go package for robust logging
	Using the runtime package for granular stack traces
	Summary

	Chapter 10: Advanced Concurrency and Best Practices
	Going beyond the basics with channels
	Building workers
	Implementing nil channel blocks
	Implementing more granular control over goroutines with tomb
	Timing out with channels
	Building a load balancer with concurrent patterns
	Choosing unidirectional and bidirectional channels
	Using an indeterminate channel type
	Using Go with unit testing
	Using Google App Engine
	Utilizing best practices
	Summary

	Bibliography

