


i

Analyzing Quantitative Data

From Description to Explanation

3055-Prelims.qxd  1/10/03 10:50 AM  Page i



3055-Prelims.qxd  1/10/03 10:50 AM  Page ii



Analyzing Quantitative Data

From Description to Explanation

Norman Blaikie

SAGE Publications
London • Thousand Oaks • New Delhi

3055-Prelims.qxd  1/10/03 10:50 AM  Page iii



© Norman Blaikie 2003

First published 2003

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, transmitted or
utilized in any means, electronic, mechanical, photocopying,
recording or otherwise, without permission in writing from
the Publishers.

SAGE Publications Ltd
6 Bonhill Street
London EC2A 4PU

SAGE Publications Inc.
2455 Teller Road
Thousand Oaks, California 91320

SAGE Publications India Pvt Ltd
32, M-Block Market
Greater Kailash – I
New Delhi 110 048

British Library Cataloguing in Publication data

A catalogue record for this book is available from
the British Library

ISBN 0 7619 6758 3
0 7619 6759 1

Library of Congress Control Number available

Typeset by C&M Digitals (P) Ltd., Chennai, India
Printed in Great Britain The Cromwell Press Ltd, Trowbridge, Wiltshire

3055-Prelims.qxd  1/10/03 10:50 AM  Page iv



In memory of

my father
George Armstrong Blaikie

whose fascination with numbers was infectious

and

my daughter
Shayne Lishman Blaikie

whose logic was impeccable

3055-Prelims.qxd  1/10/03 10:50 AM  Page v



Contents

List of Figures xiv

List of Tables xvi

Acknowledgements xx

Introduction: About the Book 1

1 Social Research and Data Analysis: Demystifying Basic Concepts 10

2 Data Analysis in Context: Working with Two Data Sets 37

3 Descriptive Analysis – Univariate: Looking for Characteristics 47

4 Descriptive Analysis – Bivariate: Looking for Patterns 89

5 Explanatory Analysis: Looking for Influences 116

6 Inferential Analysis: From Sample to Population 159

7 Data Reduction: Preparing to Answer Research Questions 214

8 Real Data Analysis: Answering Research Questions 249

Glossary 306

Appendix A: Symbols 324

Appendix B: Equations 326

Appendix C: SPSS Procedures 333

Appendix D: Statistical Tables 339

References 344

Index 347

Summary Chart of Methods 353

3055-Prelims.qxd  1/10/03 10:50 AM  Page vi



Detailed Chapter Contents

List of Figures xiv
List of Tables xvi
Acknowledgements xx

Introduction: About the Book 1

Why was it written? 1
Who is it for? 3
What makes it different? 4
What are the controversial issues? 6
What is the best way to read this book? 7
What is needed to cope with it? 8
Notes 9

1 Social Research and Data Analysis: Demystifying Basic Concepts 10

Introduction 10
What is the purpose of social research? 10

The research problem 11
Research objectives 11
Research questions 13
The role of hypotheses 13

What are data? 15
Data and social reality 16
Types of data 17
Forms of data 20
Concepts and variables 22
Levels of measurement 22

Categorical measurement 23
Nominal-level measurement 23
Ordinal-level measurement 23

Metric measurement 24
Interval-level measurement 25
Ratio-level measurement 25

Discrete and continuous measurement 26
Review 26
Transformations between levels of measurement 27

What is data analysis? 28
Types of analysis 29

Univariate descriptive analysis 29

3055-Prelims.qxd  1/10/03 10:50 AM  Page vii



Bivariate descriptive analysis 29
Explanatory analysis 30
Inferential analysis 32

Logics of enquiry and data analysis 33
Summary 34
Notes 36

2 Data Analysis in Context: Working with Two Data Sets 37

Introduction 37
Two samples 37
Descriptions of the samples 39

Student sample 39
Resident sample 39

Concepts and variables 40
Formal definitions 40
Operational definitions 40

Levels of measurement 43
Data reduction 44
Notes 45

3 Descriptive Analysis – Univariate: Looking for Characteristics 47

Introduction 47
Basic mathematical language 48
Univariate descriptive analysis 51

Describing distributions 52
Frequency counts and distributions 53

Nominal categories 53
Ordinal categories 54
Discrete and grouped data 55

Proportions and percentages, ratios and rates 59
Proportions 59
Percentages 59
Ratios 61
Rates 62

Pictorial representations 62
Categorical variables 63
Metric variables 64

Shapes of frequency distributions: symmetrical,
skewed and normal 66
Measures of central tendency 68
The three Ms 68

Mode 68
Median 69
Mean 71

Analyzing quantitative data

viii

3055-Prelims.qxd  1/10/03 10:50 AM  Page viii



Mean of means 74
Comparing the mode, median and mean 75
Comparative analysis using percentages and means 76
Measures of dispersion 77
Categorical data 78

Interquartile range 78
Percentiles 79

Metric data 79
Range 79
Mean absolute deviation 79
Standard deviation 80
Variance 83

Characteristics of the normal curve 84
Summary 87
Notes 87

4 Descriptive Analysis – Bivariate: Looking for Patterns 89

Introduction 89
Association with nominal-level and ordinal-level variables 91

Contingency tables 91
Forms of association 94

Positive and negative 94
Linear and curvilinear 96
Symmetrical and asymmetrical 96

Measures of association for categorical variables 96
Nominal-level variables 97

Contingency coefficient 97
Standardized contingency coefficient 99
Phi 101
Cramér’s V 101

Ordinal-level variables 102
Gamma 102
Kendall’s tau-b 104

Other methods for ranked data 105
Combinations of categorical and metric variables 105

Association with interval-level and ratio-level variables 106
Scatter diagrams 106
Covariance 107
Pearson’s r 108

Comparing the measures 111
Association between categorical and metric variables 113

Code metric variable to ordinal categories 113
Dichotomize the categorical variable 113

Summary 114
Notes 114

Detailed chapter contents

ix

3055-Prelims.qxd  1/10/03 10:50 AM  Page ix



5 Explanatory Analysis: Looking for Influences 116

Introduction 116
The use of controlled experiments 117
Explanation in cross-sectional research 118
Bivariate analysis 120

Influence between categorical variables 120
Nominal-level variables: lambda 120
Ordinal-level variables: Somer’s d 124

Influence between metric variables: bivariate regression 125
Two methods of regression analysis 128
Coefficients 130
An example 132
Points to watch for 133

Influence between categorical and metric variables 134
Coding to a lower level 134
Means analysis 134
Dummy variables 135

Multivariate analysis 136
Trivariate analysis 136

Forms of relationships 136
Interacting variables 137
The logic of trivariate analysis 138

Influence between categorical variables 141
Three-way contingency tables 141

An example 141
Other methods 145

Influence between metric variables 146
Partial correlation 146
Multiple regression 146

An example 148
Collinearity 150
Multiple-category dummy variables 150

Other methods 153
Dependence techniques 153

Analysis of variance 154
Multiple analysis of variance 154
Logistic regression 154
Logit logistic regression 154
Multiple discriminant analysis 154
Structural equation modelling 154

Interdependence techniques 155
Factor analysis 155
Cluster analysis 155
Multidimensional scaling 155

Summary 156
Notes 158

Analyzing quantitative data

x

3055-Prelims.qxd  1/10/03 10:50 AM  Page x



6 Inferential Analysis: From Sample to Population 159

Introduction 159
Sampling 160

Populations and samples 160
Probability samples 161
Probability theory 163
Sample size 166
Response rate 167
Sampling methods 168

Parametric and non-parametric tests 171
Inference in univariate descriptive analysis 172

Categorical variables 173
Metric variables 175

Inference in bivariate descriptive analysis 177
Testing statistical hypotheses 178

Null and alternative hypotheses 179
Type I and type II errors 180
One-tailed and two-tailed tests 181
The process of testing statistical hypotheses 182
Testing hypotheses under different conditions 183
Some critical issues 185

Categorical variables 189
Nominal-level data 189
Ordinal-level data 191

Metric variables 192
Comparing means 192

Group t test 193
Mann–Whitney U test 197
Analysis of variance 201

Test of significance for Pearson’s r 204
Inference in explanatory analysis 205

Nominal-level data 205
Ordinal-level data 206
Metric variables 208

Bivariate regression 208
Multiple regression 209

Summary 209
Notes 212

7 Data Reduction: Preparing to Answer Research Questions 214

Introduction 214
Scales and indexes 214

Creating scales 215
Environmental Worldview scales and subscales 215

Pre-testing the items 216
Item-to-item correlations 217

Detailed chapter contents

xi

3055-Prelims.qxd  1/10/03 10:50 AM  Page xi



Item-to-total correlations 217
Cronbach’s alpha 219
Factor analysis 220

Willingness to Act scale 238
Indexes 239

Avoidance of environmentally damaging products 240
Support for environmental groups 240
Recycling behaviour 240

Recoding to different levels of measurement 241
Environmental Worldview scales and subscales 242
Recycling index 243
Age 243

Characteristics of the samples 244
Summary 246
Notes 248

8 Real Data Analysis: Answering Research Questions 249

Introduction 249
Univariate descriptive analysis 249

Environmental Worldview 250
Environmentally Responsible Behaviour 252

Bivariate descriptive analysis 257
Environmental Worldview and Environmentally 
Responsible Behaviour 258

Metric variables 258
Categorical variables 260
Comparing metric and categorical variables 262
Conclusion 263

Age, Environmental Worldview and Environmentally Responsible 
Behaviour 264

Metric variables 264
Categorical variables 266

Gender, Environmental Worldview and
Environmentally Responsible Behaviour 268

Explanatory analysis 270
Bivariate analysis 273

Categorical variables 274
Categorical and metric variables: means analysis 276
Metric variables 277

Multivariate analysis 277
Categorical variables 278

EWVGSC and WILLACT with ERB 279
WILLACT, Age and Gender with ERB 282

Categorical and metric variables: means analysis 285
EWVGSC and WILLACT with ERB 286
WILLACT and Gender with ERB 287

Analyzing quantitative data

xii

3055-Prelims.qxd  1/10/03 10:50 AM  Page xii



Metric variables 292
Partial correlation 292
Multiple regression 293

Conclusion 303
Notes 304

Glossary 306

Appendix A: Symbols 324

Appendix B: Equations 326

Appendix C: SPSS Procedures 333

Appendix D: Statistical Tables 339

References 344

Index 347

Summary Chart of Methods 353

Detailed chapter contents

xiii

3055-Prelims.qxd  1/10/03 10:50 AM  Page xiii



List of Figures

3.1 Religion (Students): bar chart 63
3.2 Religion (both samples): bar chart 64
3.3 Religiosity (both samples): bar chart 64
3.4 Religion (Students): pie chart 65
3.5 Religiosity (Students): pie chart 65
3.6 Age (both samples): line graphs 66
3.7 Examples of symmetrical distributions 67
3.8 Median to one decimal place 71
3.9 Environmental Worldview (both samples): line graphs 77
3.10 Environmental Worldview (combined samples): line graph 77
3.11 Area covered under the normal curve by

one to three standard deviations 86

4.1 Parts of a table 92
4.2 Scatter diagram: Environmental Worldview by Age (Residents) 107
4.3 Scatter diagram: Environmental Worldview

by Age (subsample of Residents) 109

5.1 Scatter plot of weekly hours worked by weekly wages 127
5.2 Residuals from a regression line (hypothetical data) 131
5.3 Possible forms of relationships between three variables 137

6.1 Distributions of mean ages of 20 samples 164
6.2 Types and methods of sampling 170
6.3 Confidence intervals for mean Age by

sample size (Resident sample) 177

7.1 Scree plot of eigenvalues for 24 items (combined samples) 223
7.2 Scree plot of eigenvalues for 14 items (combined samples) 227
7.3 Scree plot of eigenvalues for nine items (combined samples) 229
7.4 EWVGSC mean scores (combined samples) 233
7.5 HUSENV mean scores (combined samples) 233
7.6 GOVCONT mean scores (combined samples) 233
7.7 ECGROW mean scores (combined samples) 234
7.8 SCITEK mean scores (combined samples) 234
7.9 IMPACT mean scores (combined samples) 234
7.10 ALTENGY mean scores (combined samples) 235
7.11 WILLACT mean scores (combined samples) 239

3055-Prelims.qxd  1/10/03 10:50 AM  Page xiv



List of figures

xv

8.1 EWVGSC categories (both samples) 253
8.2 WILLACT categories (both samples) 255
8.3 Support Groups (both samples) 256
8.4 Avoid Products (both samples) 256
8.5 Recycling index (both samples) 257
8.6 Support Groups by WILLACT controlled for

Gender (Students) 288
8.7 Avoid Products by WILLACT controlled for

Gender (Students) 289
8.8 Support Groups by WILLACT controlled for

Gender (Residents) 290
8.9 Avoid Products by WILLACT controlled

for Gender (Residents) 290

3055-Prelims.qxd  1/10/03 10:50 AM  Page xv



List of Tables

1.1 Research questions and objectives 14
1.2 Levels of measurement 27

3.1 Raw data on Religion (Students) 53
3.2 Distribution by Religion (both samples) 53
3.3 Distribution by Religiosity (both samples) 54
3.4 Age distribution in years (Students) 55
3.5 Age distribution in five categories (Students) 56
3.6 Age distribution in six categories (Residents) 56
3.7 Number of children (Residents) 57
3.8 Number of children (subsample of Residents) 57
3.9 Comparison of Student and Resident samples by Age 58
3.10 Comparison of Gender proportions (both samples) 60
3.11 Age in years (Residents) 70
3.12 Calculation of mean Age in years (Residents) 73
3.13 Mean of Age distributed in ten categories (Residents) 73
3.14 Mean of two means (both samples) 74
3.15 Mean of two Age category percentages (both samples) 75
3.16 Deviations from the mean of Age in years (Residents) 81–82

4.1 Religion by Gender (Residents; observed and
expected frequencies, and percentages) 92

4.2 Environmental Worldview by Age (Residents;
observed frequencies and percentages) 94

4.3 Environmental Worldview by Age (percentages) 95
4.4 Religion by Gender (Residents; observed frequencies) 99
4.5 Calculation of gamma (from Table 4.2) 103
4.6 Mean deviation method for computing r

(subsample of Residents) 110
4.7 Raw score method for computing r

(subsample of Residents) 110
4.8 Education by Age (percentages; Residents) 113

5.1 Occupation by Religion (Residents; observed
frequencies and percentages) 122

5.2 Occupation by Religion (subsample of Residents) 123
5.3 Occupation by Religion (subsample of Residents; 2 by 2 table) 124
5.4 Working hours per week and weekly wage 126
5.5 Unexplained variation and standard error of the 

estimate (subsample of Residents) 132

3055-Prelims.qxd  1/10/03 10:50 AM  Page xvi



List of tables

xvii

5.6 A means analysis of Education and Environmental
Worldview (Residents) 135

5.7 Forms of relationships between three variables 139
5.8 Environmental Worldview and Age (Residents) 142
5.9 Environmental Worldview and Age controlled

for Education (Residents) 143
5.10 Environmental Worldview and Age controlled for

Gender (Residents) 144
5.11 Regression of Environmental Worldview on Age,

Gender and Education (Residents) 148
5.12 Regression of Environmental Worldview on Age,

Gender and Education in five categories (Residents) 151
5.13 Correlation matrix for Age, Gender and

six Education dummy variables (Residents) 152
5.14 Regression of Environmental Worldview on

Age, Gender and Education, Marital Status,
Religion and Political Party Preference (Residents) 152

6.1 Hypothetical sampling 163
6.2 Variations in confidence intervals of mean Age

by confidence level and sample size (Residents) 176
6.3 Type I and type II errors 181
6.4 Ranked Environmental Worldview scores by

Gender (subsample of Students) 200
6.5 Cells and their ‘diagonals’ in Table 4.2 208

7.1 Correlation matrix of 24 items (both samples) 218
7.2 Unidimensionality, reliability and commonalities

of 24 items (combined samples) 219
7.3 Commonalities and unrotated factors with

24 items (combined samples) 222
7.4 Rotated solution for five factors with 24 items

(combined samples) 225
7.5 Rotated solution for six factors with 24 items

(combined samples) 226
7.6 Unrotated and rotated solutions with 14 retained

items (combined samples) 228
7.7 Unidimensionality and reliability of 10 rejected

items (combined samples) 228
7.8 Unrotated and rotated solutions with nine rejected

items (combined samples) 230
7.9 Distributions on the 24 items (combined samples) 231
7.10 Distributions on scales and subscales (combined samples) 232
7.11 Reliability of scales and subscales (combined samples) 236
7.12 Correlation matrix of EWV scales and

subscales (combined samples) 237

3055-Prelims.qxd  1/10/03 10:50 AM  Page xvii



Analyzing quantitative data

xviii

7.13 Unrotated and rotated solutions with Willingness
to Act items (combined samples) 238

7.14 Reliability of behavioural scales (combined samples) 239
7.15 Characteristics of both samples 245

8.1 Sample comparisons of Environmental
Worldview metric variables 250

8.2 Sample comparisons of Environmental
Worldview categorical variables (percentages) 252

8.3 Sample comparison of Environmentally
Responsible Behaviour metric variables 253

8.4 Sample comparison of Environmentally Responsible
Behaviour categorical variables (percentages) 254

8.5 Correlation matrix for EWV and ERB variables
(Pearson’s r; Students) 258

8.6 Correlation matrix for EWV and ERB
variables (Pearson’s r; Residents) 259

8.7 Cross-tabulations between EWVGSC and WILLACT,
Support Groups, Avoid Products and Recycling
(percentages; both samples) 260

8.8 Correlation matrix for EWV and
ERB variables (gamma; Students) 261

8.9 Correlation matrix for EWV and
ERB variables (gamma; Residents) 262

8.10 Cross-tabulations of Support Groups with
WILLACT (percentages; both samples) 263

8.11 EWV and ERB by Age (Pearson’s r and gamma; Residents) 265
8.12 EWV and ERB means and standard deviations by Age (Residents) 265
8.13 Cross-tabulation for Age with EWVGSC, IMPACT, WILLACT,

Recycling, Support Groups and Avoid Products
(percentages; Residents) 267

8.14 EWV and ERB by Gender (Pearson’s r and G; both samples) 268
8.15 EWV and ERB means and standard deviations by

Gender (both samples) 269
8.16 Cross-tabulation of Gender with EWVGSC, SCITEK, WILLACT,

Recycling, Support Groups and Avoid Products
(percentages; both samples) 271

8.17 Influence of EWVGSC and WILLACT on
Support Groups and Avoid Products
(percentages; both samples) 275

8.18 Means analysis of Gender and Religion
(Students), and Age, Gender and Religion
(Residents), with Support Groups and Avoid Products 276

8.19 Regression of ERB variables on WILLACT and
EWVGSC (both samples) 277

3055-Prelims.qxd  1/10/03 10:50 AM  Page xviii



List of tables

xix

8.20 Influence of EWVGSC on Support Groups and
Avoid Products controlled for WILLACT
(percentages; Students) 280

8.21 Influence of WILLACT on Support Groups
and Avoid Products controlled for
EWVGSC (percentages; Students) 281

8.22 Influence of EWVGSC and WILLACT on Support
Groups and Avoid Products with controls for
WILLACT and EWVGSC (Residents) 282

8.23 Influence of WILLACT on Support Groups
and Avoid Products controlled for Gender
(percentages; both samples) 283

8.24 Influence of WILLACT on Support Groups
and Avoid Products controlled for Age (Residents) 284

8.25 Means analysis of EWVGSC on Support Groups
and Avoid Products controlled for WILLACT (Students) 285

8.26 Means analysis of WILLACT on Support
Groups and Avoid Products controlled for
EWVGSC (Students) 287

8.27 Means analysis of WILLACT on Support
Groups and Avoid Products controlled
for Gender (Students) 288

8.28 Means analysis of WILLACT on Support
Groups and Avoid Products controlled for
Gender (Residents) 289

8.29 Means analysis of WILLACT on Support
Groups and Avoid Products controlled for Age (Residents) 291

8.30 WILLACT by Support Groups and Avoid Products
controlled for EWVGSC (Pearson’s r; both samples) 293

8.31 Regression of ERB variables on EWVGSC,
WILLACT and Gender (Students) 295

8.32 Regression of ERB variables on EWVGSC,
WILLACT, Age and Gender (Residents) 296

8.33 Correlation matrix of potential predictor
variables (Pearson’s r; Residents) 298

8.34 Regression of Support Groups on selected
predictor variables (Residents) 300

8.35 Regression of Avoid Products on selected
predictor variables (Residents) 302

3055-Prelims.qxd  1/10/03 10:50 AM  Page xix



Acknowledgements

I am indebted to my early mentors in data analysis, in particular, Charles Gray
and Oscar Roberts, for providing this novice researcher with necessary knowledge
about which textbooks were usually silent. I am also appreciative of the numer-
ous students who, over many years, have stimulated me to think through the
relationship between social science statistics and social research practice.

The data set derived from the sample of residents in the former City of
Box Hill, Melbourne, and which has been used to illustrate the data analysis
procedures, was produced with the assistance of Malcolm Drysdale, students
from the Socio-Environmental Assessment and Policy degree at the RMIT
University, and the university’s research funding sources. My thanks also go to
my wife Catherine for invaluable assistance with the data entry of both of this
and the Student sample data set.

Without Chris Rojek’s invitation and challenge to write this book, I would
never have contemplated committing three years of my life to such a task. I am
grateful to Chris, and Kay Bridger at Sage, for their support through the
demanding process of its accomplishment. I am particularly indebted to Richard
Leigh for not only forcing me to think through some tricky technical issues at
the copy-editing stage, but also for computing the statistical tables in Appendix
D. The latter enabled me to have accurate tables, in the format that I wanted,
and not to have to rely on less suitable existing tables.

Norman Blaikie

xx

3055-Prelims.qxd  1/10/03 10:50 AM  Page xx



Introduction: About the Book

This book is about how to use quantitative data to answer research questions in
social research. It is about how to analyze data in the form of a set of variables
that have been measured on a collection of individuals or that have been
collected about some aspects of social life. This is not a book on statistics,
although it covers an array of statistical procedures. It is not a book on research
methods, although it deals with some of the methods essential for quantitative
social research. It is not a book on how to use statistical software packages,
although it refers to such procedures.

Why was it Written?

This is not a book I ever imagined writing. My first reaction when asked
to write it was: ‘Why do we need another book on statistics or data analysis?
Hasn’t it all been said already?’ Perhaps the reason why so many books continue
to be written in this field is that their authors think they can make an improve-
ment to the way students are introduced to a course that most find excruciat-
ingly difficult. This is a worthy aim and was part of my brief. However, the
challenge that I was given, and which got me hooked, was to be iconoclastic. I
interpreted this to include: challenging unhelpful content and structure that
have been taken for granted in successive volumes in the field; being critical of
practices that have been perpetuated without having any obvious use to a
researcher; and, more particularly, exposing the misuses of certain procedures.
Given that I have spent much of my academic career doing just these things in
some other areas of my discipline, I could not resist taking up the challenge of
putting in writing concerns that I have had about some of the practices in this
area of social research.

Like Merton (1968) and Mills (1959), I have been very critical of some forms
of mindless empiricism as well as the use of highly sophisticated research tech-
niques that create great gulfs between the researcher and the social reality that
is being studied (see, for example, Blaikie, 1977, 1978, 1981). However, in
spite of this, I believe that quantitative data analysis is important for certain
purposes. But it is not the only form of analysis. There are areas of social
research where qualitative methods of data collection and analysis are much
more appropriate, if not absolutely essential. The trick is to know which methods
to use in which context and for which purpose.

Initially, I set out to cover both quantitative and qualitative data analysis.
However, this turned out to be an unmanageable task and a decision was made
to concentrate on only quantitative data analysis at this stage.
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The key question behind the structure and content of the book has been
what students and novice researchers in the social sciences need to know in
order to be able to analyze data from group or individual research projects in
which they are likely to be involved. In considering what to cover and how to
organize it, I decided to abandon tradition in favour of addressing this pragmatic
issue. This decision was largely influenced by my experience in teaching a tradi-
tional undergraduate course in statistics to students in a degree programme that
essentially trained applied social researchers. I kept asking myself what
relevance much of the course was likely to have for these students in both
the short term and the longer term. What was clearly missing, and had to be
covered in other contexts, was practical knowledge about how to actually analyze
the results obtained in real research projects.

There was another reason. I had had many unhelpful experiences doing
statistics courses when a student. In looking for guidance on how to analyze
data, I also found books on statistics extremely unhelpful; books on data analysis
were unheard of then. Statistics books seemed to be concerned with issues and
procedures that had little to do with the kind of research I was doing. In
the end, I had to rely on advice from a few seasoned researchers who had dis-
covered, mainly by trial and error, what was required. So this is the book that
I wish had been available when I was a student and novice researcher.

In spite of being competent in basic mathematics, and having earlier earned
a living for twelve years in a profession that is based on the use of applied mathe-
matics, I found courses and textbooks on statistics unnecessarily difficult to
follow. They used an alienating language, included confusing symbols and covered
topics that were largely irrelevant to my needs. I kept asking myself: ‘Why am
I doing this?’

Courses in statistics are a common requirement in most social science disci-
plines. Some academics seem to operate on the idea that going through the
trauma of doing such a course is a necessary right of passage for each generation
of social scientists. If you cannot cope with statistics you are not permitted to
call yourself a genuine social scientist. No doubt, an earlier justification for such
courses would have been to give social scientific discipline scientific status. This
is still true in psychology.

Rather than producing highly trained statisticians, these courses are more
likely to produce traumatized and demoralized students. They may also keep
potential majors in the disciplines away. Let’s face it, programmes in the social
sciences usually attract students with limited mathematical ability who are
often refugees from high school maths classes. The social sciences are chosen
because they are thought to provide a safe haven from the trauma of numbers
and symbols. Then a course in statistics appears on the horizon to rekindle the
old anxieties. What these students need is to be given confidence that they can
do basic analysis, and that they can understand what is required and why. In any
case, most of what is learned in these courses is quickly forgotten unless it has
direct relevance to real research activities.

There is no point in expecting undergraduates to master what is normally
covered in statistics texts if they are unlikely to ever use it. While it might
be nice to know the theory behind statistical procedures, such as probability

Analyzing quantitative data
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theory and the method of least squares, as well as the intricate details of many
complex equations, what most students need is to know what methods to use
for analyzing certain kinds of data, and why. Most of their requirements
are pretty basic, or can be kept basic by addressing research questions in a
manageable way.

In my experience, teachers of courses in statistics fall into two main cate-
gories. There are those who treat mathematically challenged students as
imbeciles and delight in inflicting great stress and discomfort on them. I have
encountered a few of these. On the other hand, there are those who try very
hard to make statistics intelligible to students whose mathematical abilities are
minimal or who have already convinced themselves that it is just too difficult
for them.

I suspect some of my readers will suffer from the common malady of ‘symbol
phobia’. Presented with a simple equation, such as a + b = c, your eyes will
glaze over. Or perhaps, like the well-known Indian writer, R.K. Narayan, you
suffer from what he called ‘figure-blindness’. In his essay on ‘Higher mathe-
matics’, he argued that it is inappropriate to describe arithmetic as elementary
mathematics. In his experience, arithmetic has more terrors than algebra and
geometry:

My mind refuses to work when it encounters numbers. Everything that has anything
to do with figures is higher mathematics to me. There is only one sort of mathe-
matics in my view and that is the higher one. To mislead young minds by classify-
ing arithmetic as elementary mathematics has always seemed to me as a base trick.
A thing does not become elementary by being called so. … However elementary we
may pretend arithmetic to be, it ever remains puzzling, fatiguing and incalculable.
(Narayan, 1988: 11)

Well, this book contains symbols, but only very basic ones, and requires com-
petence in basic arithmetic. However, many of the conventions used in statis-
tics texts are avoided, often by expressing symbols in words. This strategy may
upset some of the purists – although even they do not always agree on which
symbols to use – but I am prepared to risk this in order to take some of the
mystique out of reasonably simple ideas.

Who is it for?

Analyzing Quantitative Data is intended for students in the social sciences.
It is designed to meet the needs of average undergraduate and most post-
graduate students, and to do this in a way that relates directly to the business
of doing social research. The book can be used in courses on quantitative data
analysis where such courses complement others on data-gathering techniques.
It could be used in a broad-ranging course on research methods when this
encompasses methods of both data gathering and data analysis. Where degree
programmes have a research practicum, with either individual or group

Introduction
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projects, this book should be a useful companion for students doing
quantitative research.

The book will also be a useful reference for postgraduate students who are
required to undertake a major or minor quantitative research project. For many
students, this is the first opportunity to undertake their own research. It usually
involves designing a project from scratch (see Blaikie, 2000), collecting data,
analyzing it and then writing a thesis or major report. Among many other things,
the design stage requires decisions to be made about the methods of data analy-
sis to be used, and then later the analysis will need to be undertaken. When
quantitative analysis is involved, based on a set of variables and a substantial
sample, this book should help smooth the way.

While I have written the book with sociologists in mind, it will be useful for
a range of social science and related disciplines. In fact, it will be useful for any-
one who is required to undertake social research. This includes researchers
from fields such as political science, social psychology, human geography, urban
studies, education, nursing, business studies, management, mass communica-
tions, environmental studies and social work. It may also be useful for some
kinds of research in economics and other areas of psychology.

Analyzing Quantitative Data will also be useful for novice social researchers
anywhere. Academics outside the social sciences, as well as employees in the
public and private sectors, may be called on to undertake social research of some
kind. Alternatively, they may not be required to actually do any research but may
need to commission someone else to do it, to oversee such research, or to evalu-
ate research produced by social scientists. The book will be a useful reference.

What Makes it Different?

There are a number of features of the book that make it different from most if
not all books presently available in this field. First, two classification schemes
are used to organize the discussion of the many methods of data analysis. One
is the type of analysis, and the other is the level of measurement. Types of analy-
sis are classified as univariate description, bivariate description (association),
explanation and inference. The levels of measurement are divided into two
broad categories, categorical and metric, the former subdivided into nominal
and ordinal levels, the latter into interval and ratio levels. These categories will
be explained in due course. Each of the four key chapters (3–6) deals with one
type of analysis, and each chapter is subdivided into sections that deal with the
different levels of measurement. The reason for this is that different methods
of analysis are appropriate for each type of analysis as well as for the different
levels of measurement within each type. Keeping these distinctions clear should
make the purpose of the wide array of procedures easier to understand and to
select. Surprisingly, this scheme appears to be rather novel.1

Second, all the methods of analysis are illustrated and discussed in the
context of a real research problem. In many ways, the whole book simulates the

Analyzing quantitative data

4

3055-Introduction.qxd  1/10/03 10:32 AM  Page 4



kind of considerations and processes social researchers are likely to have to go
through in analyzing their data. This approach to statistics, let alone data analysis,
is extremely rare.2 Two data sets from a research programme are used through-
out the book. The data sets are typical of those obtained from small to moderate-
sized social surveys. Both are from my research programme on environmentalism
and cover the same variables. While the research topic is specific, the methods of
analysis are universal. They can certainly be generalized to almost any study on
the relationship between attitudes (or worldviews) and behaviour.

The data sets will be explained in Chapter 2, analyses of certain variables will
be used as examples in Chapters 3–7, and in Chapter 8 a set of research ques-
tions are answered using these data with the appropriate procedures. The book
takes the reader through a wide range of methods of analysis, illustrates their
application with the two data sets, and concludes by putting the methods into
practice in a ‘real’ research project.

Third, the nature of data, particularly quantitative data, is discussed rather
than being taken for granted. What is accepted as being appropriate and reliable
data is dependent on the ontological and epistemological assumptions that are
adopted. These issues are clearly ignored in most if not all textbooks on research
methods, data analysis and statistics. This will be addressed in Chapter 1.

Fourth, in addition to being concerned with the nature of data and the appro-
priate procedures for analyzing them, the use of the two data sets provides an
excellent opportunity to combine data analysis with the interpretation of the
products. In fact, in the process of answering the set of research questions in
Chapter 8, it is also necessary to interpret the results. Therefore, not only will
the illustrations be set in the context of real research, but also the results will
have to be interpreted within this context. This extremely important aspect of
data analysis is generally missing in most textbooks because the illustrations do
not have a consistent context from which they are drawn.

Fifth, this is a software-free textbook. There is a growing trend in textbooks
on statistics and data analysis to include instruction on how to do the various
methods of analysis using one of the popular statistical software packages, such
as SPSS or Minitab. If you require such a book you could consult examples such
as Bryman and Cramer (1997), Fielding and Gilbert (2000), Field (2000) and
Foster (2001). I have decided not to follow this trend for a number of reasons.
First, while a software package such as SPSS is very popular, it is possible that
you may be required to or choose to use some other software. Second, software
packages are updated regularly, and this can include changes to the screen layouts.
A textbook based on a particular version will soon become out of date, or would
need to be revised frequently. Third, there is a common temptation to go
straight to the software package without first understanding the various proce-
dures and why they are used. Hence, this book focuses on the principles behind
the procedures, on the procedures themselves, and on the purposes for which
they should be used. It is not difficult to learn how to use a software package;
I have found a three-hour workshop sufficient to introduce students to the
setting up of a database, to entering data and to doing basic analysis. It should
not be difficult to relate what is learnt in such a course, or from a suitable book,
to what is covered in this book. Frankly, if you know what it is that you need to
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be doing, most statistical software packages are now sufficiently user-friendly
for any moderately competent user to find their way about without much
difficulty. In SPSS, for example, it is just a matter of finding the appropriate
pull-down menu and then the method of analysis that you need. Selecting the
appropriate statistics is an easy matter – that is, if you know what you should
be doing. However, I have made one gesture in the direction of software.
Appendix C sets out the basic steps that are used in recent versions of SPSS to
carry out most of the procedures covered in the book.

The sixth difference is not as critical as the previous ones. It refers to the fact
that the book is about methods of data analysis, not statistics as such. It is
intended for practitioners, not just to satisfy course requirements. It is designed
to complement courses and textbooks that concentrate on methods of data
collection by providing a wide review of how quantitative data can be handled
in the pursuit of answers to research questions. However, it does not shy away
from a consideration of the equations that are used in the more basic procedures.

What are the Controversial Issues?

The following icons of social research are challenged and are either modified or
destroyed in the following chapters:3

1. That social research must begin with one or more hypotheses.
2. That tests of significance are an essential feature of data analysis.
3. That measures of association provide explanations.

The following case will be made about the first issue:

• All social research must start out with one or more research questions.
• There are three types of research questions: ‘what’ questions seek descrip-

tions; ‘why’ questions seek explanations; and, ‘how’ questions seek inter-
vention for change.

• Only ‘why’ questions that are being answered with the aid of theory require
the use of hypotheses.

• In any case, there are two types of hypotheses: theoretical hypotheses are
derived from theory to provide tentative answers to ‘why’ questions; statis-
tical hypotheses are used in the process of generalizing data from a random
sample to the population from which the sample was drawn.

• A great deal of confusion is created by a general lack of recognition of the
differences between these two types of hypotheses.

• Theoretical hypotheses are only relevant when certain types of ‘why’ ques-
tions need to be answered, and statistical hypotheses are only relevant when
data come from a random sample. While some research may require both
types of hypotheses, other research may require only one type, and a great
deal of research requires neither type. However, all research requires research
questions.

Analyzing quantitative data
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• Some research, of the theory-generating variety, ends up with hypotheses or
theory rather than staring out with them.

Tests of significance are probably the most misunderstood and misused
aspect of data analysis. The following argument is made about their use:

• Tests of significance can provide no help to a researcher in making decisions
about the importance or meaning of research results.

• They are not measures of association.
• They are only appropriate when statistical hypotheses are being tested, that

is, when population parameters are being inferred from sample statistics.
• They can only be used with sample data that are derived from a population

using probability procedures.
• They are inappropriate when samples are drawn using non-probability pro-

cedures or when data come from a population; performing this statistical
ritual in these circumstances has absolutely no meaning.

• They cannot be used to test theoretical hypotheses, although, in some cir-
cumstances, they may be used as a stepping-stone on the way to such test-
ing, that is, when probability samples are being used.

• They are no help in generalizing beyond the population selected for study;
further generalization is a matter of judgement based on other kinds of evidence.

The third issue is now well recognized but still causes confusion. It is
concerned with the purpose of establishing correlations between variables:

• Descriptive research consists of establishing characteristics of particular
phenomena, trends in these characteristics over time and patterns in the
connections between phenomena.

• Measures of association establish the strength of patterns or connections
between variables; they are an elaborate form of description.

• While such description may provide some understanding of phenomena and,
some would argue, provide a basis for making predictions, they cannot
answer ‘why’ questions.

• However, such patterns have to be established before explanation can be
undertaken.

• Explanation tells us why patterns or trends exist.

These arguments indicate the position I have taken on some of the common
misunderstandings in data analysis.

What is the Best Way to Read this Book?

The answer is simple: start at the beginning and work through to the end. The
topics covered chapter by chapter build on each other. There is a developmental

Introduction

7

3055-Introduction.qxd  1/10/03 10:32 AM  Page 7



progression from the most elementary forms of analysis to the more complex.
In addition, themes and arguments also run through the chapters. Without
an overview of these, it will be very easy to take any method of analysis out of
context.

I am aware that many students approach books just to find a specific concept
or topic. Once the knowledge and skills dealt with in this book have been
mastered, this ‘dipping in’ approach will no doubt be appropriate when it is
necessary to be refreshed about specific types of analysis. If this is the only way
the book is used, it will still be useful. However, an understanding of the ‘bigger
picture’ is necessary to avoid making incorrect selections or interpretations of
methods of data analysis.

What is Needed to Cope with it?

To understand data analysis successfully, it is very useful to have or to be able
to develop a fascination with numbers, to:

• enjoy manipulating them to find answers;
• be able to understand what they are telling you; and
• have a sense of when they appear to be correct or not.

Of course, you need to have some basic numerical skills, to be able to add, sub-
tract, multiply and divide, and you need to be able to understand the conven-
tions used in mathematical equations, to know how to enter data into them and
how to manipulate them. A short refresher course on these skills is included in
the first part of Chapter 3.

To undertake data analysis in a mechanical and cookbook fashion can be not
only unsatisfying but also dangerous. It is important to be able to understand
when certain procedures should be used and what they are designed to achieve.
It is also helpful to be able to understand what principles are involved and why
certain requirements must be satisfied. I cannot guarantee that after reading
through and working with this book you will feel completely confident about
these things. This will only come with practical experience.

Lastly, I am not a statistician, although I have great admiration for such
experts. I am a sociologist who, among other things, does social research and
teaches courses on epistemology and a wide range of social research methods.
As a teacher, I am constantly challenged with the task of helping students, par-
ticularly postgraduate students, to think like researchers, to develop a research
imagination. This requires being able to conceptualize a problem and to design
a research project that will address it. This challenge has led to two earlier
books, one on the philosophy of social research, in particular on the strategies
or logics of enquiry that can be used in the social sciences (Blaikie, 1993a), and
the other on the many decisions that need to be considered in designing such a
project (Blaikie, 2000). Analyzing Quantitative Data is a logical extension of
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these two. My task is to try to take the mystery and anxiety out of the analysis
stage of social research without trivializing it in the process; to be simple but
not simplistic. I shall have to leave the reader to be the judge of whether I have
been successful.

Notes

1Cramer (1994) goes some way in this direction by identifying levels of measurement clearly
but types of analysis less clearly.

2Some attempts have been made to use data from a particular source to illustrate the pro-
cedures. For example, Babbie et al. (2000) use data from the United States General Social
Survey to explore issues. Bryman and Cramer (1997) use two projects to illustrate some proce-
dures, and de Vaus (1995) goes partly in this direction with a chapter in which data from one
of the author’s own studies are used to provide an overview of the methods that have been dis-
cussed. While these are all helpful approaches to data analysis, the first example uses a data set
that most individual researchers are unlikely to produce themselves, and the other two exam-
ples do not explore a data set consistently throughout the book.

3In order to discuss these, it is necessary to use some technical concepts that will not be
elaborated until later chapters. Therefore, the discussion in this section is intended for readers
who have at least some basic familiarity with the concepts of statistics.
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1

Social Research and Data Analysis:
Demystifying Basic Concepts

Introduction

This book is about the analysis of certain kinds of data, that is, only quantitative
data. We need to begin by discussing the three concepts that make up the main
title of this book. The core concept is ‘data’. On the surface, it appears to be a
simple and unproblematic idea. However, lurking behind it are complex and
controversial philosophical and methodological issues that need to be considered.
This concept is qualified by the adjective ‘quantitative’, thus indicating that only
one of the two main types of data in the social sciences will be discussed. Just
what constitutes ‘quantitative’ data will be clarified. The purpose of the book
is to discuss methods of ‘analysis’ used in the social sciences, methods by which
research questions can be answered. The variety of methods that are available
for basic analysis will be reviewed.

This chapter deals with three fundamental questions:

• What is the purpose of social research?
• What are data?
• What is data analysis?

The chapter begins with a discussion of the role of research objectives, research
questions and hypotheses in achieving the purpose of research. This is followed
by a consideration of the relationship between social reality and the data we
collect, and of the types and forms of these data. Included is a discussion of
‘concepts’ and ‘variables’, the ways in which concepts can be measured, and the
four levels of measurement. The chapter concludes with a review of the four
main types of data analysis that are covered in subsequent chapters.1 Let us
start with the first question.

What is the Purpose of Social Research?

The aim of all scientific disciplines is to advance knowledge in their field, to
provide new or better understanding of certain phenomena, to solve intellectual
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puzzles and/or to solve practical problems. Therefore, the critical issues for any
discipline are the following:

• What constitutes scientific knowledge?
• How does scientific knowledge differ from other forms of knowledge?
• How do we judge the status of this knowledge? With what criteria?
• How do we produce new knowledge or improve existing knowledge?

In order to solve both intellectual and practical puzzles, researchers have to
answer questions about what is going on, why it is happening and, perhaps, how
it could be different. Therefore, to solve puzzles it is necessary to pose and
answer questions.

The Research Problem

A social research project needs to address a research problem. In order to do
this, research questions have to be stated and research objectives defined;
together they turn a research problem into something that can be investigated.
Throughout this book the following research problem will be addressed: the
apparent lack of concern about environmental issues among many people and
the unwillingness of many to act responsibly with regard to these issues. This is a
very broad problem. In order to make it researchable, it is necessary to formu-
late a few research questions that can be investigated. These questions will be
elaborated in Chapter 2. In the meantime, to illustrate the present discussion,
let us examine two of them here:

• To what extent is environmentally responsible behaviour practised?
• Why are there variations in the levels of environmentally responsible

behaviour?

Each research question entails the pursuit of a particular research objective.

Research Objectives

One way to approach a research problem is through a set of research objectives.
Social research can pursue many objectives. It can explore, describe, under-
stand, explain, predict, change, evaluate or assess aspects of social phenomena.

• To explore is to attempt to develop an initial rough description or, possibly,
an understanding of some social phenomenon.

• To describe is to provide a detailed account or the precise measurement and
reporting of the characteristics of some population, group or phenomenon,
including establishing regularities.

Social research and data analysis
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• To explain is to establish the elements, factors or mechanisms that are
responsible for producing the state of or regularities in a social phenomenon.

• To understand is to establish reasons for particular social action, the occur-
rence of an event or the course of a social episode, these reasons being
derived from the ones given by social actors.

• To predict is to use some established understanding or explanation of a pheno-
menon to postulate certain outcomes under particular conditions.

• To change is to intervene in a social situation by manipulating some aspects
of it, or by assisting the participants to do so, preferably on the basis of
established understanding or explanation.

• To evaluate is to monitor social intervention programmes to assess whether
they have achieved their desired outcomes, and to assist with problem
solving and policy-making.

• To assess social impacts is to identify the likely social and cultural conse-
quences of planned projects, technological change or policy actions on social
structures, social processes and/or people.

The first five objectives are characteristic of basic research, while the last
three are likely to be associated with applied research. Both types of social
research deal with problems: basic research with theoretical problems, and
applied research with social or practical problems. Basic research is concerned
with advancing fundamental knowledge about the social world, in particular
with description and the development and testing of theories. Applied
research is concerned with practical outcomes, with trying to solve some
practical problem, with helping practitioners accomplish tasks, and with the
development and implementation of policy. Frequently, the results of applied
research are required immediately, while basic research usually has a longer
time frame.

A research project may pursue just one of these objectives or perhaps a com-
bination of them. In the latter case, the objectives are likely to follow a
sequence. For example, the four research objectives of exploration, description,
explanation and prediction can occur as a sequence in terms of both the stages
and the increasing complexity of research. Exploration may be necessary to pro-
vide clues about the patterns that need to be described in a particular phe-
nomenon. Exploration usually precedes description, and description is necessary
before explanation or prediction can be attempted. Whether all four objectives
are pursued in a particular research project will depend on the nature of the
research problem, the circumstances and the state of knowledge in the field.

The core of all social research is the sequence that begins with the descrip-
tion of characteristics and patterns in social phenomena and is followed by an
explanation of why they occur. Descriptions of what is happening lead to ques-
tions or puzzles about why it is happening, and this calls for an explanation or
some kind of understanding. The two research questions stated in the previous
subsection illustrate these two research objectives. To be able to explain why
people differ in their level of environmentally responsible behaviour, we need
to first describe the range in levels of this behaviour. The first question is
concerned with description and the second with explanation.
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Research Questions

To pursue such objectives, social researchers need to pose research questions.
Research questions define the nature and scope of a research project. They:

• focus the researcher’s attention on certain puzzles or issues;
• influence the scope and depth of the research;
• point towards certain research strategies and methods of data collection and

analysis;
• set expectations for outcomes.

Research questions are of three main types: ‘what’ questions, ‘why’ questions
and ‘how’ questions:

• ‘What’ questions seek descriptive answers.
• ‘Why’ questions seek understanding or explanation.
• ‘How’ questions seek appropriate interventions to bring about change.

All research questions can and perhaps should be stated as one of these three
types. To do so helps to make the intentions of the research clear. It is possible
to formulate questions using different words, such as, ‘who’, ‘when’, ‘where’,
‘which’, ‘how many’ or ‘how much’. While questions that begin with such
words may appear to have different intentions, they are all versions of a ‘what’
question: ‘What individuals …’, ‘At what time …’, ‘At what place …’, ‘In what
situations …’, ‘In what proportion …’ and ‘To what extent …’. Similarly, some
questions that begin with ‘what’ are actually ‘why’ questions. For example,
‘What makes people behave this way?’ seeks an explanation rather than descrip-
tion. It needs to be reworded as: ‘Why do people behave this way?’.

Each research objective requires the use of a particular type of research ques-
tion or, in a few cases, two types of questions. Most research objectives require
‘what’ questions: exploration, description, prediction, evaluation and impact
assessment. It is only the objectives of understanding and explanation, and pos-
sibly evaluation and impact assessment, that require ‘why’ questions. ‘How’
questions are only used with the objective of change (see Table 1.1). Returning
to our two research questions, the first is a ‘what’ question that seeks a descrip-
tive answer, and the second is a ‘why’ question that asks for an explanation.

The Role of Hypotheses

It is a commonly held view that research should be directed towards testing
hypotheses. While some types of social research involve the use of hypotheses,
in a great deal of it hypotheses are either unnecessary or inappropriate. Clearly
stated, hypotheses can be extremely useful in helping to find answers to ‘why’
questions. In fact, it is difficult to answer a ‘why’ question without having some
ideas about where to look for the answer. Hence, hypotheses provide possible
answers to ‘why’ questions.
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In some types of research, hypotheses are developed at the outset to give this
direction; in other types of research, the hypotheses may evolve as the research
proceeds. When research starts out with one or more hypotheses, they should
ideally be derived from a theory of some kind, preferably expressed in the form
of a set of propositions. Hypotheses that are plucked out of thin air, or are just
based on hunches, usually make limited contributions to the development of
knowledge because they are unlikely to connect with the existing state of
knowledge.

Hypotheses are normally not required to answer ‘what’ questions. Because
‘what’ questions seek descriptions, they can be answered in a relatively straight-
forward way by collecting relevant data. For example, a question such as ‘What
is the extent of recycling behaviour among university students?’ requires spec-
ification of what behaviour will be included under ‘recycling’ and how it will be
measured. While previous research and even theory may help us decide what
behaviour is relevant to this concept, there is no need to hypothesize about the
extent of this behaviour in advance of the research being undertaken. The data
that are collected will answer the question. On the other hand, to answer the
question ‘Why are some students regular recyclers?’ it would be helpful to have
a possible answer to test, that is, a hypothesis.

This theoretical use of hypotheses should not be confused with their statisti-
cal use. The latter tends to dominate books on research methods and statistics.
As we shall see later, a great deal of research is conducted using samples that
are drawn from much larger populations. There are many practical benefits in
doing this. If such samples are drawn using statistically random procedures, and
if the response rate is very high, a researcher may want to generalize the results
found in a sample to the population from which the sample was drawn. Statis-
tical hypotheses perform a role in this generalization process, in making deci-
sions about whether the characteristics, differences or relationships found in a
sample can be expected to also exist in the population. Such hypotheses are not
derived from theory and are not tentative answers to research questions. Their
function is purely statistical. When research is conducted on a population or a
non-random sample, there is no role for statistical hypotheses. However, theo-
retical hypotheses are relevant in any research that requires ‘why’ questions to
be answered.

Analyzing quantitative data
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Table 1.1 Research questions and objectives
Research questions

Research objectives What Why How

Exploration �

Description �

Explanation �

Understanding �

Prediction �

Intervention �

Evaluation � �

Assess impacts � �
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What are Data?

In the context of social research, the concept of data is generally treated as
being unproblematic. It is rare to find the concept defined and even rarer to
encounter any philosophical consideration of its meaning and role in research.
Data are simply regarded as something we collect and analyze in order to arrive
at research conclusions.

The concept is frequently equated with the notion of ‘empirical evidence’,
that is, the products of systematic ‘observations’ made through the use of the
human senses. Of course, in social research, observations are made mainly
through the use of sight and hearing.

The concept of observation is used here in its philosophical sense, that is, as
referring to the use of the human senses to produce ‘evidence’ about the
‘empirical’ world. This meaning needs to be distinguished from the more spe-
cific usage in social research where it refers to methods of data collection that
use the sense of sight. In this latter method, ‘looking’ is distinguished from
other major research activities such as ‘listening’, ‘conversing’, ‘participating’,
‘experiencing’, ‘reading’ and ‘counting’. All of these activities are involved in the
philosophical meaning of ‘observing’.

Observations in all sciences are also made with the use of instruments,
devices that extend the human senses and increase their precision. For exam-
ple, a thermometer can measure temperature far more precisely and consis-
tently than can the human sense of touch. Its construction is based on notions
of hot and cold, more and less, and of an equal interval scale. In short, it has
built into it many assumptions and technical ideas that are used to extend dif-
ferences that can be experienced by touch. Similarly, an attitude scale, consist-
ing of an integrated set of statements to which responses are made, provides a
more precise and consistent measure than, say, listening to individuals dis-
cussing some issue.

The notion of empirical evidence is not as simple as it might seem. It entails
complex philosophical ideas that have been vigorously contested. These dis-
agreements centre on different claims that are made about:

• what can be observed;
• what is involved in the act of observing;
• how observations are recorded;
• what kinds of analysis can be done on them; and
• what the products of these observations mean.

There are a number of important and related issues involved in the act of
observing. One concerns assumptions that are made about what it is that we
observe. A second issue has to do with the act of observing, with the connec-
tion between what impinges on the human senses and what it is that produces
those impressions. A third issue is concerned with the role of the observer in
the process of observing. Can reality be observed directly or can we only
observe its ‘surface’ features? Is it reality that we observe, or do we simply
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process some mental construction of it? Does what we observe represent what
actually exists, or, in the process of observing, do we have to interpret the physi-
cal sensations in order to make them meaningful? Can we observe objectively,
that is, without contaminating the impressions received by our senses, or does
every act of observing also involve a process of interpretation? These are the
kinds of complex issues that lie behind the generation of data. Consciously or
unconsciously, every social researcher takes a stand on these issues. The posi-
tion adopted is likely to be that of the particular research tradition or paradigm
within which the researcher has been socialized and/or has chosen to work.

The issue of ‘objectivity’ is viewed differently in these research traditions. In
some traditions it is regarded as an ideal towards which research should strive. It
is assumed that a conscientious and well-trained researcher can achieve a satisfac-
tory level of objectivity. The ‘problem’ of objectivity is dealt with by establishing
rules for observing, for collecting data. In other traditions, ‘objectivity’ is regarded
as not only being unattainable but also as being meaningless. In these traditions,
the emphasis is on producing ‘authentic’ accounts of the social reality described by
social actors rather than accurate representations of some external reality.

Collecting any kind of data involves processes of interpretation. We have to
‘recognize’ what we see, we have to ‘know’ what it is an example of, and we
may have to ‘relate’ it to or ‘compare’ it with other examples. These activities
require the use of concepts, both lay and technical, and whenever we use con-
cepts we need to use meanings and definitions. For example, if we identify a
particular interaction episode as involving conflict, the observer needs to have a
definition of conflict and to be able to recognize when a sequence of behaviour
fits with the definition. Incidents of conflict do not come with labels attached;
the observer (with technical concepts) or, perhaps, the participants (with lay
concepts) must do the labelling. Defining concepts and labelling social activities
are interpretative processes that occur against the background of the observer’s
assumptions and prior knowledge and experiences. Data collected about, say,
the frequency of conflict between parents and children will have been ‘manu-
factured’ by a particular researcher. While a researcher may follow rules, crite-
ria and procedures that are regarded by her research community as being
appropriate, such rules etc. are simply agreements about how research should
be done and cannot guarantee ‘pure’ uncontaminated data. What they can
achieve is comparable data between times, places and researchers.

Data and Social Reality

All major research traditions regard data as providing information about some
kind of social phenomenon, and an individual datum as relating to some aspect
of that phenomenon. Just what the relationship is between the data and the
phenomenon depends to a large extent on the assumptions that are made about
the nature of social reality, that is, the ontological assumptions. In turn, the pro-
cedures that are considered to be appropriate for generating data about that
phenomenon depend on the assumptions that are made about how that social
reality can be known, that is, the epistemological assumptions.
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One major research tradition assumes that social reality is external to the
people involved: that it is the context in which their activities occur; and that
it has the capacity to constrain their actions. Knowledge of this reality can be
obtained by establishing a bridge to it by the use of concepts and their mea-
surement. Concepts identify aspects of the reality and instruments are designed
to collect data relevant to the concepts. In this way, data are supposed to rep-
resent aspects of, or what is going on in, some part of reality. Only those aspects
that can be measured are regarded as relevant to research. This tradition is asso-
ciated with positivism and critical rationalism, and its data-gathering proce-
dures are mainly quantitative.

A second research tradition adopts different ontological assumptions. In this
case, reality is assumed to consist of layers or domains. The ‘surface’ or empiri-
cal layer can be observed in much the same way as the tradition just described.
However, reality also has an ‘underlying’ layer that cannot usually be observed
directly. This is the ‘real’ layer consisting of the structures and mechanisms that
produce the regularities that can be observed on the surface. Knowledge of this
‘real’ layer can only be gained by constructing imaginary models of how these
structures and mechanisms might operate. Then, knowing what kinds of things
are worth looking for, painstaking research will hopefully produce evidence for
their existence, and perhaps will eventually expose them to the surface layer.
This position is known as scientific realism, and it uses a variety of quantitative
and qualitative data-gathering procedures.

A third major research tradition adopts yet another set of ontological assump-
tions. Social reality is regarded as a social construction that is produced and
reproduced by social actors in the course of their everyday lives. It consists of
intersubjectively shared, socially constructed meaning and knowledge. This
social reality does not exist as an independent, objective world that stands apart
from social actors’ experience of it. Rather, it is the product of the processes by
which social actors together negotiate the meanings of actions and situations. It
consists of mutual knowledge – meanings, cultural symbols and social institu-
tions. Social reality is the symbolic world of meanings and interpretations. It is
not some ‘thing’ that may be interpreted in different ways; it is those interpre-
tations. However, because these meanings are intersubjective, that is, they are
shared, they both facilitate and constrain social activity. With these ontological
assumptions, knowledge of social reality can only be achieved by collecting
social actors’ accounts of their reality, and then redescribing these accounts in
social scientific language. This position is known as interpretivism or social con-
structionism, and its data-gathering procedures are mainly qualitative.

This book is concerned with the first of these traditions.

Types of Data

An important issue in social research is the extent to which a researcher is
removed from the phenomenon under investigation. Any ‘observer’ is, by defi-
nition, already one step removed from any social phenomenon by dint of the
fact of viewing it from the ‘outside’. This means that the processes involved in
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‘observing’ require degrees of interpretation and manipulation. Even data
generated first-hand by a researcher have already been subjected to some pro-
cessing. As we have seen, there is no such thing as ‘pure’ data. However, not all
data are first-hand. A researcher may use data that have been collected by some-
one else, either in a raw form or analyzed in some way. Hence, social research
can be conducted that is more than one step removed from the phenomenon.

This notion of distance from the phenomenon can be categorized into three
main types: primary, secondary and tertiary. Primary data are generated by a
researcher who is responsible for the design of the study and the collection,
analysis and reporting of the data. These ‘new’ data are used to answer specific
research questions. The researcher can describe why and how they were col-
lected. Secondary data are the raw data that have already been collected by
someone else, either for some general information purpose, such as a govern-
ment census or another official purpose, or for a specific research project. In
both cases, the purpose in collecting such data may be different from that of
the secondary user, particularly in the case of a previous research project.
Tertiary data have been analyzed by either the researcher who generated them
or an analyst of secondary data. In this case the raw data may not be available,
only the results of this analysis.

While primary data can come from many sources, they are characterized by
the fact that they are the result of direct contact between the researcher and
the source, and that they have been generated by the application of particular
methods by the researcher. The researcher, therefore, has control of the pro-
duction and analysis, and is in a position to judge their quality. This judgement
is much more difficult with secondary and tertiary data.

Secondary data can come from the same kind of sources as primary data; the
researcher is just another step removed from it. The use of secondary data is
often referred to as secondary analysis. It is now common for data sets to be
archived and made available for analysis by other researchers. Such data sets
constitute the purest form of secondary data. Most substantial surveys have
potential for further analysis because they can be interrogated with different
research questions.

Secondary information consists of sources of data and other information collected
by others and archived in some form. These sources include government reports,
industry studies, archived data sets, and syndicated information services as well as
traditional books and journals found in libraries. Secondary information offers rela-
tively quick and inexpensive answers to many questions and is almost always the
point of departure for primary research. (Stewart and Kamis, 1984: 1)

While there are obvious advantages in using secondary data, such as savings
in time and cost, there are also disadvantages. The most fundamental drawback
stems from the fact that this previous research was inevitably done with dif-
ferent aims and research questions. It may also have been based on assump-
tions, and even prejudices, which are not readily discernible, or which are
inconsistent with those a researcher wishes to pursue. Secondly, there is the
possibility that not all the areas of interest to the current researcher may have
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been included. Thirdly, the data may be coded in an inconvenient form.
Fourthly, it may be difficult to judge the quality of secondary data; a great deal
has to be taken on faith. A fifth disadvantage for some research stems from the
fact that the data may be old. There is always a time lag between collection and
reporting of results, and even longer before researchers are prepared to archive
their data sets. Even some census data may not be published until at least two
years after they were collected. However, this time lag may not be a problem
in historical, comparative or theoretical studies.

With tertiary data, the researcher is even further removed from the social
world and the original primary data. Published reports of research and officially
collected ‘statistics’ invariably include tables of data that have summarized, cat-
egorized or have involved the manipulation of raw data. Strictly speaking, most
government censuses report data of these kinds, and access to the original data
set may not be possible. When government agencies or other bodies do their
own analysis on a census, they produce genuine tertiary data. Because control
of the steps involved in moving from the original primary data to tertiary data
is out of the hands of the researcher, such data must be treated with caution.

Some sources of tertiary data will be more reliable than others. Analysts can
adopt an orientation towards the original data, and they can be selective in what
is reported. In addition, there is always the possibility of academic fraud. The
further a researcher is removed from the original primary data, the greater the
risk of unintentional or deliberate distortion.

The purpose of this classification is to sensitize the researcher to the nature
of the data being used and its limitations. This discussion brings us back to the
key issue: what are data? In particular, it highlights the problem of the gap
between the researcher and the social phenomenon that is being investigated.

There is an interesting relationship between types of data and ontological
assumptions. Such assumptions about the nature of the reality being investi-
gated will not only have a bearing on what constitutes data but also determine
how far a researcher is seen to be removed from that reality. This can be illus-
trated with reference to the operation of stock markets. All major stock markets
in the world produce a numerical indicator that is used to follow movements in
that particular market. For example, the New York stock exchange uses the
Dow Jones index, the London exchange uses the FTSE 100, and the Tokyo
exchange the Nikkei. The share prices of a selection of stocks are integrated
into a summary number. This number or indicator is used to measure the
behaviour of ‘the market’. Trends can be calculated and, perhaps, models and
theories developed about cycles or stages in these trends.

But what kind of data are these indices? The answer to this question depends
on what view of reality is adopted. The notion of ‘the market’ is an abstract idea
that can refer to an entity that exists independently of the people who buy and
sell shares. Analysts frequently attribute the market with human or animal quali-
ties: it has ‘sentiments’, it ‘looks for directions’, it acts like a bull or a bear. Hence,
‘the market’ can be regarded as constituting an independent reality. From these
assumptions, the market indicator might be regarded as primary data; it measures
the behaviour of ‘the market’. The share prices are the raw data.
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Another (albeit much less common) set of assumptions would be to regard
the worldviews and behaviour of the people who buy and sell shares as consti-
tuting the basic social phenomenon. The decisions and actions of these people
generate the fluctuating prices of shares. The stockbrokers through whom these
people conduct their share transactions are equivalent to researchers who then
feed the outcomes of the decisions of these people into a particular market’s
database from which the price of any shares, at any time, can be determined
and trends plotted. Other researchers then take these average prices and do
some further analysis to produce a share price index. Further researchers can
then use the changes in the index to trace movements in ‘the market’. There-
fore, the price that individual investors pay for their parcel of shares is equiva-
lent to primary data, the closing or average price of the shares in any particular
company represents secondary data, and the share price index represents
tertiary data.

This example illustrates two things. First, it shows that how data are viewed
depends on the ontological assumptions about the social phenomenon being
investigated. Second, it shows that what is regarded as reality determines what
types of data are used. Reality can be either a reified abstraction, such as ‘the
market’, or it can be the interpretations and activities of particular social actors,
such as investors. Movements in a share price index can mean different things
depending on the assumptions that are adopted. It can be a direct, primary
measure of a particular reality, or it can be an indirect, tertiary measure of a
different kind of reality. Hence, knowing what data refer to, and how they
should be interpreted, depends on what is assumed as being the reality under
investigation, and the type of data that are being used.

Forms of Data

Social science data are produced in two main forms, in numbers or in words.
This distinction is usually referred to as either quantitative or qualitative data.
There seems to be a common belief among many researchers, and consumers of
their products, that numerical data are needed in scientific research to ensure
objective and accurate results. Somehow, data in words tend to be regarded as
being not only less precise but also less reliable. These views still persist in many
circles, even although non-numerical data are now more widely accepted. As
we shall see shortly, the distinction between words and numbers, between quali-
tative and quantitative data, is not a simple one.

It can be argued that all primary data start out as words. Some data are
recorded in words, they remain in words throughout the analysis, and the find-
ings are reported in words. The original words will be transformed and mani-
pulated into other words, and these processes may be repeated more than once.
The level of the language will change, moving from lay language to technical
language. Nevertheless, throughout the research, the medium is always words.

In other research, the initial communication will be transformed into numbers
immediately, or prior to the analysis. The former involves the use of pre-coded
response categories, and the latter the post-coding of answers or information
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provided in words, as in the case of open-ended questions in a questionnaire.
Numbers are attached to both sets of categories and the subsequent analysis
will be numerical. The findings of the research will be presented in numerical
summaries and tables. However, words will have to be introduced to interpret
and elaborate the numerical findings. Hence, in quantitative studies, data nor-
mally begin in words, are transformed into numbers, are subjected to different
levels of statistical manipulation, and are reported in both numbers and words;
from words to numbers and back to words. The interesting point here is whose
words were used in the first place and what process was used to generate them.
In the case where responses are made into a predetermined set of categories,
the questions and the categories will be in the researcher’s words; the respon-
dent only has to interpret both. However, this is a big ‘only’. As Foddy (1993)
and Pawson (1995, 1996) have pointed out, this is a complex process that
requires much more attention and understanding than it has normally been
given.

Sophisticated numerical transformations can occur as part of the analysis
stage. For example, responses to a set of attitude statements, in categories rang-
ing from ‘strongly agree’ to ‘strongly disagree’, can be numbered, say, from 1 to
5. The direction of the numbering will depend on whether a statement expresses
positive or negative attitudes on the topic being investigated, and on whether
positive attitudes are to be given high or low scores. Subject to an appropriate
test, these scores can be combined to produce a total score. Such scores are well
removed from the respondent’s original reading of the words in the statements
and the recording of a response in a category with a label in words.

So far, this discussion of the use of words and numbers has been confined to
the collection of primary data. However, these kinds of manipulations may have
already occurred in secondary data, and will certainly have occurred in tertiary
data.

The controversial issue in all of this is the effect that any form of manipulation
has on the relationship of the data to the reality it is supposed to measure. If all
observation involves interpretation, then some kind of manipulation is involved
from the very beginning. Even if a conversation is recorded unobtrusively, any
attempt to understand what went on requires the researcher to make interpreta-
tions and to use concepts. How much manipulation occurs is a matter of choice.

A more important issue is the effect of transforming words into numbers.
Researchers who prefer to remain qualitative through all stages of a research
project may argue that it is bad enough to take lay language and manipulate it
into technical language without translating either of them into the language of
mathematics. A common fear about such translations is that they end up dis-
torting the social world out of all recognition, with the result that research
reports based on them become either meaningless or, possibly, dangerous if
acted on.

The reason for this extended discussion of issues involved in transforming
words into numbers is to highlight the inherent problems associated with inter-
preting quantitative data and, hence, its analysis. Because of the steps involved
in transforming some kind of social reality into the language of mathematics,
and the potential for losing the plot along the way, the interpretation of the
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results produced by quantitative analysis must be done with full awareness of
the limitations involved.

Concepts and Variables

It is conventional practice to regard quantitative data as consisting of variables.
These variables normally start out as concepts, coming from either research
questions or hypotheses. First, it is necessary to define the concept in terms of
the meaning it is to have in a particular research project. For example, age might
be defined as ‘years since birth’, and education as ‘the highest level of formal
qualification obtained’. Unless there is some good reason to do otherwise, it is
good practice to employ a definition already in use in that particular field of
research. In this way, results from different studies can be easily compared.

The second step is to operationalize the concept to show how data related to
it will be generated. This requires the specification of the procedures that will
be used to classify or measure the phenomenon being investigated. For exam-
ple, in order to measure a person’s age, it is necessary either to ask them or to
obtain the information from some kind of record, such as a birth certificate.
Similarly, with education, you can either ask the person what their highest
qualification is, or you can refer to appropriate documents or records. The way
a concept is defined and measured has important consequences for the kinds of
data analysis that can be undertaken.

The idea behind a variable is that it can have different values, that characteris-
tics of objects, events or people can be measured along some continuum that
forms a uniform numerical scale. This is the nature of metric measurement. For
example, age (in years) and attitudes towards some object (in scores) are vari-
ables. However, other kinds of characteristics, such as religion, do not share this
property. They are measured in terms of a set of different categories. Something
can be identified as being in a particular category (e.g. female), but there is no
variation within the category, only differences between categories (e.g. males
and females). As there is no variability within such categories, the results of such
measurement are not strictly variables. They could be called variates, but this
concept also has another meaning in statistics. Therefore, I shall follow the
established convention of referring to all kinds of quantitative measurement as
variables. It is to the different kinds or levels of measurement that we now turn.

Levels of Measurement

In quantitative research, aspects of social reality are transformed into numbers
in different ways. Measurement is achieved either by the assignment of objects,
events or people to discrete categories, or by the identification of their charac-
teristics on a numerical scale, according to arbitrary rules. The former is
referred to here as categorical measurement and the latter as metric measure-
ment. Within these levels of measurement are two further levels: nominal and
ordinal, and interval and ratio, respectively.
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Categorical Measurement

Everyday life would be impossible without the use of numbers. However, using
numbers does not mean that we need to use complex arithmetic or mathemat-
ics. Frequently, numbers are simply used to identify objects, events or people.
Equipment and other objects are given serial numbers or licence numbers so that
they can be uniquely identified. Days of the month and the years of a millen-
nium are numbered in sequence. The steps involved in assembling an object are
numbered. People who make purchases in a shop can be given numbers to ensure
they are served in order. In none of these examples are the numbers manipu-
lated; they are simple used as a form of identification, and, in some cases, to
establish an order or sequence. The alphabet could just as easily be used, and
sometimes is, except that it is much more restricted than our usual number
system as the latter has no absolute limit. This elementary way of using numbers
in real life and in the social sciences is known as categorical measurement.

As has already been implied, categorical measurement can be of two types.
One involves assigning numbers to categories that identify different types of
objects, event or people; in the other, numbers are used to establish a sequence
of objects, events or people. Categories can either identify differences or they
can be ordered along some dimension or continuum. The former is referred to
as nominal-level measurement, and the latter as ordinal-level measurement.

Nominal-level measurement

In nominal-level measurement, the categories must be homogeneous, mutually
exclusive and exhaustive. This means that all objects, events or people allocated
to a particular category must share the same characteristics, they can only be
allocated to one category, and all of them can be allocated to some category in
the set. The categories have no intrinsic order to them, as is the case for the
categories of gender or religion. People can also be assigned numbers arbitrarily
according to some criterion, such as different categories of eye colour – blue
(1), brown (2), green (3), etc. However, these categories have no intrinsic order
(except, of course, on the colour spectrum).

Ordinal-level measurement

The same conditions apply in ordinal-level measurement, with the addition that
the categories are ordered along some continuum. For example, people can be
assigned numbers in terms of the order in which they cross the finishing line in
a race, they can be assigned social class categories (‘upper’, ‘middle’ and ‘lower’)
according to their income or occupational status, or they can be assigned to
age categories (‘old’, ‘middle-aged’ and ‘young’) according to some criterion.
A progression or a hierarchy is present in each of these examples.

However, the intervals between such ordinal categories need not be equal.
For example, the response categories of ‘often’ (1), ‘occasionally’ (2) and
‘never’ (3) cannot be assumed to be equally spaced by researchers, because it
cannot be assumed that respondents regard them this way. When the numbers
in brackets are assigned to these categories, they only indicate the order in the
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sequence, not how much of a difference there is between these categories.
They could just as easily have been identified with ‘A’, ‘B’ and ‘C’, and these
symbols certainly do not imply any difference in magnitude.

Similarly, the commonly used Likert categories for responses to attitude
statements, ‘strongly agree’, ‘agree’, ‘neither agree nor disagree’, disagree’, and
‘strongly disagree’, are not necessarily evenly spaced along this level of agree-
ment continuum, although researchers frequently assume that they are. When
this assumption is introduced, an ordinal-level measure becomes an interval-
level measure with discrete categories.

Metric Measurement

There are more sophisticated ways in which numbers can be used than those
just discussed. The introduction of the simple idea of equal or measurable inter-
vals between positions on a continuum transforms categorical measurement
into metric measurement. Instead of assigning objects, events or people to a
set of categories, they are assigned a number from a particular kind of scale of
numbers, with equal intervals between the positions on the scale. For example,
we measure a person’s height by assigning a number from a measuring scale. We
measure intelligence by assigning a person a number from a scale that repre-
sents different levels of intelligence (IQ). Of course, with categorical measure-
ment, it is necessary to have or to create a set of categories into which whatever
is being measured can be assigned. However, these categories do not have any
numerical relationships and, therefore, cannot have the rules of a number
system applied to them.

Hence, the critical step in this transition from categorical to metric mea-
surement is the mapping of the things being measured onto a scale. The scale
has to exist, or be created, before the measurements are made, and these scales
embody the properties and rules of a number system. Measuring a person’s
height clearly illustrates this. You have to have a measuring instrument, such as
a long ruler or tape measure, before a person’s height can be established. We
can describe people as being ‘tall’, ‘average’ or ‘short’. Such ordinal-level cate-
gories allow us to compare people’s height only in very crude terms. Adding
numbers to the categories, say ‘1’, ‘2’ and ‘3’, neither adds precision to the mea-
surement nor does it allow us to assume that the intervals between the cate-
gories are equal. Alternatively, we could line up a group of people, from the
tallest to the shortest, and give them numbers in sequence. Each number simply
indicates where a person is in the order and has nothing to do with the actual
magnitude of their height. In addition, the differences in height between neigh-
bouring people will vary and the number assigned to them will not indicate this.
However, once we stand them beside a scale in, say, centimetres, we can get a
measure of magnitude, and because they are all measured against the same scale
we can make precise comparisons between any members of the group. Preci-
sion of measurement is only one of the considerations here. The important
change is that much more sophisticated forms of analysis can now be used
which, in turn, means that more sophisticated answers can be given to research
questions.
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All metric scales of measurement are human inventions. The way in which
points on the scale are assigned numbers, the size of the intervals between those
points, whether or not there are gradations between these points, and where
the numbering starts, are all arbitrary. Scales differ in how the zero point is
established. Some scales have an absolute or true zero, while for others there is
no meaningful zero, that is, the position of zero is arbitrary.

Interval-level measurement

Interval-level measurement is achieved when the categories or scores on a scale
are the same distance apart. Whereas in ordinal-level measurement the num-
bers ‘1’, ‘2’ and ‘3’ only indicate relative position, say in finishing a race, in
interval-level measurement, the numbers are assumed to be the same distance
apart – the interval between ‘1’ and ‘2’ is the same as the interval between
‘2’ and ‘3’. As the numbers are equally spaced on the scale, each interval has the
same value.

The distinguishing feature of interval-level measurement is that the zero is
arbitrary. Whatever is being measured cannot have a meaningful zero value. For
example, an attitude scale may have possible scores that range from 10 to 50.
Such scores could have been derived from an attitude scale of ten items, using
five response categories (from ‘strongly agree’ to ‘strongly disagree’) with the
categories being assigned numbers from 1 to 5 in the direction appropriate to
the wording (positive or negative) of the item.2 However, these scores could
just as easily have ranged from 0 to 40 (with categories assigned numbers from
0 to 4) without altering the relative interval between any two scores. In this
case, a zero score is achieved by an arbitrary decision about what numbers to
assign to the response categories. It makes no sense to speak of a zero attitude,
only relatively more positive or negative attitudes.

Ratio-level measurement

Ratio-level measurement is the same as interval-level measurement except that
it has an absolute or true zero. For example, goals scored in football, or age in
years, both have absolute or true zeros; it is possible for a team to score no goals,
and a person’s age is normally calculated from the time of birth – point zero.

Ratio-level measurement is not common in the social sciences and is limited
to examples such as age (in years), education (in years) and income (in dollars
or other currencies). This level of measurement has only a few advantages over
the interval level of measurement, mainly that statements such as ‘double’ or
‘half ’ can be made. For example, we can say that a person aged 60 years is twice
as old as a person aged 30 years, or that an income of $20,000 is only half that
of $40,000. These kinds of statements cannot be made with interval-level vari-
ables. For example, with attitude scales, such as those discussed above, it is not
legitimate to say that one score (say 40) is twice as positive as another (say 20).
What we can say is that one score is higher, or lower, than another by so many
scale points (a score of 40 is 10 points higher than a score of 30, and the latter
is 10 points higher than a score of 20) and that an interval of, say 10 points, is
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the same anywhere on the scale. The same applies to scales used to measure
temperature. Because the commonly used temperature scales, Celsius and
Fahrenheit, both have arbitrary zeros, we cannot say that a temperature of 30°C
is twice as hot as 15°C, but the interval between 15°C and 30°C is the same as
that between 30°C and 45°C. Similarly, not only is 30°C a different temperature
than 30° Fahrenheit, but an interval of 15° is different on each scale. However,
as the kelvin scale does have a true zero, the absolute minimum temperature
that is possible, a temperature of 400K is twice as hot as 200K.

Compared to ratio-level measurement, it is the arbitrary zero that creates the
limitations in interval-level measurement. In most social science research, this
limitation is not critical; interval-level measurement is usually adequate for
most sophisticated forms of analysis. However, we need to be aware of the
limitations and avoid drawing illegitimate conclusions from interval-level data.

Discrete and Continuous Measurement

Metric scales also differ in terms of whether the points on the scale are discrete
or continuous. A discrete or discontinuous scale usually has units in whole
numbers and the intervals between the numbers are usually equal. Arithmetical
procedures, such as adding, subtracting, multiplying and dividing, are permissi-
ble. On the other hand, a continuous scale will have an unlimited number of
possible values (e.g. fractions or decimal points) between the whole numbers.
An example of the former is the number of children in a family and, of the latter,
a person’s height in metres, centimetres, millimetres, etc. We cannot speak of
a family having 1.8 children (although the average size of families in a country
might be expressed in this way), but we can speak of a person being 1.8 metres
in height. When continuous scales are used, the values may also be expressed
in whole numbers due to rounding to the nearest number.

Review

The characteristics of the four levels of measurement are summarized in Table 1.2.
They differ in their degree of precision, ranging from the least precise (nominal)
to the most precise (ratio). The different characteristics, and the range of
precision, mean that different mathematical procedures are appropriate at each
level. It is too soon to discuss these differences here; they will emerge through-
out Chapters 3–6.

However, a word of caution is appropriate. It is very easy to be seduced by
the precision and sophistication of interval-level and ratio-level measurement,
regardless of whether they are necessary or theoretically and philosophically
appropriate. The crucial question is what is necessary in order to answer the
research question under consideration. This relates to other aspects of social
research, such as the choice of data sources, the method of selection from these
sources and the method of data collection. The latter, of course, will have a con-
siderable bearing on the type of analysis that can and should be used. In quan-
titative research, the choice of level of measurement at the data-collection
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stage, and the transformations that may be made, including data reduction, will
determine the types of analysis that can be used.

Finally, it is important to note that some writers refer to categorical data as
qualitative and metric data as quantitative. This is based on the idea that quali-
tative data lack the capacity for manipulation other than adding up the number
in the categories and calculating percentages or proportions. This usage is not
adopted here. Rather, ‘qualitative’ and ‘quantitative’ are used to refer to data in
words and numbers, respectively. Categorical data involve the use of numbers
and not words, allowing for simple numerical calculations. According to the
definitions being used here, categorical data are clearly quantitative.

Transformations between Levels of Measurement

It is possible to transform metric data into categorical data but, in general, not the
reverse. For example, in an attitude scale, scores can be divided into a number of
ranges (e.g. 10–19, 20–29, 30–39, 40–50) and labels applied to these categories
(e.g. ‘low’, ‘moderate’, ‘high’ and ‘very high’). Thus, interval-level data can be
transformed into ordinal-level data. Something similar could be done with age (in
years) by creating age categories that may not cover the same range, say, 20–24,
25–34, 35–54, 55+. In this case, the transformation is from ratio level to ordinal.
While such transformations may be useful for understanding particular variables,
and relationships between variables, measurement precision is lost in the process,
and the types of analysis that can be applied are reduced in sophistication. It is
important to note, however, that if a range of ages or scores is grouped into cate-
gories of equal size, for example, 20–29, 30–39, 40–49, 50–59, 60–69, etc., the
categories can be regarded as being at the interval level; they cover equal age inter-
vals, thus making their midpoints equal distances apart. All that has changed is the
unit of measurement, in 10-year age intervals rather than 1-year intervals.
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Table 1.2 Levels of measurement
Level Description Types of categories Examples
Nominal A set of categories for Categories are homogeneous, Marital status

classifying objects, events or mutually exclusive and Religion
people, with no assumptions exhaustive. Ethnicity
about order.

Ordinal As for nominal-level Categories lie along a Frequency (often,
measurement, except the continuum but the distances sometimes, never)
categories are ordered between them cannot be Likert scale
from highest to lowest. assumed to be equal.

Interval A set of ordered and equal- Categories may be discrete Attitude score
interval categories on a or continuous with arbitrary IQ score
contrived measurement scale. intervals and zero point. Celsius scale

Ratio As for interval-level Categories may be discrete Age
measurement or continuous but with an Income

absolute zero. No. of children
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There are a few cases in which it is possible to transform lower-level
measurement to a higher level. For example, it is possible to take a set of nominal
categories, such as religious denomination, and introduce an order using a par-
ticular criterion. For example, religious categories could be ordered in terms of
the proportion of a population that adheres to each one, or, more complexly, in
terms of some theological dimension. Similarly for categories of political party
preference, although in this case dominant political ideology would replace
theology. In a way, such procedures are more about analysis than measurement;
they add something to the level of measurement used in order to facilitate the
analysis.

The reason why careful attention must be given to level of measurement in
quantitative research is that the choice of level determines the methods of
analysis that can be undertaken. Therefore, in designing a research project,
decisions about the level of measurement to be used for each variable need to
anticipate the type of analysis that will be required to answer the relevant
research question(s). Of course, for certain kinds of variables, such as gender,
ethnicity and religious affiliation, there are limited options. However, for other
variables, such as age and income, there are definite choices. For example, if age
is pre-coded in categories of unequal age ranges, then the analysis cannot go
beyond the ordinal level. However, if age was recorded in actual years, then
analysis can operate at the ratio level, and transformations also made to a lower
level of measurement. Such a simple decision at the data-collection stage can
have significant repercussions at the data-analysis stage. The significance of
the level of measurement for choice of method of analysis will structure the
discussion in Chapters 3–6.

What is Data Analysis?

All social research should be directed towards answering research questions
about characteristics, relationships, patterns or influences in some social pheno-
menon. Once appropriate data have been collected or generated, it is possible
to see whether, and to what extent, the research questions can be answered.
Data analysis is one step, and an important one, in this process. In some cases,
the testing of theoretical hypotheses, that is, possible answers to ‘why’ research
questions, is an intermediary step. In other cases, the research questions will be
answered directly by an appropriate method of analysis.

The processes by which selection is made from the sources of data can also
have a major impact on the choice of methods of data analysis. The major con-
sideration in selecting data is the choice between using a population and a sample
of some kind. If sampling is used, the type of data analysis that is appropriate
will depend on whether probability or non-probability sampling is used. Hence,
it is necessary to review briefly how and why the processes of selecting data
affect the choice of methods of data analysis.
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Types of Analysis

Various methods of data analysis are used to describe the characteristics of
social phenomena, and to understand, explain and predict patterns in social life
or in the relationships between aspects of social phenomena. In addition, one
type of analysis is concerned with estimating whether characteristics and
relationships found in a sample randomly drawn from a population could also
be expected to exist in the population. Hence, analysis can be divided into four
types: univariate descriptive, bivariate descriptive, explanatory and inferential.

Univariate Descriptive Analysis

Univariate descriptive analysis is used to represent the characteristics of some
social phenomenon (e.g. student academic performance on a particular course).
This can be done in a number of ways:

• by counting the frequency with which some characteristic occurs (e.g. the
total marks3 students receive on a particular course);

• by grouping scores of a certain range into categories and presenting these
frequencies in pictorial or graphical form (e.g. student’s total marks);

• by calculating measures of central tendency (e.g. the mean marks obtained
by students on the course); and

• by graphing and/or calculating the spread of frequencies around this centre
point (e.g. plotting a line graph of the frequency with which particular
marks were obtained, or calculating a statistic that measures the dispersion
around the mean).

There are clearly many ways in which the phenomenon of student academic
performance can be described and compared. The principles of each of these
methods will be elaborated later in this chapter, and they will be illustrated in
later chapters.

Bivariate Descriptive Analysis

Bivariate descriptive analysis is a step along the path from univariate analysis to
explanatory analysis. It involves either establishing similarities or differences
between the characteristics of categories of objects, events or people, or describ-
ing patterns or connections between such characteristics.

Typically, patterns are investigated by determining the extent to which the
position of objects, events or persons on one variable coincides with their posi-
tion on another variable. For example, does the position of people on a measure
of height coincide with their position on a measure of weight? If the tallest
people are also the heaviest, and vice versa, then these two measures can be said
to be associated. Sometimes this is expressed in terms of whether position on
one measure is a good predictor of position on another measure, that is,
whether the height of people is a good predictor of their weight.
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Continuing the example about student academic performance, we can:

• compare categories in terms of averages (e.g. differences between the mean
marks of female and male students, or students of different ethnic back-
grounds); and

• establish the strength of the relationship between two characteristics (e.g.
measuring the association between gender and honours grades, or ethnicity
and grade point average).

Explanatory Analysis

To go beyond describing characteristics and establishing relationships, that is, to
go beyond answering ‘what’ questions to addressing ‘why’ questions, takes us
into the complex and difficult territory of explanatory analysis and the much
disputed notion of causation. It is a common belief that establishing an expla-
nation involves finding the cause or causes for the patterns and sequences in
social life. Explanations are supposed to tell us why certain things occur
together or follow one another in time. However, there are not only many views
on how this can be achieved, but also dissenting voices that claim such a task is
impossible.

There are two main views on the nature of causation: the successionist and
the generative (Harré, 1972; Pawson, 1989; Pawson and Tilley, 1997). The suc-
cessionist view of causation is based on the idea that events in the world can be
explained if they follow a regular sequence. In fact, according to this view, there
are no such things as causes, only connections or sequences between events in
the world. For example, if we apply heat to water it will turn into steam when
the temperature reaches 100°C. The event of heating is followed by another
event, the change from liquid to gas. The change of status is therefore explained
by the event that preceded it. Hence, the sequence of these events forms a
‘natural necessity’; they could not happen otherwise. The task of science is to
discover these regularities and then use them for both explanation and prediction.
Explanation is achieved by pointing to prior events in the sequence, and pre-
diction is achieved by knowing what follows in the sequence. This view is asso-
ciated with the view of social science known as positivism.

While the idea of events occurring in well-established sequences implies that
single events have single causes, many approaches to causal explanation recog-
nize the possibility of multiple causes, that is, that more than one event might
have to precede the event to be explained in order for it to occur. These
preceding events may occur in parallel (concurrently) or in a chain reaction
(sequentially), or in some combination of concurrence and sequence.

The philosophical notions of causation are frequently translated into the
language of two types of conditions that are responsible for the occurrence of
an event, necessary and sufficient conditions. A necessary condition is one that
needs to be present in order for an event to occur. There may be a number of
necessary conditions, but even together they may not produce an event. A
sufficient condition is one that will lead to the occurrence of an event on its own
or, perhaps, in combination with one or two other conditions. However, sufficient
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conditions will usually need to operate in the context of some necessary
conditions. Hence, necessary conditions can be regarded as the contextual
factors that need to be present and sufficient conditions as those that actually
produce the event in that context. Normally, the two sets of conditions will
work together. The challenge for the researcher is to find the complete set of
necessary and sufficient conditions in order to explain an event. Clearly, this is
an impossible task. Even trying to identify as many conditions as possible has its
limitations. We need reasons for selecting possible conditions, and these are
supplied by a good theory.

An elaboration of the successionist view has argued that explanation is
achieved by finding a well-tested theory from which the event or pattern to be
explained can be deduced once the conditions under which it is known to oper-
ate have been specified. Specifying different conditions makes it possible to
predict new events or patterns and, therefore, to test the theory. However, such
predictions only apply to the conditions that have been specified in the theory,
not to some future time in which the conditions may not be known. Such
theories are made up of statements of relationships or connections between
concepts or events. It is by combining such statements into a logical argument
that explanation can be achieved. This tradition is associated with the view of
social science known as critical rationalism.

When research does not satisfy experimental requirements, as in survey
research, it is a common practice to translate causal language into relationships
between two types of variables. One variable, the values of which are to be
explained, is referred to as the dependent or outcome variable, while those that
are involved in producing these values are referred to as independent or predic-
tor variables. Stated differently, the values of the dependent variable are influ-
enced or predicted by the values of the independent variable or variables. For
example, academic performance (the dependent variable) might be influenced
or predicted by students’ ethnicity (the independent variable).4 In this exam-
ple, there is no attempt to completely explain academic performance, only to
indicate a factor that might contribute to it. Hence, it is a rather low level of
causal analysis.

While it might be strengthened by the inclusion of other independent vari-
ables, this kind of research cannot produce conclusive explanations. For one
thing, assumptions need to be made about the direction of influence among
variables and, for another, the nature of the causal relationship is frequently left
rather vague. In the case of the relationship between ethnicity and academic
performance, even if there is an association, and it is possible to analyze this in
terms of the influence of one variable on the other, we are still left with the
problem of what it is about ethnicity that is responsible for this. The connec-
tion only makes sense when it is theorized and the theory is thoroughly tested.
Something else is required to link these two variables. Such a theory might
include ideas about the influence of family attitudes and experiences and the
quality of early formal education. This is the core argument of those who advo-
cate the generative view of causation.

The successionist approach has been severely criticized by the advocates of
the generative view of causation (see, for example, Bhaskar, 1979; Pawson, 1989;
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Pawson and Tilley, 1997). While successionists have restricted themselves to
sequences of observable events, or the connections between concepts, the sup-
porters of the generative position argue that events cannot be seen as being dis-
crete and isolatable; they are part of a network or system of events. To isolate
them artificially is to produce connections that may bear little relationship to
how things actually behave. In addition, they argue that establishing connec-
tions or relationships is only the starting point. It is necessary to discover the
underlying structures and mechanisms that are responsible for producing such
connections. Observed patterns or regularities are explained by discovering the
structures and mechanisms that generate the observed phenomenon. As these
mechanisms may not always be obvious or readily observable, their existence
may have to be postulated and then established. Explanations are produced by
the ‘causal powers’ or ‘tendencies’ of things to behave in a particular way. ‘A
mechanism is not thus a single variable but an account of the constitution and
behaviour of those things that are responsible for the manifest reality’ (Pawson,
1989: 130).

The supporters of the generative view also argue that prediction is not possi-
ble because to be able to do so requires knowledge of all the conditions that are
relevant to the operation of such structures and mechanisms. As social pheno-
mena occur in open systems, it is not possible to know in advance what condi-
tions will be operating and, therefore, to be able to predict what will occur.
Hence, researchers must be content with trying to establish mechanisms and
the conditions under which they operate, after the event. The philosophical
tradition on which the generative view is based is scientific or critical realism.

One particular social science tradition totally rejects the idea of causation.
This is based on the argument that the successionist view is only relevant to the
natural sciences. Because the subject matter studied by the social sciences is
fundamentally different from that of the natural sciences, the only appropriate
approach is to try to understand social phenomena in terms of the reasons
people can give for their actions rather than in terms of some notion of inde-
pendent causes. It is the socially constructed nature of social reality that dis-
tinguishes it from natural or physical phenomena, and this difference requires
the use of very different ways of understanding social life. This tradition is
known as interpretivism or social constructionism. For a review of these tradi-
tions, see Blaikie (1993a, 2000).

Inferential Analysis

Inferential analysis is used with data obtained from a sample to estimate the
characteristics of or patterns in the population from which the sample was
drawn. This kind of analysis is only appropriate when the sample is drawn using
probability or random selection procedures. There are two main types of inferen-
tial analysis: that used to estimate characteristics of a population from sample
data (e.g. the mean age of its members); and that used to establish whether a
pattern or a relationship found to exist in a sample could be expected to also
occur in the population from which it was drawn (e.g. a relationship between
ethnicity and academic performance).
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Inferential analysis on sample characteristics receives limited attention in
social research. Apart from some opinion polls (and even in these its use is
rather rare), few social researchers actually calculate the likely population char-
acteristics from their sample data. The sample data are usually just presented
and assumed to be the same in the population. In contrast, a great deal of atten-
tion is given to testing whether relationships found in a sample can be expected
to exist in a population. This is done by using tests of significance. Unfortu-
nately, these tests are frequently applied beyond the situations is which they are
appropriate. Their purpose is poorly understood, and they are also widely
misused. The common forms of confusion are that:

• using such tests will tell you what is important in your data;
• chance factors that might adversely affect the collection of data can some-

how be detected and allowed for by using these test;
• the tests tell you how closely two characteristics (variables) are associated;

and
• the tests should be applied to all results, regardless of whether data were

collected from a population, a random sample or a non-random sample.

These issues will be addressed in Chapter 6.

Logics of Enquiry and Data Analysis

In addition to the competing views on what constitutes causation, there is
another related area of dispute in the social sciences. This centres on whether
the ways of answering ‘why’ questions that are appropriate in the natural
sciences are also appropriate in the social sciences (for a review of this issue, see
Blaikie, 1993a). There are two dominant schools of thought. One argues that
the logic of explanation used in the natural sciences is also appropriate in the
social sciences. The other argues that the peculiar nature of the subject matter
studied in the social sciences limits the kind of answers the social scientist can
offer to ‘why’ questions. All that is possible is to understand social phenomena
by establishing the reasons people give for their actions. In short, there are
debates about whether it is possible to establish causal explanations in the social
sciences or whether understanding, based on social actors accounts, is all that is
possible and necessary.

Among those who advocate the use of the logic of explanation adopted in the
natural sciences, there have been disputes about what this logic should be. The
earliest view – first advocated in seventeenth century by Francis Bacon (see
Bacon, 1889), with important contributions during the 1840s by William
Whewell and John Stuart Mill (see Whewell, 1847; Mill, 1947) was that induc-
tive logic was the appropriate scientific ‘method’. Accumulated data are used to
produce generalizations about the patterns or connections between events or
variables. In the 1930s, this view was severely criticized and an alternative
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proposed by Popper (1959) in the form of a deductive logic of explanation. In
this case, a researcher starts with a theory that provides a possible explanation,
and then proceeds to test the theory by deducing from it one or more hypo-
theses, and then matching the hypotheses against appropriate data. More
recently, both of these positions have been rejected by Harré (1961, 1970,
1972; Harré and Secord, 1972) and Bhaskar (1979) who have proposed the use
of retroductive logic. They have argued that the inductive approach simply pro-
duces descriptions that still have to be explained by locating ‘real’ structures
and mechanisms that produce the effects that can be observed. This is done by
building models or developing pictures of these structures and mechanisms
such that, if they exist and act in the way postulated, they would account for
the phenomenon being examined. Structures and mechanisms are not discov-
ered by accumulating data but by looking for evidence that would confirm their
existence. These authors have argued that the discovery of atoms and viruses
followed this type of logic. While the idea of atoms existed long before they
were observed directly (in the 1960s), scientists, acting on the assumption that
they did exist and behaved as imagined, were able to create the atomic bomb.

A fourth logic of enquiry, abductive logic, rejects the idea of explanation and
causation in favour of understanding. Such understanding comes from ‘thick’
descriptions and the grasping of social actors’ meanings and interpretations.
These different logics of enquiry have, with some modifications, been pre-
sented as alternative research strategies, that is, as alternative ways of answer-
ing research questions, particularly ‘why’ questions (see Blaikie, 1993a, 2000).

The different views of causation have important consequences for the way
we conduct social research and undertake data analysis. Add to that the use of
different research strategies, and serious implications for data analysis become
evident. The methods of analysis to be discussed in this book are really only
appropriate for the successionist view of causation and the inductive and
deductive research strategies. Hence, there are other ways of answering ‘why’
research questions that require different kinds of data analysis, and these entail
different views on what constitutes data. Quantitative data analysis is only one
kind of data analysis.

Summary

• Social research must start with a research problem, an intellectual puzzle or
a practical problem.

• Social research is about answering three types of research questions: ‘what’,
‘why’ and ‘how’ questions.

• Social research pursues a range of objectives: exploration, description,
explanation, understanding, prediction, intervention, evaluation and impact
assessment. The objectives of explanation and understanding are expressed
as ‘why’ questions and the objective of intervention as ‘how’ questions. The
remaining objectives are mostly related to ‘what’ questions.
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• Research objectives are frequently pursued in a logical sequence, the most
common of which is description, explanation/understanding and intervention.

• Theoretical hypotheses provide possible answers to ‘why’ research questions.
• Statistical hypotheses are used to establish whether patterns found in a

random sample are present in its population. This is their only role in social
research.

• Data are produced by the use of the human senses, mainly sight and hear-
ing, and through the use of instruments that extend and systematize their
use. This requires agreement about rules and criteria. Such procedures do
not guarantee objectivity, only comparability between times, places and
researchers.

• All forms of measurement in the social sciences are socially constructed by
experts, the data they produce, and the results that follow, have to be
understood in terms of the assumptions and procedures adopted.

• These assumptions are both ontological and epistemological and, while they
are usually taken for granted, they can be understood with reference to one
of the major philosophies of social science: positivism, critical rationalism,
scientific realism and interpretivism.

• There are three types of social science data: primary, secondary and tertiary.
Each type has its advantages and disadvantages and varies in terms of the dis-
tance it creates between the researcher and the social reality being studied.

• Social science data can be either qualitative or quantitative, in either words
or numbers. Transformations between words and numbers, or in the reverse
direction, can occur at various stages in a research project.

• Quantitative data are expressed in the form of variables that are produced
by operationalizing the key concepts in research questions and theoretical
hypotheses.

• Concepts can be measured at four different levels. From lowest to highest,
these are nominal, ordinal, interval and ratio. The first two produce cate-
gorical variables, because objects, events or people are placed into one of a
set of mutually exclusive categories. The second two produce metric vari-
ables, as objects, events or people are mapped onto an established measur-
ing scale.

• Metric variables can be either discrete or continuous. The former consist
only of whole numbers, while the latter have an unlimited number of possi-
ble values between the whole numbers.

• Data can be transformed from metric to categorical. While this means some
loss of information, and entails the use of less sophisticated forms of analy-
sis, it may allow for a better understanding of the characteristics or rela-
tionships being examined.

• There are four main types of data analysis: univariate descriptive, bivariate
descriptive, explanatory and inferential. The first two are concerned with char-
acteristics and patterns in data, the third with influence between variables and
the fourth with generalizing from samples to populations. Explanatory analysis
is the ultimate objective in social research and is also the most complex.

• Explanation is usually associated with the idea of causation. However, this
is a highly contested notion and has to be reduced to simpler ideas to be
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useful in social research. One way of doing this is in terms of the influence
between independent (predictor) and dependent (outcome) variables.

• Different views of causation are associated with the major logics of enquiry:
inductive, deductive, retroductive and abductive. These logics also consti-
tute different research strategies.

Notes

1For a more detailed discussion of many of these issues, see Blaikie (2000).
2For the moment we will leave aside the debates about whether such a scoring procedure is

legitimate.
3For simplicity, marks, say out of 100, are used in these examples rather than grades (e.g.

A, B, C) or grade point averages.
4This example is not intended to be racist. It happened to be a very ‘hot’ political issue in

Malaysia at the time of writing.
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2

Data Analysis in Context: Working with Two Data Sets

Introduction

In order to illustrate the methods of data analysis to be discussed in the
following chapters, two data sets will be used. The research projects from
which these data sets come were conducted by me in Melbourne, Australia, in
the mid-1990s, one on university students and the other on urban residents.
They constitute part of a six-year research programme in environmental socio-
logy, under the title of ‘Environmental worldviews and environmentally respon-
sible behaviour’. The same variables have been used in both projects; it is just
the samples that are different.

There are a number of reasons for using these data sets. First, I want to illus-
trate how data analysis is conducted in the context of actual research that
addresses a set of research questions. I also want data analysis to have to deal with
the vagaries and limitations of actual data selection and gathering. Most books
on data analysis and statistics in the social sciences discuss methods of analysis
completely detached from the contexts in which they need to be applied.

Second, these are the kind of data sets that many social researchers are likely
to encounter or to produce themselves. Rather than use a range of disconnected
and sometimes contrived data to illustrate methods of data analysis and statis-
tical procedures, I have chosen to use the same two data sets throughout the
book. They were conducted on relatively low budgets and could have been pro-
duced by groups of undergraduate students or by individual postgraduate
students. These data sets provide some consistency and reality to the examples
that are used to illustrate the procedures.

Two Samples

One of the studies was conducted in 1994 with a sample of undergraduates
from a university in Melbourne. In parallel with this, another study was con-
ducted with a sample of residents in the Melbourne metropolitan area (MMA).
Rather than covering the whole of the MMA, the study concentrated on a
representative municipality within it. Both studies used quantitative methods
of data collection and analysis (more details shortly).

3055-ch02.qxd  1/10/03 10:37 AM  Page 37



As part of the research programme, two similar studies were conducted in
1989 (a sample of students from the same university) and in 1990 (samples of
residents from five different regions within the MMA). Some of the results of
the two earlier studies have been presented in Blaikie (1992, 1993b), Blaikie
and Ward (1992) and Blaikie and Drysdale (1994). These four studies were
used as the basis of sample research designs in Blaikie (2000), but with a number
of modifications to simplify them for that purpose. Hence, some of the details
in the sample research designs based on the two 1994 studies, particularly
about the timing of data collection, are different from those reported here. The
details presented here represent the way the studies were actually conducted.
A later study in the programme used very different methods, in-depth inter-
views, with a smaller non-random sample of environmental activists and people
who practice environmentally responsible behaviour.

For ease of reference, the 1994 study of undergraduates is referred to as the
Students or the Student sample, and the parallel study of MMA residents is
referred to as the Residents or the Resident sample.

The Student and Resident samples addressed a common set of six research
questions, a combination of ‘what’ and ‘why’ questions. The first two questions
deal with the extent to which different environmental worldviews are held and
different levels of environmentally responsible behaviour are practised. The
next three questions are designed to explore well-established correlates of
environmental worldviews and behaviour, namely, age and gender. The last ques-
tion seeks an explanation for differences in environmentally responsible behaviour.
These research questions are:

1. To what extent do students and urban residents hold different environ-
mental worldviews?

2. To what extent do they practise environmentally responsible behaviour?
3. In what ways and to what extent is environmentally responsible behaviour

related to environmental worldviews?
4. In what ways and to what extent is age related to environmental world-

views and environmentally responsible behaviour?
5. In what ways and to what extent is gender related to environmental world-

views and environmentally responsible behaviour?
6. Why are there variations in the levels of environmentally responsible

behaviour?

These questions require different kinds of analysis to produce answers.1 Questions
1 and 2 require univariate descriptive analysis, questions 3–5 require bivariate
descriptive (associational) analysis, and question 6 requires explanatory analysis.

Chapters 3–7 draw on these two samples for examples of the various types
of data analysis, and some of these examples will anticipate the analysis
required to answer these research questions in Chapter 8.

The data were collected by questionnaire in the Student sample and by struc-
tured interview in the Resident sample. The questions and response categories
were identical in both instruments; there were only minor variations in the
formatting that was required for each method.
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Descriptions of the Samples

In order to be able to make decisions about some of the methods of data analysis
to be used, it is necessary to have information on the populations from which
these samples were drawn and how the selection processes were undertaken.

Student Sample

The Student sample consists of a probability sample drawn from the population
of all students who took classes in the Core Curriculum2 in the second semester
of 1994.3 From the 224 classes offered in this programme at that time, a 1:4
systematic sample of 56 classes was selected. Each had an enrolment of
between 20 and 25 students, thus making a population of approximately 5000
and a potential sample of about 1250. In 11 of the classes, the lecturer granted
permission to have the students complete the questionnaires during class time.
In the remaining classes, they were delivered one week and collected in the
next or subsequent weeks. A total of 564 questionnaires were completed, giving
an overall response rate of approximately 45 per cent. This ranged from nearly
100 per cent in those classes in which the questionnaire was completed during
class time, down to about 15 per cent in some other classes. The data were
collected over a four-week period in September and October 1994.

A significant proportion of those who completed the questionnaires (just
over 8 per cent) were foreign students, mainly from South East Asia. As the
study assumed an Australian context and experience, all students who had
arrived in the country during the previous five years, and had not been granted
permanent resident status, were excluded from the sample. This allowed
for the fact that some of the foreign students had studied in Australia for a
number of years, having undertaken all or part of their high school education
there. Some of the latter would have remained in the sample. The final sample
size was 465.

Resident Sample

The Resident sample was confined to one municipality within the Melbourne
metropolitan area. Demographically, this city closely mirrored both the MMA
as a whole and the state of Victoria in which it was located.4 A two-stage sample
was used. Using random numbers, 17 census collectors’ districts were selected
from a total of 83. Within these districts, the interviewers selected one in four
households systematically, using a random start and following, snake-like,
throughout the district. One adult, 18 years and over, alternating between
males and females where possible, was selected from each household for inter-
view. In households with more than one adult, where possible, females were
selected in residences with even numbers and males in the case of odd numbers.
The interviews were conducted between December 1993 and March 1994.
The overall response rate was 58 per cent, giving a sample of 402.
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Concepts and Variables

These two samples have a common set of concepts and variables associated
with them. A selection of these variables constitutes the two data sets. Their
formal and operational definitions are as follows.

Formal Definitions

Environmental Worldview: attitudes towards issues such as the preservation
of wilderness environments and natural flora and fauna, the conservation of
natural resources, environmental degradation, environmental impacts of
economic growth, and the use of science and technology to solve environmen-
tal problems.

Willingness to Act Responsibly: expressed willingness to take actions that help
to preserve nature, conserve resources and address environmental problems.5

Environmentally Responsible Behaviour: individual actions that help to preserve
nature and conserve resources, and involvement in communal actions that
confront environmental problems and seek solutions.

Age: number of years since birth.
Gender: socially constructed categories of male and female based on human

biological differences.
Marital Status: the legal or de facto relationship between couples, normally of

mixed gender.
Number of Children: the number of children of all ages for which a person is

regarded by society as being responsible, as parent or legal guardian. This
definition excludes unrecognized illegitimate children and any that have been
given up for adoption.6

Ages of Children: the range of ages of children in the family.
Education: the highest level of qualification obtained in formal education.
Occupation: type of participation in the paid and unpaid workforce.
Religion: identification with a particular religion or religious denomination.
Religiosity: the degree to which an individual adopts religious beliefs, engages

in religious practices, or regards himself or herself as a religious or spiritual
person.

Political Party Preference: support of a particular political party through intended
voting preference.

Operational Definitions

Environmental Worldview: by means of responses to a set of 24 attitude state-
ments concerned with a range of environmental issues.

a Humans have the right to modify the natural environment to suit their
needs.
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b Priority should be given to developing alternatives to fossil and nuclear
fuel as primary energy sources.

c Rapid economic growth often creates more problems than benefits.
d Human beings were created or evolved to dominate the rest of nature.
e The balance of nature is very delicate and is easily upset.
f Through science and technology we can continue to raise our standard of

living.
g Humans must live in harmony with nature in order for it to survive.
h A community’s standards for the control of pollution should not be so

strict that they discourage industrial development.
i Science and technology do as much harm as good.
j Because of problems with pollution, we need to decrease the use of the

motor car as a major means of transportation.
k Humans need not adapt to the natural environment because they can

remake it to suit their needs.
l Governments should control the rate at which raw materials are used, to

ensure that they last as long as possible.
m The positive benefits of economic growth far outweigh any negative

consequences.
n We cannot keep counting on science and technology to solve our

problems.
o People in developed societies are going to have to adopt a more conserv-

ing life-style in the future.
p Controls should be placed on industry to protect the environment from

pollution, even if it means things will cost more.
q Most of the concern about environmental problems has been over-

exaggerated.
r The remaining forests in the world should be conserved at all costs.
s Most problems can be solved by applying more and better technology.
t Industry should be required to use recycled materials even when it costs

less to make the same products from new raw materials.
u When humans interfere with nature it often produces disastrous

consequences.
v Plants and animals exist primarily to be used by humans.
w The government should give generous financial support to research

related to the development of solar energy.
x To ensure a future for succeeding generations we have to develop a

no-growth economy.

These items are drawn from existing scales: six from the ‘new environment
paradigm’ scale (Dunlap and van Liere, 1978), six from the ‘dominant social
paradigm’ scale (Dunlap and van Liere, 1984), and eight from the Richmond
and Baumgart (1981) scale, two with modifications to their wording to fit
the research context. Another four have been added. Five Likert-type response
categories were used: ‘Strongly agree’, ‘Agree’, ‘Neither agree nor disagree’,
‘Disagree’ and ‘Strongly disagree’. These categories were assigned values
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from 1 to 5 in the direction that gave the highest value to responses that are
pro-environment.

Willingness to Act Responsibly: by means of responses to a set of six attitude
statements concerned with willingness to act in some way to protect the
environment. The statements are:

1 I would be willing to give part of my income if I were certain that the
money would be used to solve environmental problems.

2 I am willing to participate in demonstrations against companies that harm
the environment.

3 I am willing to sign a petition in support of tougher environmental laws.
4 I would agree to an increase in taxes if the extra money was used to pro-

tect the environment.
5 I would be unwilling to take a job in a company I knew was harming the

environment.
6 I am willing to contribute money to environmental organizations.

These statements have been adapted from those used in two previous
studies, one in the Netherlands (Ester and Seuren, 1992) and the other in the
United States (Stern et al., 1993). Again, five Likert-type response categories
were used: ‘Strongly agree’, ‘Agree’, ‘Neither agree nor disagree’, ‘Disagree’
and ‘Strongly disagree’. These categories were assigned values from 5 to 1 as
all statements express a willingness to act in favour of the environment.

Environmentally Responsible Behaviour: by three measures. First, the degree to
which the use of environmentally dangerous products is avoided. Respon-
dents7 were asked how frequently they avoid such products (‘Regularly’,
‘Occasionally’ and ‘Never’), and they were then asked to list the products.
Second, the regularity with which products made of paper, glass containers
(e.g. bottles), metal containers (e.g. food and drink cans) and plastic con-
tainers were recycled. For each type of product, responses were made in
the categories of ‘Do not use’, ‘Regularly’, ‘Occasionally’ and ‘Never’. These
categories were scored from 3 to 0, respectively. The responses to each type
of product, as well as the total scores for all four types, were analyzed. Third,
support given to environmental groups was measured by two questions: the
degree of support (‘Regularly’, ‘Occasionally’ and ‘Never’) and the types of
support. For those who provided some support, seven response categories
were offered (‘Donations’, ‘Voluntary work’, ‘Attend meetings’, ‘Financial
member’, ‘On committees’, ‘Participate in demonstrations’, ‘Moral support’
only and ‘Other’).

Age: by asking respondents how old they are in years.
Gender: by observation (interview) or asking whether respondents are male or

female (questionnaire).
Marital Status: by asking respondents to identify with one of the following

categories: ‘Now married’, ‘De facto stable relationship’, ‘Never married and
not in a stable relationship’, ‘Widowed and not remarried’, ‘Separated and
not in a stable relationship’, ‘Divorced and neither remarried nor in a stable
relationship’.8
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Number of Children: by respondent’s listing the ages of their biological
children, and others for whom they are responsible and/or regard as theirs.

Ages of Children: by coding the age ranges into five categories: ‘All under 5 years’,
‘All under 18’, ‘Five to under 18’, ‘Under and over 18’ and ‘All 18 and over’.

Education: by asking respondents to indicate which of the following categories
apply to them: ‘Primary only’, ‘Some secondary’, ‘Completed secondary’,
Technical qualification’, ‘Degree or diploma’, ‘Postgraduate qualification’.

Occupation: by asking respondents to write in their type of participation in the
workforce. Initially, the responses were coded into the following categories:
‘Manager/senior administrator’, ‘Professional’, ‘Para-professional’, Middle man-
ager’, Self-employed – many employees’, Self-employed – a few employees’,
‘Self-employed – on own’, White-collar – senior’, White-collar – junior’, ‘Skilled
manual’, ‘Unskilled manual’, ‘Home duties’, ‘Pensioner’, ‘Unemployed’ and
‘Student’.

Religion: by asking respondents with which religion or religious denomination,
if any, they identify. The following categories have been used: ‘Catholic’,
‘Anglican’, ‘Uniting church’,9 ‘Greek Orthodox’, ‘Baptist’, ‘Other’ religion
and ‘No religion’.10

Religiosity: by asking respondents to what extent they regard themselves as
being a religious or spiritual person. Four response categories were used: ‘Very
religious’, ‘Moderately religious’, ‘Somewhat religious’ and ‘Not religious’.11

Political Party Preference: by asking respondents what political party they would
vote for if an election were held that day. The following categories were pro-
vided: ‘Labor’, ‘Liberal’, ‘National’, ‘Democrats’, ‘Other’ and ‘Undecided’.
These were later recoded into ‘Liberal’,12 ‘Undecided’ and ‘Conservative’.13

Levels of Measurement

The levels of measurement for each of the variables are as follows:

Environmental Worldview:

• a scale of total scores (interval level);
• subscale scores (interval level);14 and
• four approximately equal (ordinal-level) categories (‘Low’, ‘Moderate’,

‘High’ and ‘Very high’) based on divisions in the distribution of the total
scores.

Willingness to Act Responsibly:

• a scale of total scores (interval level); and
• four approximately equal (ordinal-level) categories (‘Low’, ‘Moderate’,

‘High’ and ‘Very high’) based on divisions in the distribution of the total
scores.
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Environmentally Responsible Behaviour:

(a) Avoiding Environmentally Damaging Products (Avoid Products):

• whether avoided or not (dichotomous nominal level);
• a post-coded (nominal-level) list of ‘types of products’; and
• an index (ratio level) of the ‘number of products avoided’.

(b) Recycling:

• ‘frequency of recycling’ categories (ordinal level) for each of the four 
products;

• scores (ratio level) for each product; and
• a ‘recycling index’ (ratio level) derived from ordinal-level measures 

of the frequency of recycling of the four products.

(c) Support for Environmental Groups (Support Groups):

• level of support (ordinal level and dichotomized); and
• types of support (nominal level in an assumed order of intensity).

Age:

• in years (ratio level); and
• six (ordinal-level, approximately interval-level) age categories (‘18–24’, 

‘25–34’, ‘35–44’, ‘45–54’, ‘55–64’ and ‘65+’).

Gender: dichotomous categories (nominal level).
Marital Status: six categories (nominal level).
Number of Children: absolute number (ratio level).
Ages of Children: five categories (nominal level).
Education: six categories (ordinal level).
Occupation: 15 categories (nominal level).
Religion: seven categories (nominal level).
Religiosity: four categories (ordinal level).
Political Party Preference:

• six categories (nominal-level); and
• three categories (‘Liberal’ to ‘Conservative’) (ordinal level).

Some variables are measured at more than one level to facilitate different forms
of analysis.

Data Reduction

It is a normal practice in social research that during the process of data entry,
immediately following data entry and during the process of data analysis itself,
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a number of procedures will be used to reorganize or reduce the form in which
the data were pre-coded in the data-gathering instruments. This can involve:

• reordering response categories used for a variable;
• reducing the number of categories by combining appropriate ones;
• reducing responses to a number of questions or attitude statements to a

single score.

The elaboration of the ways in which the variables were operationalized has
already hinted at a number of such procedures. In particular, the two sets of
attitude statements, for Environmental Worldview and Willingness to Act
Responsibly, were subjected to a form of analysis before the responses to the
items were summed into a single score.

As most these procedures require knowledge of what will be covered in the
next few chapters, the various forms of data reduction that are required will not
be discussed here. Instead, they will be elaborated in detail in Chapter 7. How-
ever, in the meantime, it will be necessary to undertake some simple data
reduction procedures before we get there. For example, we will be using the
total scores from the Environmental Worldview statements, and we will also be
using a recoding of these into four ordinal-level categories. I will explain as
much as is necessary about these procedures as we go along.

Notes

1These research questions are modifications of those that appear in the sample research
designs in Blaikie (2000), where they constitute three separate research projects, each adopting
a different research strategy. The modifications allow for simpler forms of analysis.

2The Core Curriculum consisted of a set of 19 subjects/courses that addressed issues of
relevance to a student’s role as a responsible citizen. Students in all undergraduate degree
programmes were required to take 4 two-hour one-semester subjects from this programme. As
these subjects were taken at different points throughout a degree programme, not all students
participated in the programme each semester.

3In Australian universities, the academic year follows the calendar, usually beginning around
the end of February and running through until some time in November.

4As a result of amalgamations between cities in the MMA, this municipality has been com-
bined with an adjoining one to form a new city.

5I accept that the wording of this concept is biased in favour of an environmental position,
but I make no excuses for this. As it is purely a researcher’s concept, and was not used in the
questionnaire or interview schedule, it could not influence responses.

6The ‘number of children’ is an example of a superficially simple but actually complex
concept to define, particularly in this era of step-families.

7Three concepts are now used to refer to people who agree to be involved in social and behav-
ioural research: ‘subjects’, ‘respondents’ and ‘participants’. Psychologists have traditionally used
‘subjects’, particularly in the context of experimental research in which people are subjected to
some procedure or treatment. Sociologists have traditionally referred to people who agree to
answer questions as ‘respondents’. There is now a trend to use ‘participants’ rather than ‘respon-
dents’ in order to convey a more equal relationship between the researcher and the researched.
This usage is certainly appropriate in much qualitative research where the role of the researcher
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is more as learner than expert, or in participatory action research were the researcher assists a
community to achieve its goals. In spite of ‘participant’ now being regarded as more politically
correct, I prefer to use ‘respondent’ as that is what people have been in both research projects.
They did not participate in any of the design decisions; they only provided information to the
researcher in response to questions asked of them.

8Due to the changing forms of different-sex and same-sex relationships, and the relatively
limited duration of many such relationships in most contemporary societies, this variable is no
longer easy to operationalize.

9A denomination formed as a result of a union between Methodists, Congregationalists and
most Presbyterians in the early 1970s. A small ‘continuing’ Presbyterian church persisted after
this. This denomination is similar to the United Church of Canada.

10In the questionnaire and interview schedule, three other categories were included: ‘Jewish’,
‘Moslem’ and ‘Buddhist’. As there were generally low responses in these categories, in the initial
stages of the analysis they were recoded into the ‘Other’ category, and during the analysis the
categories were reduced even further.

11A more elaborate and perhaps more meaningful way to measure this variable would be to
ask questions about attendance at public services of worship, type and frequency of private
devotional practices, and participation in religious organizations.

12Meaning left of centre and including ‘Labor’, ‘Democrats’ and most of the ‘Other’ category.
This category is also referred to as ‘liberal’ to distinguish it from the ‘Liberal’ party, which,
together with the ‘National’ (country) party, is right of centre.

13This included the ‘Liberal’ and ‘National’ parties.
14The method by which these subscales were produced is explained in detail in Chapter 7.
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3

Descriptive Analysis – Univariate: Looking 
for Characteristics

Introduction

A wide array of methods of data analysis are available in the social sciences, both
quantitative and qualitative. Quantitative methods are used when the data have
been collected in or are soon converted into numbers for analysis, while quali-
tative methods are used when data are in words and remain in words through-
out the analysis. While some data begin as visual images, the classification
of their analysis will depend on how they are treated in the early stages of
the research: coded into numbers or remaining in words. Within both quantita-
tive and qualitative methods, there is a wide variety of data-analysis techniques
from which to choose. The choice, however, is dependent on many factors,
including the nature of the data and the type of research questions that are
being addressed.

In this chapter, we will encounter the most basic and commonly used methods
of quantitative data analysis. While it is impossible to avoid using equations and
getting involved in some mathematical procedures, the emphasis here, as in the
rest of the book, is on what the methods are used for and the principles on
which they are based. While computers can now do most of the calculations for
us, what we need to know is what the methods do, when and how to use them
and how to interpret the results.

Quantitative methods of data analysis can be divided into four main types.

• Univariate descriptive analysis is concerned with summarizing the charac-
teristics of some phenomenon in terms of distributions on variables.

• Bivariate descriptive analysis is concerned with describing the form and
strength of associations between variables, as well as comparing the charac-
teristics of the same variable in different populations, or different variables
in the same population.

• Explanatory analysis is concerned with trying to establish the direction and
strength of influence between variables.

• Inferential analysis is concerned with estimating whether the characteristics
or relationships found in a sample, or differences between samples, could be
expected to exist in the population or populations from which the sample
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or samples were randomly drawn; the procedures allows us to generalize
sample statistics to population parameters.

While the first two are concerned with descriptive analysis, they are separated
here as they use quite different techniques. Bivariate or associational analysis is
just a sophisticated form of description. Establishing patterns or associations in
data is a necessary but not a sufficient part of establishing explanations.

To put this differently, univariate descriptive analysis examines one variable
at a time, while bivariate descriptive analysis deal with associations between
two variables. Explanatory analysis can be either a special kind of bivariate
analysis, in which the concern is with influence of one variable on another, or
multivariate analysis, that examines the connections or influences between
three or more variables.

We will be concerned with univariate descriptive analysis in this chapter, with
bivariate descriptive analysis in Chapter 4, and with bivariate and multivariate
explanatory analysis in Chapter 5.

Basic Mathematical Language

Before setting out on the elementary types of analysis that are discussed in
this chapter, some basic mathematical concepts and symbols are defined and
explained for readers who lack this knowledge or need a refresher course.
Other concepts will be defined as they are introduced in the discussion of
the various methods of analysis. I assume that basic arithmetical procedures,
such as addition, subtraction, multiplication and division, are understood.
What follows is a list of the basic symbols used in the language of data analysis.
These symbols are the mathematical equivalent of nouns, adjectives, verbs and
adverbs.1

The most commonly used mathematical noun in data analysis is X, and some-
times Y and Z, as well as N. The letters X, Y and Z are used as shorthand to
refer to values for variables. For example, X could represent a value for age (in
years), Y a value for level of education achieved (in years) and Z a value for cate-
gories of gender (male or female). The letter N stands for the number of items –
objects, events or persons – included in the analysis.

It is possible to distinguish whether the data being analyzed come from a
population or a sample. Upper-case X, Y, Z and N are commonly used for data
from populations, and lower-case x, y, z and n for sample data. However, there
is no consistency in the use of this convention in spite of the advantage of
clarity that it brings. Where appropriate, I will use it. However, as all the data
to be used for illustrations come from samples, lower-case letters will be
generally used.

Mathematical nouns, such as x, can be modified by adding a mathematical
adjective. This is done by attaching a subscript to the noun to identify to which
values of a variable they refer. Thus, x1, x2, x3, etc. could refer to the values of
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variable x for the first, second and third, etc. respondents or events. If it is
required that all the values in a set of n are to be included, then the list could
read x1, x2, x3, …, xn. The shorthand for this list is simply x with no qualifiers.

It is also possible to include action symbols, or the equivalent of mathemati-
cal verbs, in data analysis. Three operators are discussed here. First, the Greek
symbol sigma ‘

∑
’ indicates that all values that follow it should be summed.

Hence, 
∑

x means that all values for variable x (x1, x2, x3, to xn) are to be added
together. Second, the square root symbol √ indicates that a number is required
which, when multiplied by itself, will equal the number that follows the
symbol. Hence, √9 is 3. When a superscript number is placed before the root
symbol, it indicates that a number is required which, when multiplied by itself
the number of times the superscript indicates, produces the number that fol-
lows the symbol. In other words, the cube root of 27, 3√27, is 3.2 Third, a super-
script placed after the symbol x, such as x2, indicates that each value for x
should be multiplied by itself the number times the superscript indicates.
Hence, x2 means x × x, for all values of x, x3 means that x is to be cubed, and
so on. The superscript is known as the exponent and the process is known as
raising to the power indicated.

It is possible to modify the operator or mathematical verb 
∑

with a mathe-
matical adverb. For example, modifiers in the form of small notations above
and below 

∑
(e.g. 

∑n

i =1
) are used to specify very precisely which values in a list are

to be added together. However, as these modifiers will not be used in this book,
mainly because they add unnecessarily to symbol phobia, I will spare you the
agony of trying to work out what they mean.

Mathematical equations make extensive use of brackets to isolate operations,
such as (4 + 3) × (8 − 6). Without the brackets it would be unclear what is
required. The calculations within the brackets need to be completed first, and
then the two resulting numbers multiplied, that is, 7 × 2 = 14. Normally, the
multiplication sign is omitted and the expression becomes (4 + 3)(8 − 6).
Hence, adjoining brackets signify multiplication. Similarly, when a single number
precedes a bracket, such as 7(8 − 6), multiplication is also required. This
expression can also be shown correctly as (7)(8 − 6). Sometimes, different-
shaped brackets are used together if the order of a number of steps needs to be
made clear. For example, 8[(4 + 3)(8 − 6) + 53] indicates that the parts in the
curved brackets should be dealt with first (14), that 5 should be cubed (125),
that these two number should then be summed (139) and the result multiplied
by 8, giving a result of 1,112.

While division can by indicated by the usual sign (÷), equations normally use
two other conventions. One is the slash sign (/), such that the number before
the slash is to be divided by the number following it (e.g. 139/71 = 1.958). Alter-
natively, a horizontal line can be used, with the number above it (the numera-
tor) being divided by the number below it (the denominator). The latter is the
more usual convention in complex equations.

Finally, in doing the calculations required to solve a mathematical equation,
there is an order of priority in which the actions need to be undertaken. While
it is difficult to specify these as a regular series of steps, it is possible to state
them as a number of rules. The following are the two most general rules.
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1. Start at the left of the equation and work to the right.
2. Complete the operations inside brackets (such as additions and subtrac-

tions) before those outside. In other words, reduce what is inside brackets
to a single number before performing any operation between a bracketed
section and other parts of the equation, or between what lies above and
below a horizontal line.

In addition to these, other rules should also be followed for expressions within
and outside brackets, as well as above and below a division line. However, these
do not form a neat sequence.

3. Where possible, calculate exponents (such as squares and square roots)
first. The major exception to this is where it is necessary to raise to a power
(e.g. cube) or take some root (e.g. square root) of everything on one side of
the equation. In this case, this will usually be the last operation.

4. Multiplications and divisions generally follow additions and subtractions
and the calculation of individual exponents.

5. The last steps are likely to be a major division and/or taking a root or rais-
ing to a power.

To clarify these rules, here is an example done in stages.

Doing the calculations in this order reduces what looks like a complicated equa-
tion to a series of simple arithmetic steps. None of the equations to be encoun-
tered from here on will require anything more complex than this.

It important to watch out for negative signs. Normally a number with no sign
in front of it is assumed to be a positive number. For example, (4 + 3) is the
same as (+4 + 3) or, if you like, (+4 + +3) = 7. In this case, the plus sign is used
in two ways, to indicate a positive number and the operation that is to be per-
formed between two numbers. Similarly, (8 − 6) = (+8 − +6) = 2, which means
subtracting a positive number from another positive number. Note that the sign
of a number adjoins it, while an operator is usually separated by spaces on either
side. If the expression was (−8 − +6), the answer would be –14. Subtracting a
positive number from a negative number makes an even bigger negative number.
This is the same as adding two negative numbers together (−8 + −6).

Here are some further rules for dealing with positive and negative numbers.

• Two negatives make a positive, that is, when a negative number follows a
negative operator, the operation becomes addition (e.g. +5 − −6 = 11,
which is equivalent to 5 + 6).
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a = 

√
(4 + 3)(8 – 6) + 53

= 

√
(7)(2) + 125

=

√
14 + 125

6(8 – 3) – (2 − 7) 6(5) – (−5) 30 + 5

=
√

139 = √3.971 = 1.993
35

3055-ch03.qxd  1/10/03 3:21 PM  Page 50



• A negative and a positive sign together makes a negative operation, that is,
when a negative number follows a positive operator, or the reverse, the oper-
ation is subtraction (e.g. +5 + −6 = −1 or +5 − +6 = −1, or just 5 − 6).

• Subtracting a positive number from a negative number produces an even
bigger negative number (−5 − +6 = −11).

• Multiplying two negative numbers produces a positive number (e.g. −5 ×
−6 = +30).

• The same is the case when a negative number is squared (−52 = +25),
whereas cubing a negative number produces a negative number (−53 =
−125). When raising a negative number to higher powers the rule is that
when the power is an even number the result is positive, and when it is an
odd number the result is negative.

• Multiplying one positive and one negative number makes a negative number
(e.g. −5 × +2 = −10).

With these few simple rules, you should now be ready to confront the basic
methods of data analysis.

Univariate Descriptive Analysis

Before proceeding to discuss the basic methods of descriptive, explanatory and
inferential analysis, we need to spend a little time examining ways in which raw
data can be summarized and presented. The reasons for doing this are mainly
to help the researcher to discover patterns or trends and then be able to com-
municate these clearly.

‘What’ questions can usually be answered with simple descriptions, that is,
simple summaries of the characteristics of some aspect of a social phenomenon.
It is by means of variables that we isolate these aspects, and it is by counting,
and simple manipulation of the resulting number, that we are able to offer
descriptions. More complex techniques may not be required.

While ‘what’ questions are important and legitimate in their own right,
answers to such questions are required before we know which ‘why’ questions
need to be asked. For example, a research question might ask: ‘To what extent
are aluminium cans recycled?’ This could be answered by asking a random
sample of people whether the cans they use are normally recycled. Alterna-
tively, it would be possible, over a set period of time, to compare the weight
of aluminium cans produced with the weight of those that are recycled. In the
first case we could calculate a percentage of people who behave this way, and
in the second case we could arrive at a percentage of cans that are actually recy-
cled. In both cases, simple counting is involved to produce the answer. Then it
is possible to ask a ‘why’ question: ‘Why do people differ in their recycling
behaviour?’ In short, we need to describe in order to have something
to explain.
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Describing Distributions

The following methods for summarizing and presenting descriptive data are
discussed here.

• Frequency counts across categorical data and discrete and grouped metric data.
• Summary values for frequencies and/or comparisons between categories:

proportions and percentages, ratios and rates.
• Pictorial representations of distributions: bar charts and pie charts for cate-

gorical data; and histograms and line graphs for metric data.

Frequency Counts and Distributions

Frequency counts and distributions are used to summarize large sets of data. To
establish frequencies of occurrence, data must be in categories. Frequency
counts summarize data that have been collected in nominal categories, ordinal
categories, in whole numbers (discrete data), and in continuous values or scores
that have been grouped into categories.

Nominal categories

Raw data are usually compiled in unordered lists. For example, in the Student
sample, Religion3 was coded into seven categories and numbered from 1 to 7 as
follows: 1, ‘Catholic’; 2, ‘Anglican’; 3, ‘Uniting’; 4, ‘Greek Orthodox’; 5, ‘Baptist’; 6,
‘Other’; and 7, ‘No religion’.4 The list of raw data is shown in Table 3.1.

It is obviously very difficult to make any sense of data that are displayed in
this way. Even if the numbers were replaced by the names of the categories, it
would still be extremely difficult. However, if the frequencies (f ) with which
each religion is represented in the sample are tallied, then it is possible to see
how many respondents there are in each religious category (see Table 3.2).

It is now possible to interpret these data at a glance. Understanding a distri-
bution can be further enhanced by calculating percentages (see the following
discussion of ‘Proportions and percentages’ for the procedure). Now we know
both the absolute number as well as the proportion out of 100 each category
contributed to the sample.

There are a few points to note about this table. First, the total n for the
Student sample is less than the sample size. There were 20 non-responses to
the question on Religion and these have been excluded. As many of the other
variables in both samples have a few non-responses there will be some variation
in the totals of the tables presented. Second, while one decimal place has been
used for the percentages, whole numbers would have been perfectly adequate.
Not only are they easier to read and compare, but decimal places can also imply
a false sense of precision in the data. Third, due to the rounding up and down
of each percentage to one decimal place, the rounded percentages may not add
up to exactly 100.0. Sometimes it may be 0.1 over or under. However, if a
second decimal place was used, the total, rounded up, will be 100.0.

There are various rules for rounding. When the second decimal place is less
than 5, round down; when it is more than 5, round up. However, when it is
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Table 3.1 Raw data on Religion (Students)
2 5 1 1 6 7 7 4 7 7 1 1
1 7 1 7 1 7 1 1 6 1 6 1
7 1 1 7 6 7 2 2 7 1 7 4
3 4 1 7 6 1 1 1 7 7 4 6
4 6 1 1 2 4 1 2 2 2 1 1
4 1 7 2 7 2 1 2 2 7 1 7
4 4 7 7 7 7 7 7 1 1 7 1
6 7 1 2 6 1 7 6 1 4 6 7
7 1 7 7 1 6 7 5 7 3 7 7
3 6 1 7 7 7 1 1 3 7 7 6
1 1 2 1 7 2 1 2 1 1 7 7
2 1 7 3 3 1 7 1 7 7 3 7
7 7 7 2 1 2 4 1 6 7 7 7
1 7 1 2 7 7 7 6 1 1 6 6
2 1 7 1 7 6 7 1 1 1 7 6
1 1 1 7 7 7 7 1 7 3 1 7
1 1 1 7 6 1 7 3 1 1 2 2
1 1 1 7 7 3 1 7 5 7 1 7
6 1 3 1 7 7 1 7 2 2 1 7
7 2 5 7 5 1 1 2 1 7 7 6
5 6 6 7 7 1 5 2 1 6 3 7
2 3 1 7 1 7 1 1 1 3 1 6
7 2 5 7 7 6 1 1 1 1 1 7
7 6 7 1 7 3 3 6 1 1 7 6
3 1 2 2 7 6 1 2 3 2 2 1
4 6 1 7 7 6 4 7 1 7 3 2
7 7 2 1 1 7 3 5 3 7 2 7
4 7 6 7 6 1 2 2 7 2 2 7
7 7 2 6 2 1 3 7 2 7 1 7
2 2 7 7 7 7 6 3 7 2 7 2
1 7 6 6 7 6 7 1 1 1 7 2
6 1 2 7 5 1 3 3 1 2 1 7
1 3 4 1 1 1 7 1 1 1 7 1
7 7 6 7 2 1 6 1 7 6 1 7
3 2 4 2 3 7 7 1 1 1 1 1
2 7 6 4 3 2 1 1 2 7 1 5
7 7 1 1 1 1 1 7 1 7 7 7

7

Table 3.2 Distribution by Religion (both samples)
Students Residents

Religion f % f %

Catholic 139 31.2 85 21.1
Anglican 57 12.8 91 22.6
Uniting 29 6.5 55 13.7
Greek Orthodox 17 3.8 9 2.2
Baptist 11 2.5 5 1.2
Other 46 10.3 57 14.2
No religion 146 32.8 100 24.9

n 445 100.0 402 100.0
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exactly 5, there are different options. The simplest one is to always round up.
However, another procedure is to round to an even number. For example,
31.25 would become 31.2, as would 31.15; the first is rounded down and the
second is rounded up. While usually following these rules, my method has been
to examine the total after rounding up all percentages with 5 in the second
place and, if the total exceeds 100.0, then round one or more of these border-
line cases down to achieve the exact total. If there is a choice, I would usually
adopt a conservative strategy of picking the largest number in which to make
the change. Whatever rules are used, they can be applied to any number of
decimal places, including rounding up or down to whole numbers.

Ordinal categories

Doing a frequency count of data in ordinal categories is essentially the same as
for norminal categories. For example, respondents in both samples were asked:
‘To what extent do you regard yourself as a religious or spiritual person?’ Four
response categories were provided: 1, ‘Very religious’; 2, ‘Moderately religious’;
3, ‘Not very religious’; and 4, ‘Not at all religious’. The frequency count is
shown in Table 3.3. These categories are clearly only ordinal as the intervals
between them cannot be regarded as equal. Even if some respondents regarded
the intervals as equal when they responded to the categories, others may not
have and researchers therefore cannot do so.

The main difference between nominal-level and ordinal-level categories is
that the numbering of the former is arbitrary while, for the latter, it reflects the
ordering. However, it is still not possible to manipulate the numbers used for
the categories by any arithmetical procedures. Initially, all that can be done is
to count the number of responses in each category and, usually, calculate per-
centages based on these frequencies.

However, further analysis of frequency counts of both nominal and ordinal data
can include comparisons between the categories. In the case of Religion in the
Student sample, we can say that ‘Catholic’ is the largest denomination represented
(31.2 per cent), and that the largest category is ‘No religion’ (32.8 per cent).

By definition, ordinal categories have an underlying order at the outset. It
would be unusual to reorder them in terms of another criterion, such as
frequency of response. However, it is possible to make comparisons in terms of
‘more or higher than’ and ‘less or lower than’. For example, in Table 3.3, in the
Student sample, the ‘Very religious’ category has the lowest response (15.3 per
cent), and ‘Moderately religious’ the highest response (33.8 per cent). It is also
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Table 3.3 Distribution by Religiosity (both samples)
Students Residents

Religiosity f % f %

Not at all religious 112 24.5 51 12.7
Not very religious 121 26.4 99 24.7
Moderately religious 155 33.8 155 38.7
Very religious 70 15.3 96 23.9

n 458 100.0 401 100.0
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clear that nearly half of the sample say they are at least moderately religious
(49.1 per cent). Hence, if numbers are used with such categories, their value
indicates the position in the order; for example, that 1 is higher than 2, and that
4 is lower then 3. The numbers can mean nothing more than this.

An interesting aspect of nominal categories is that it may be possible to do a
post hoc ordering of them on some criterion, such as their relative frequency. In
the case of Religion in the Student sample, the order from highest to lowest is:
‘No religion’, ‘Catholic’, ‘Other’, ‘Anglican’, ‘Uniting’, ‘Greek Orthodox’ and
‘Baptist’. The categories could have been listed in the table in this order, and
they could be renumbered to correspond to it.

There is nothing very mathematical about any of this; counting and calculat-
ing percentages and, perhaps, introducing some order into the categories is
about as far as you can go. Later we will see how responses on such variables
(sets of nominal-level and ordinal-level categories) can be compared with other
variables (interval-level and ratio-level numbers or scores).

Discrete and grouped data

It is also possible to do frequency counts of continuous data in whole numbers.
For example, in the Student sample, it is possible to count the number of
respondents by Age (in years) even although this is a ratio level of measurement
(see Table 3.4). Because this is a sample of university students, there is a con-
centration in the range 18 to 21. A few older students create a long tail in the
distribution. While some points (i.e. ages) are missing in the display, the level
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Table 3.4 Age distribution in years (Students)
Age f %

18 84 18.3
19 113 24.6
20 88 19.1
21 45 9.8
22 42 9.1
23 13 2.8
24 17 3.7
25 13 2.8
26 5 1.1
27 3 0.7
28 5 1.1
29 6 1.3
30 3 0.7
31 3 0.7
32 5 1.1
33 4 0.9
34 3 0.7
36 1 0.2
37 3 0.7
38 2 0.4
42 1 0.2
46 1 0.2

n 460 100.0
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of measurement is still ratio; all categories are separated by an interval of one
unit and there is an absolute zero.

Such distributions can be collapsed into a more limited number of mutually
exclusive and exhaustive categories. The reason for doing this is that:

• it may be unwieldy to present the whole range of numbers or scores;
• some numbers or scores may have a low frequency that does not warrant

them being treated separately; and
• a more limited set of categories can provide a meaningful summary of the data.

In Table 3.4, it would be convenient to collapse the older ages into, say, two
categories: 25 to 29 (n = 32); and 30 and over (n = 26). This could be taken
further: say, 22 to 23 (n = 55) and 24 and over (n = 75); or 21 to 22 (n = 87)
and 23 and over (n = 88).5 The latter gives a fairly even distribution across six
categories (see Table 3.5).

Apart from display purposes, such collapsing of categories may be useful for cer-
tain kinds of analysis, examples of which will be discussed in later chapters. How-
ever, once categories are collapsed like this, and they are used in analysis, the
measurement of variables such as Age has been transformed from ratio to only
ordinal level. While this severely limits the kinds of analysis that can be done, it
does open up some useful methods at a lower level of sophistication. It is now pos-
sible to get a sense of the Age distribution and to make comparisons with other
Age distributions in a way that is not possible if the data remain in their ‘raw’ form.

If the data came from a general sample or population that covers the full age
range of human beings, doing a frequency count of age (in years) becomes very
cumbersome and difficult to interpret; there may be more than a hundred
categories to deal with. Hence, for certain purposes, it may be useful to trans-
form such a range into a limited number of categories. For example, in the
Resident sample, Age might be collapsed into six categories (see Table 3.6).

Analyzing quantitative data

56

Table 3.5 Age distribution in five categories (Students)
Age f %

18 84 18.3
19 113 24.6
20 88 19.1
21–22 87 18.9
23+ 88 19.1

n 460 100.0

Table 3.6 Age distribution in six categories (Residents)
Age f % cum f

18–24 47 11.7 47
25–34 81 20.2 128
35–44 79 19.7 207
45–54 59 14.7 266
55–64 56 14.0 322
65+ 79 19.7 401

n 401 100.0
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A genuine example of ratio-level measurement that can be dealt with in
discrete categories is the number of children respondents have (see Table 3.7).
In the Resident sample, the large percentage of respondents without children
(34.8 per cent) is due to the fact that some respondents have never been
married (n = 92). Twenty-two (5.5 per cent) described themselves as living in a
stable relationship, and only three of those who have never been married indi-
cated that they had children. Therefore, this distribution would be more mean-
ingful if those who have never been married and do not have children (n = 89)
are excluded. The distribution now looks rather different (see Table 3.8). The
differences between Tables 3.7 and 3.8 indicate how important it is to be clear
about how the percentages have been calculated. Table 3.7 shows that 28.1 per
cent have two children, while Table 3.8 shows 36.1 per cent. Both are correct,
but the former is based on the whole sample while the latter is based on only a
subsample. Care must be taken in interpreting the meaning of such tables.
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Table 3.7 Number of children (Residents)
No. of children f %

0 140 34.8
1 42 10.4
2 113 28.1
3 72 17.9
4 21 5.2
5 4 1.0
6 7 1.7
7 0 0.0
8 1 0.2
9 0 0.0
10 2 0.5

n 402 100.0

Table 3.8 Number of children (subsample of Residents)
No. of children f %

0 51 16.3
1 42 13.4
2 113 36.1
3 72 23.0
4 21 6.7
5 4 1.3
6 7 2.2
7 0 0.0
8 1 0.3
9 0 0.0
10 2 0.6

n 313 100.0

In cases where interval-level or ratio-level data have been transformed into
categories, there are advantages in using categories of equal width. This makes
it possible to treat the categories as at least interval-level measurement and,
therefore, to be able to perform more sophisticated analysis than is possible on
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ordinal-level data. The categories used in Table 3.6 do not quite achieve this, as
the extreme Age categories are different from the other four. However, if they
had been in intervals of 10 years, starting with 0–9, 10–19, and so on, to include
the whole age range, the level of measurement would be ratio. The only thing
that has changed is the unit of measurement. Units of one year are not sacred
for measuring Age; we could use something like months, and might if we were
researching very young children. Hence, intervals of 10 years, or 15 years, do
not destroy ratio-level measurement.

The interval contained within each category, and the boundaries between
such categories, can vary depending on the age distribution in the population or
sample, and the purpose of the research. It is up to the researcher to decide
what would be most useful. Such a decision becomes clear if we wanted to
compare two very different age distributions using the same categories, such as
those in the two samples. As different categories have been used in Tables 3.5
and 3.6, one or both sets of categories would need to be changed to allow a
meaningful comparison. Table 3.9 presents a possible solution. With the excep-
tion of the ‘18–19’ Age category, and with ‘20–24’ and ‘25–29’ combined, these
categories constitute ratio-level measurement. The ‘20–29’ Age category was
divided to reveal the large number of students in the ‘20–24’ interval, and to
make comparisons between the samples possible.
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Table 3.9 Comparison of Student and Resident samples by
Age

Students Residents

Age categories f % f %

18–19 197 42.8 10 2.5
20–24 205 44.6 37 9.2

(20–29) (237) (51.5) (75) (18.7)
25–29 32 7.0 38 9.5
30–39 24 5.2 88 21.9
40–49 2 0.4 71 17.7
50–59 – – 50 12.5
60–69 – – 55 13.7
70–79 – – 36 9.0
80–89 – – 13 3.2
90–99 – – 3 0.7

Totals 460 100.0 401 100.0

The procedure used to establish a set of categories of equal width is as follows:

• Establish the range of units (e.g. ages or scores) and add one to the total. In
the case of Age (in years), the range could be between 0 and 99. The result-
ing number would be 100.

• Decide how wide each category should be, say 10, and divide the above
number by this. In this case, there would be 10 categories, each including
10 years.

• Start with the lowest unit, 0 in this case, and establish the first category,
i.e. 0–9. The next category would be 10–19, and so on to 90–99.
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• Assign each unit to its appropriate category. A frequency distribution of
grouped data can then be produced.6

If categories of varying width are required, as in Table 3.5, the number of cate-
gories, and their widths, can be established from the original frequency distri-
bution, as in Table 3.4.

Proportions and Percentages, Ratios and Rates

In order to undertake certain types of data analysis, such as discussing the charac-
teristics of a frequency distribution, or comparing data across categories, we
need to reduce frequencies, the raw data, to some common base. This is done
in two related ways: by calculating either proportions or percentages.

Proportions

The base that is used to calculate proportions is the unit of ‘1’ or, perhaps
‘1.00’.7 In a frequency distribution, each category will be seen to contribute a
part of or a proportion of the total, that is, if we assume the total has a value of
1.00, then each category will make up a part of this. Whatever the total number
is in a distribution, we assume it to be equal to 1.00. We then have to adjust the
frequencies for each category so that their contributions add up to 1.00. To do
this, the frequency for each category is divided by the total frequency. For
example, in Table 3.5, the frequency for the first category (84) would be
divided by the total (460) to produce a proportion of 0.18 (to two decimal
places) or 0.183 (to three decimal places). Similarly for the other categories.
The equation for this is:

f
Proportion (p)= (3.1)n

where f is the frequency for any category, and n is the total number of responses
or units for all categories.

Proportions can range from 0.00 (if none of the cases lies in a category) to
1.00 (if a category contains all the cases). Table 3.10 shows the proportions of
males and females in both samples.

Percentages

A percentage is simply another way of expressing a proportion. In this case, the
base is 100 rather than 1.00. Hence, proportions can be converted to percent-
ages by multiplying each one by 100. In Table 3.10, 45 per cent of Students are
males and 55 per cent are females. Similarly for Residents, the percentages are
both 50. If the proportions had been calculated to three decimal places, the per-
centages could be shown to one decimal place.
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The equation for calculating percentages is the same as that for proportions,
except that it is multiplied by 100.

f
Percentage (%) =     × 100 (3.2)n

Percentages are more commonly used than proportions, perhaps because whole
numbers are easier to read and are less prone than numbers starting with a deci-
mal point to recording and reading errors. Why is 100 used as a base? It is just a
convention, but it has all the advantages of the ‘metric’ system of measurement
and is a big enough number to be shared meaningfully between categories.

As well as using percentages to compare the relative sizes of data in cate-
gories, it is also possible to use them as a measure of change over time. We may
want to know whether, over a 50-year period, the population in one country has
increased at a faster or slower rate than that in another country. At the begin-
ning of 1950 there were 12 million in country A and 153 million in country B.
At the beginning of 2000 there were 21 million and 204 million, respectively.
Clearly, country A has grown by only 9 million compared to 51 million for
country B. Because the two countries had different-sized populations in 1950,
what we need to know is the percentage increase in both cases. To do this, we
divide the increase in the population by the number at the first point of time,
and then multiply by 100. The equation is:

Percentage change =
(quantity at time 2) – (quantity at time 1) 

× 100 (3.3)
(quantity at time 1)

The calculations for the above example are as follows.

Country A: Percentage change = 21−12 × 100 = 9  × 100 = 0.429 × 100 = 42.9%
21 21

Country B: Percentage change = 204−153 × 100 = 51 × 100 = 0.333 × 100 = 33.3%
153 153

Hence, the relative size of the population growth for country A is greater than
that for country B. This may not be obvious from the raw data.
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Table 3.10 Comparison of Gender proportions (both samples)
Students Residents

Gender f p f p

Males 210 0.45 200 0.50
Females 254 0.55 199 0.50

Totals 464 1.00 399 1.00
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Ratios

A ratio is used to compare the relative size of two categories. It is calculated by
dividing the frequency in the larger category by the frequency in the smaller one.
For example, Table 3.2 on the distribution by Religion in the Student sample
shows that there are 139 Catholics and 57 Anglicans. The ratio of Anglicans to
Catholics is 1 : 2.4. We arrive at this by dividing the number of Catholics by the
number of Anglicans. Hence, for every Anglican in the Student sample, there
are 2.4 Catholics. It is also possible to multiply both sides of the ratio by, say,
100, to eliminate the decimal places. Hence, the ratio could be expressed as
100 : 240. In the Resident sample, the ratio is 1 : 1.07, but the other way
around; for every 100 Catholics there are 107 Anglicans. All that a ratio does is
to simplify the comparison by reducing the two numbers to an easily inter-
preted base, usually either ‘1’ or ‘100’, and then making one of the categories
the base.

Social scientists frequently use sex ratios to compare the relative numbers of
males and females in a population or sample. In Table 3.10, the sex ratio of the
Student sample would be calculated as follows.

Ratio = number in the largest category
(3.4)

number in the smallest category

= 254 = 1.21
210

Hence, the ratio is 1 : 1.21; for every male there are 1.21 females. For large
populations or samples, this might be better expressed as: for every 100 males
there are 121 females.

It is possible to compare more than two categories using ratios. To do
this, one category is reduced to either ‘1’ or ‘100’ and the rest are calculated
separately in relationship to it. For example, in Table 3.2 we could compare the
relative sizes of the four largest religions by making ‘Greek Orthodox’ the base
of ‘1’. In the Student sample, the ratios of ‘Greek Orthodox’ to ‘Uniting’,
‘Anglican’ and ‘Catholic’ are 1 : 1.71 : 3.35 : 8.18. In the Resident sample the
ratios are 1 : 6.11 : 10.11 : 9.44. However, such comparisons may have limited
utility as they can just as easily be expressed in terms of percentages.

This raises the question of the differences between ratios, proportions
and percentages. As we have seen, the difference between the latter two is
just a matter of choice between working with a base of ‘1’ (proportions) or
a base of ‘100’ (percentages). The latter two differ from ratios in that, for
proportions and percentages, it is the total of all categories that is made the
base of ‘1’ or ‘100’ and each category is regarded as making up a share of
this base. In the case of a ratio, one of the categories is made the base of ‘1’
or ‘100’, or some larger round number, and the other categories are
compared with it.
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When data are grouped into categories, frequency counts and percentages are
appropriate forms of data analysis. These are certainly the main ways of repre-
senting distributions of nominal-level and ordinal-level data, and can also be used
for higher levels of measurement in discrete or grouped categories. Other more
sophisticated ways of representing the character of distributions are available for
use with interval-level and ratio-level data. Alternatively, in the earlier discussion
of levels of measurement, we noted that many of the data-analysis procedures
that are used with interval-level and ratio-level data cannot be used with nominal-
level and ordinal-level data. For example, while we can say that one person is
twice the age of another (ratio-level data), we cannot use this expression, or
others like ‘greater than’ or ‘higher than’, with the categories of Religion (nominal-
level data). However, the process of counting the frequencies in nominal cate-
gories such as Religion has introduced ratio-level assumptions. It is assumed that
all members of a category are of equal value or magnitude, and that it is appro-
priate to map them onto our number system. In this way, two members of one
category can be regarded as being twice as many as only one member of another
category. This means that we can compare the size of categories using ratios even
although the original level of measurement was, say, only nominal. Hence, while
the calculation of ratios is only appropriate for ratio-level measurement, for
certain purposes, frequencies in categories can be regarded as ratio-level.

Rates

Rates provide another variation on the idea of reducing numbers to a common
base. They are used to summarize and compare events occurring in a popula-
tion or category over time, or between different populations or categories.
These events include such things as births, deaths, crimes or suicides. Because
it can be difficult to make sense of the raw data on such events, it is necessary
to reduce them to a common base such as 100, 1,000 or 100,000.

A rate is like a ratio in which the larger number is the total for a population
rather than being just one category. However, in this case, each population is
reduced to a common base. In effect, a rate is like a proportion or percentage
but it usually has a much larger base. In other words, the number of events
under consideration is divided by the total population in which they occur.
Then this is multiplied by a convenient number that has been determined as the
base. It is then possible to compare the relative frequency of these events across
time and space. The equation for a base of 1,000 is as follows.

Rate = number of events × 1,000 (3.5)
total population of events

Pictorial Representations

In addition to being presented in tabular form, frequency counts and distribu-
tions can be presented pictorially or graphically. The commonly used methods
are bar charts and pie charts for categorical variables, and histograms and line
graphs for metric variables consisting of discrete or grouped data. Some of the
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frequency counts and distributions presented in the previous section will be
used as illustrations.

Categorical variables

In presenting frequency counts pictorially, it is important not to give a dis-
torted impression of a distribution. It is very easy to exaggerate or minimize
differences between categories by stretching or compressing the vertical scale
on a chart or graph. Therefore, care must be taken to select the vertical scale
carefully.

Bar charts are used to represent the frequency counts of nominal-level and
ordinal-level data, or grouped data from interval-level or ratio-level variables.
The bars are kept separate for the former two levels of measurement to indi-
cate either that the categories do not lie on an underlying continuum (nominal-
level data) or that the intervals between them cannot be assumed to be equal
(ordinal-level data). Figure 3.1 presents a bar chart of the frequency count of
the nominal data in Table 3.2, that is, Religion for the Student sample.

When only one data set is involved, it makes no difference to the relative size
of the bars whether frequencies or percentages are used. The advantage of using
frequencies is that it is possible to read off the size of any category, thus pre-
serving the original character of the data. However, when comparisons are being
made of the same variable between two data sets, percentages must be used if
the sample sizes are different. Figure 3.2 provides a comparison of Student and
Resident religious affiliation. Figure 3.3 shows a bar chart of the frequency
counts of ordinal-level data in Table 3.3, that is, Religiosity for both samples. 

Pie charts provide an alternative way of presenting frequency counts pictori-
ally. The bars of a chart are replaced by segments of a circle such that the area
of a segment corresponds to the frequency in that category. Figures 3.4 and 3.5
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show pie charts based on the Student distributions in Tables 3.2 and 3.3,
respectively. They are alternative presentations to the bar charts in Figures 3.1
and the Student component in Figure 3.3.

Metric variables

Because of the continuous nature of their form of measurement, metric vari-
ables using discrete or grouped data can be represented pictorially either as
histograms or as continuous lines.

The histogram is a variation on the bar chart such that the bars touch each
other to create a stair pattern. Instead of having gaps between the bars, they are
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Figure 3.3 Religiosity (both samples): bar chart
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put together to convey the idea that the level of measurement is continuous,
even though categories are used. When categories of differing intervals are used
with such data, it is possible to present a histogram that indicates this by varying
the widths of the bars. For example, in Table 3.9, the first category (‘18–19’) is
a different width from all the others. Also, if the ‘20–29’ category was split to
give a clearer picture of the Age distribution in the Student sample, these cate-
gories would also be of a different width from those that follow. If the width of
the bars does not correspond to the age interval of each category, it would be
easy to misinterpret the representation of the age distribution in a histogram.
The reason is that it is not just the height (or length) of the bar that is relevant
in such cases. While height indicates the frequency of responses, the width of
the bar represents the width of the category. It is the area included in a bar that
is the true indicator of the relative frequency in each category. Hence, by
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Figure 3.4 Religion (Students): pie chart

Figure 3.5 Religiosity (Students): pie chart
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adjusting the width of the bar to correspond to the interval of the category, a
more accurate representation is produced.

Unfortunately, none of the software packages I am familiar with seems able
to create genuine histograms or to allow for variations in the width of the cate-
gories. Of course, they could be drawn by hand! However, a perfectly good
alternative is available, and that is to use line or area graphs.

Any histogram with categories of equal width or interval can be converted
into a line graph, also known as an area graph or a frequency polygon, by join-
ing up the midpoints of the bars in a histogram with straight lines. When many
categories are involved, the line may approach a curve, or a curve could be
drawn through them. Figure 3.6 provides an example of line graphs, based on
the Age distributions in Table 3.9. Note that as no adjustment has been made
to the width of the youngest age category to indicate that it is narrower than all
the others (because the software does not allow it), there is a distortion in the
representation of the size of this category.

These four major ways of representing frequency distributions pictorially
provide a range of possibilities. However, care must be taken to:

• use one that is appropriate to the level of measurement;
• faithfully represent the data and not produce a distorted impression; and
• interpret the data correctly.

Shapes of Frequency Distributions: Symmetrical, Skewed and Normal

Frequency distributions of metric variables can take on many different shapes,
both symmetrical or skewed. In symmetrical distributions, the two halves will
coincide when folded vertically along the middle (a trick used in origami to
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create symmetrical shapes). Skewed distributions ‘lean’ to the lower end
(positively skewed) or the higher end (negatively skewed). Figure 3.6 shows two
different types of positively skewed distributions.

Symmetrical distributions can take many forms, the most common of which
are shown in Figure 3.7. Figure 3.7(a) contains a rectangular distribution in
which all categories have the same frequency. Figure 3.7(b) shows a U-shaped
distribution in which the categories at the extremes have much higher fre-
quencies than the middle categories. Figure 3.7(c) contains a bell-shaped dis-
tribution in which the highest frequencies are in the middle categories and the
lowest frequencies at the extremes. Finally, Figure 3.7(d) contains a bimodal
distribution in which there are two points with high frequencies and the lowest
frequencies are at the extremes.

This is an appropriate point to introduce the notion of the normal distribu-
tion which, when graphed, takes the shape of a symmetrical bell-shaped distri-
bution known as a bell curve or normal curve. The normal distribution is a
theoretical notion of great importance to statisticians. It is the basis of the
theory that is used to estimate population parameters from sample statistics. It
is also the shape of the distribution that is required for the use of certain statis-
tical procedures. The shape of the normal curve is determined by a complex
mathematical equation and it has special mathematical properties. In theory, an
infinite number of measurements are required to produce a normal distribu-
tion. However, it can be approached with particular types of data, based on mea-
surements with very large populations or samples. While some data
distributions may resemble a normal curve, they can never match it perfectly.
We will come back to the characteristics of the normal curve shortly.
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(a) Rectangular (b) U-shaped

(c) Normal (d) Bimodal

Figure 3.7 Examples of symmetrical distributions
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Measures of Central Tendency

In addition to tabular and pictorial representations of distributions, it is also
possible to describe their characteristics with summary statistics known as mea-
sures of central tendency and measures of dispersion. The following measures
of central tendency or central location are covered in this section:

• Categorical data, and discrete and grouped metric data: mode (nominal-level
data) and median (ordinal-level data).

• Metric data: mean.

The Three Ms

Measures of central tendency are designed to indicate the ‘middle’ or ‘most typi-
cal’ point (e.g. category or score) in a distribution. The everyday term for this
is the ‘average’. However, there are three commonly used measures of an aver-
age: the mode, median and mean. Hence, to avoid confusion, the concept of
average will not be used here. The discussion will be confined to the technical
meaning of these three terms.

Mode

The mode is the crudest of the three measures of central tendency and has
limited value. It is defined as the value that occurs with the highest frequency and
is obtained by inspecting a distribution. For example, in Table 3.2 (Figure 3.2)
the mode is ‘No religion’ for both Students and Residents, in Table 3.3 (Figure 3.3)
it is ‘Moderately religious’ for both samples, in Tables 3.4 and 3.5 it is ‘19’ years,
in Table 3.6 it is the ‘25–34’ Age category, and in Table 3.8 it is ‘2’ children.

These examples are a mixture of levels of measurement and include nominal-
level categories (Religion), categories of grouped data from a ratio-level variable
(Age) and ratio-level measurement in whole numbers (Number of children).
The mode can be used for all such distributions and, hence, for all four levels
of measurement when the data are in categories. However, the meaning of the
mode is rather different for nominal-level data than for the other three. In the
former, the position of the modal category in a distribution has no significance,
as the order of the categories is arbitrary. However, in the other three levels of
measurement, the position of the category may have some relevance, particu-
larly in the context of the frequencies in the other categories. For example, in
Table 3.8, the modal category of ‘2’ children does indicate an important feature
of the distribution; it is the ‘peak’ category. The same is the case in Table 3.3,
although the ‘peak’ is less prominent. However, in Table 3.2, while the modal
category has the highest frequency, there are a number of other categories with
high frequencies; these smaller categories may be just as interesting.

Distributions with two adjoining categories of the same and highest fre-
quency are called bimodal. However, a bimodal distribution may also have two
peaks or humps that are separated by at least one category and that have
frequencies that are not necessarily equal. Table 3.6 is an example of bimodal
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ordinal-level (nearly interval-level) categories (‘25–34’ and ‘65+’), and Table 3.8
(Figure 3.5) is an example of a bimodal set of ratio-level categories (‘0’ and ‘2’).
It should be clear that care must to be taken in interpreting the modal category
or categories in the case of grouped data with categories of unequal width.
Changing the widths of the categories can change the shape of the distribution
and, perhaps, the modal category or categories.

Median

The median is the position in a distribution above and below which half of
the frequencies fall. It splits a distribution into two equal parts; there are as
many responses or scores to the left of the median as there are to the right. In
short, the median is half-way ‘along’ a distribution. The median is not appro-
priate for nominal-level data, but it can be used for all the other three levels of
measurement.

The simplest version of a median occurs with a set of unique scores, that is,
when every score in the set is different. For example, a group of 15 children
were given a standardized test for a particular ability. Their scores, arranged in
order from lowest to highest, were:

68 76 79 83 87 92 97 105 108 113 118 121 134 135 139

To calculate the median score, we first calculate the median position.

Median position = n + 1 = 15 + 1 = 8  (3.6)
2 2

By counting 8 from either end of the array of scores, we arrive at the median
score of 105. This is the middle score of this distribution of scores.

This example has an odd number of scores, which means that one score lies
right in the middle. If the number was even, the median would lie half-way
between two scores. In the example above, if the highest score is removed, then
the median would lie half way between the scores of 97 and 105, that is, the
median position would calculate as 7.5, that is, (14 + 1)/2. The median score is
then half-way between these two score, namely, 101.

The calculation is rather different when the distribution is in categories,
be they whole numbers, as with age, or grouped data, as with age categories.
The distribution of Age in years in the Resident sample is displayed in
Table 3.11. It shows the frequency (f) for each age, and the cumulative fre-
quency (cum f). As there is an odd number of respondents, the median age
is the age of the person who is at the half-way point in the distribution. Using
equation (3.6),

Median position = 401 + 1 = 201 
2

Therefore, the median age is that of the respondent numbered 201 in the dis-
tribution. There are 200 respondents younger than this person and 200 older.
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To arrive at the median, we read down the cumulative frequencies until we find
the category in which this respondent is located. This person is aged 43, and
this the median age.

It is possible to express this median more precisely by imagining the seven
respondents in this category are spread evenly across it. Or, put differently,
imagine this one year is divided into seven parts, with each respondent occu-
pying one-seventh (0.143) of the year. In the distribution, the category itself
extends from 42.5 to 43.5 with the 201st respondent being at the top end of
the category. That is, this person occupies the one-seventh of the year adjoin-
ing the upper boundary. Now we need to imagine the midpoint of this space as
being the precise median. This is 0.072 below the upper boundary, which is
43.43 years, say 43.4 years. Another way of thinking about the median is to
imagine counting the spaces in the distribution occupied by the other six
respondents in the category. Together, they occupy six-sevenths (0.857) of the
one-year interval, below the median position. Therefore, the median is arrived
at by adding the space occupied by these respondents (0.857) to the lower
boundary of the category (42.5) and then adding half of the interval of the
median position (0.072). Again, this equals 43.43. Hence, we have a check on
our calculations (see Figure 3.8).8

It may appear to be unnecessary to use this more precise method of calcu-
lating a median in this example. However, when grouped data are being used,
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Table 3.11 Age in years (Residents)
Age f cum f Age f cum f Age f cum f
18 1 1 43 7 201 68 4 346
19 9 10 44 6 207 69 3 349
20 6 16 45 12 219 70 10 359
21 8 24 46 9 228 71 1 360
22 12 36 47 8 236 72 3 363
23 8 44 48 5 241 73 5 368
24 3 47 49 3 244 74 2 370
25 4 51 50 11 255 75 5 375
26 9 60 51 3 258 76 0 375
27 6 66 52 3 261 77 5 380
28 8 74 53 3 264 78 3 383
29 11 85 54 2 266 79 2 385
30 7 92 55 4 270 80 6 391
31 6 98 56 5 275 81 2 393
32 13 111 57 5 280 82 0 393
33 9 120 58 7 287 83 2 395
34 8 128 59 7 294 84 0 395
35 12 140 60 5 299 85 1 396
36 6 146 61 6 305 86 0 396
37 10 156 62 8 313 87 1 397
38 10 166 63 3 316 88 0 397
39 7 173 64 6 322 89 1 398
40 9 182 65 8 330 90 3 401
41 7 189 66 3 333
42 5 194 67 9 342
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in a limited number of categories, its value is more obvious. The same proce-
dure can be used whether or not the categories are of equal width. Table 3.6
contains the same data as Table 3.11, but grouped into six categories. In this
case, the 201st respondent is located in the ‘35–44’ Age category. There are 128
respondents below this category, which means that we have to go 73 respon-
dents into this category of 79 to find the boundary. Given that the lower bound-
ary of the category is 34.5, that each respondent occupies 1/79 of the 10-year
interval, and that the median is in the midpoint of the interval:

Median = 34.5 + 10(73/79) + 1/79 = 34.5 + 9.24 + 0.01 = 43.75

This is 0.32 years higher than the previous calculation. The reason for the
difference is that the first calculation recognizes the actual distribution in the
interval ‘35–44’. The second calculation has to assume an even distribution,
when this is not strictly the case. An inspection of Table 3.11 shows that
there are 45 respondents aged ‘35–39’ and only 34 aged ‘40–44’. The figure
would be more accurate if the width of the Age categories was smaller, say
5 years. Nevertheless, there may be some value in this more precise figure
rather than simply saying the median is in the ‘35–44’ Age category, or is the
midpoint of this category, that is, 40 (or 39.5 if the width is assumed to be
9 years).

Mean

The mean, or arithmetic mean, is the most commonly used and the most useful
measure of central tendency. However, it can only be calculated with interval-
level and ratio-level data. As the meaning of the mean is rather more complex
than that for the mode and the median, its procedural definition will be given
here and a more formal definition will follow. The mean is the sum of a set of
values divided by the number of the values in the set. Values are usually scores
or frequencies.

This definition can be expressed as an equation, although it differs slightly
depending on whether the data are from a sample or a population. For sample
data, the equation is:

Descriptive analysis – univariate

71

42.5 43.5

Median

43.4
42 yrs 43 yrs 44 yrs

Figure 3.8 Median to one decimal place
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(3.7)

The equation for population data simply substitutes X for x, and N for n,
although the symbol for the mean is different:

(3.8)

Data from which means are calculated come in three main forms: 

• a set of values (e.g. scores);
• an ungrouped frequency distribution (e.g. frequencies of Age in years); and
• a grouped frequency distribution (e.g. Age in categories).

For an example of the first and simplest form (scores), we can use the earlier
data on the scores of children on a standardized test.

68 76 79 83 87 92 97 105 108 113 118 121 134 135 139

Assuming that this is a population,

∑
X

= 
1555 

= 103.7µ = 
N 15

For an example of ungrouped frequencies, we can use the data in Table 3.11.
First, each age is multiplied by its frequency (fx). Then these values for each
age are summed (

∑
fx). Finally, the total is divided by the total number of

respondents (see Table 3.12):

∑
fx

=
18,471

= 46.1x– =        n 401

The calculation of the mean for a grouped frequency distribution is similar to
that for ungrouped frequencies. We can do this from the Resident sample data
in Table 3.9. In this case, the frequency in a category is multiplied by its mid-
point (xm) (see Table 3.13).

∑
fxm =

18,557.0 
= 46.3x– = n 401

Again, it is not necessary for the width of the categories to be equal, although
categories of narrow intervals will produce more accurate results. This mean is
0.2 higher than that calculated from the ungrouped frequencies. The main
reason for the difference is that all ages within a category are assumed to be in
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(3.10)

(3.9)

Mean (x–) = sum of the values =
x1 + x2 + x3 + … + xn = 

∑
x

number of values n n

Mean (µ) = sum of the values =
X1 + X2 + X3 + … + Xn = 

∑
X

number of values N N

3055-ch03.qxd  1/10/03 3:21 PM  Page 72



the centre of the category; differences in the distribution within the category have
to be ignored. The effect of this is clear in the highest age category, where the
three persons are assumed to be aged 94.5 when they are all 90. However, it
would be unusual for means calculated by these methods to differ by very much.

The mathematical character of the mean is such that if we calculate all
the differences between the mean and each of the values in the distribution,
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Table 3.12 Calculation of mean Age in years (Residents)
Age f f x– Age f f x– Age f f x–

18 1 18 43 7 301 68 4 272
19 9 171 44 6 264 69 3 207
20 6 120 45 12 540 70 10 700
21 8 168 46 9 414 71 1 71
22 12 264 47 8 376 72 3 216
23 8 184 48 5 240 73 5 365
24 3 72 49 3 147 74 2 148
25 4 100 50 11 550 75 5 375
26 9 234 51 3 153 76 0 0
27 6 162 52 3 156 77 5 385
28 8 224 53 3 159 78 3 234
29 11 319 54 2 108 79 2 158
30 7 210 55 4 220 80 6 480
31 6 186 56 5 280 81 2 162
32 13 416 57 5 285 82 0 0
33 9 297 58 7 406 83 2 166
34 8 272 59 7 413 84 0 0
35 12 420 60 5 300 85 1 85
36 6 216 61 6 366 86 0 0
37 10 370 62 8 496 87 1 87
38 10 380 63 3 189 88 0 0
39 7 273 64 6 384 89 1 89
40 9 360 65 8 520 90 3 270
41 7 287 66 3 198
42 5 210 67 9 603

Table 3.13 Mean of Age distributed in ten categories
(Residents)

Age f xm fxm

18–19 10 18.5 185.0
20–24 37 22.0 814.0
25–29 38 27.0 1026.0
30–39 88 34.5 3036.0
40–49 71 44.5 3159.5
50–59 50 54.5 2725.0
60–69 55 64.5 3547.5
70–79 36 74.5 2682.0
80–89 13 84.5 1098.5
90–99 3 94.5 283.5

n 401
∑

fxm = 18,557.0
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negative differences below the mean and positive ones above it, the sum will be
zero. To put this more technically, the mean is the point in a distribution of
values, the sum of the deviations from which is equal to zero. As a result of this,
it is very easy for one or a few very extreme values, either high or low, to affect
the mean in a way that does not happen with the mode or median. Hence, it is
sometimes recommended to use the trimmed mean by deleting both the upper
and lower 5 per cent of values. This is based on the assumption that there is
likely to be something wrong with these values as a result of errors in data
recording or manipulation, or equipment malfunction. In the Resident sample,
the trimmed mean would eliminate the 20 youngest and the 20 oldest respon-
dents. However, if it can be established that the extreme values are genuine,
trimming should not be done. In our example, if people over 80 years of age are
willing to participate in social research when selected in a sample we should
certainly not eliminate them or their responses.

Mean of means

Sometimes we need to produce a mean from data that are already expressed as
means. If these means are based on different-sized samples or populations, we
cannot simply calculate a mean of these means. This is because the means of
larger samples should have a bigger influence on the overall mean than do the
means of smaller samples. Simply taking the mean of the means ignores this.
For example, our two samples have mean ages of 21.2 (Students; n = 460) and
46.1 (Residents; n = 401).9 If we simply calculate the mean of these two means
we get 33.6. As the samples are similar in size, calculating the mean of the
means would not do much harm. However, to be strictly accurate, the sample
means should be weighted according to their respective sample sizes. This is
done by following the same procedure as is used to calculate the mean of an
ungrouped frequency distribution (see Table 3.14).

The equation for the weighted mean (x–w) is:

∑
fx–

= 
28,203.66 

= 32.8 (3.11)x–w = ∑
f 861

There is a difference of 0.8 years. However, if the Student sample was half its
size, and the Resident sample twice its size, the mean of the weighted means
would be rather different, 40.5 in fact. You might try this as an exercise.
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Table 3.14 Mean of two means (both samples)
Sample x– f f x–

Students 21.16 460 9,733.60
Residents 46.06 401 18,470.06

Totals 861 28,203.66
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A similar problem arises if it is necessary to combine data in the form of
percentages from different categories or samples, and a total percentage is
required. Only in the case where the sizes of the categories or samples are equal
is it appropriate to take the mean of the individual percentages. If the sizes are
different, then each percentage needs to be weighted in terms of the total n on
which it was based. The procedure for doing this is similar to that for weight-
ing means. For example, in Table 3.9, if we wished to calculate percentages for
the two samples combined, it would not be appropriate to just take the mean
of the two sample percentages for each category. In the case of the ‘20–24’ aged
category, 44.6 per cent of Students and 9.2 per cent of Residents are in this age
range. The mean of these two percentages is 26.9. However, the mean weighted
percentage (%

–

w) for this aged category is 28.1 (see Table 3.15). The equation is:

∑
%n

=
24,205.2

= 28.1 (3.12)%
–

w = ∑
n 861

In this case, the difference between the weighted and unweighted mean per-
centages is small because the two sample sizes are almost equal. However, if the
Student sample was half its size, and the Resident sample twice its size, the
mean weighted percentage would be 17.1.

Of course, it is possible to calculate total percentages without going through
this weighting procedure, simply by adding the frequencies for the two cate-
gories, dividing this by the sum of the sample totals, and multiplying by 100. In
this example, the total percentage for both samples combined is:

sum of the values in the categories
% = × 100 (3.13)

sum of sample totals

242
= × 100 = 28.1

861

The values obtained by the two methods are the same.

Comparing the Mode, Median and Mean

We are now in a position to compare these three measures of central tendency.
Using Age in years in the Resident sample, and using the ungrouped distribution,
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Table 3.15 Mean of two Age category percentages (both samples)
Sample % n %n

Students 44.6 460 20,516.0
Residents 9.2 401 3,689.2

Totals 861 24,205.2
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the median was calculated as 43.4 years and the mean as 46.1 years. The mode
depends on which version of the distribution is used: in Table 3.11 it is 32 years;
and in Table 3.9 (Figure 3.6) it is in the ‘30–39’ interval. However, neither of
these modal figures is very useful.

The difference between the median and the mean tells us something about
the characteristics of a distribution. In the case of Figure 3.6, the Age distribu-
tion of Students is skewed to the left; there are more respondents in the
younger than in the older Age categories. The mean is affected by the tail to the
right, thus making its value higher than the median, 21.2 compared with 19.9
(the mode is 19 years).

The relationship between the three Ms can be understood with reference to
the normal curve. If the distribution is normal, the three Ms coincide; the
modal category or score will be the same as the median and the mean. Hence,
a difference between the median and mean is an indication of a skewed distri-
bution. When the mean is higher than the median, the distribution is positively
skewed (bunched to the left); when the mean is lower than the median, it is
negatively skewed (bunched to the right). Software packages normally report a
measure of skewness in which a figure of zero indicates no skew and, therefore,
a coincidence between the median and the mean, and a high figure is a large
skew. The values normally fall between −3 and +3, with the sign indicating a
negative or positive skewness. The equation used to calculate this is:

3(mean − median)
SK = (3.14)

standard deviation

The standard deviation will be discussed shortly.
Figure 3.9 shows two distributions that approximate a normal curve. It

shows the Environmental Worldview scale for Students and Residents with
categories based on scores in intervals of 5. For the Students, the mean is
90.9, the median 91.3 and skewness is −0.27, while for the Residents these
figures are 88.0, 87.0 and +0.07, respectively. The differences between
the means and the medians (−0.4 and 1.0) reflect the direction but not the
magnitude of the skewness.

When the two samples are combined, the distribution is closer to the normal
curve (see Figure 3.10). Without the three lowest categories, the shape would
be even better. The mean is 89.6 and the median 89.3; the difference of 0.3 is
reflected in the skewness (−0.10).

Comparative Analysis Using Percentages and Means

A common form of analysis is to compare two samples or categories in terms of
their distributions on the same variable. This can be done by using an appropri-
ate measure of central tendency, preferably the mean but sometimes the
median. Comparisons can also be made in terms of the proportions, percent-
ages or rates in certain categories of a variable. Such comparisons can be useful
and are very straightforward. It is just a case of comparing two numbers. For
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example, we can compare the percentages of males and females, or the
percentage of respondents educated at university in the two samples.

If the data come from populations, the differences between the percentages
and means are what the figures show. However, when the data come from prob-
ability samples, and we want to know whether the sample differences can be
expected to be present in the populations from which the samples were drawn,
we are faced with some further analysis and some difficult decisions. This will
be discussed in Chapter 6.

Measures of Dispersion

In addition to measures of central tendency, it is also possible to describe the
characteristics of a distribution in terms of how widely it is spread. This is done
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Figure 3.9 Environmental Worldview (both samples): line graphs

Figure 3.10 Environmental Worldview (combined samples): line graph
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with measures of dispersion or variability. Such measures are not normally
applied to nominal-level data, as the idea of spread makes very limited sense.10

Some measures are available for ordinal-level data, and these can also be applied
to interval-level and ratio-level data, while others are only suitable with the two
latter types of data. The following measures of dispersion are covered in this
section:

• Categorical ordinal-level data: interquartile range and percentiles.
• Metric data: range, mean deviation, standard deviation and variance.

Categorical Data

Interquartile range

While it is possible to establish the dispersion of a distribution by calculating
the interval between the extreme scores or frequencies (i.e. the range), a more
useful method is to take the interval within which the middle 50 per cent of all
scores or respondents are included. In other words, the lowest 25 per cent of
scores or frequencies, and the highest 25 per cent, are excluded from consid-
eration. This means that the possible distorting effects of extreme scores at
either end of the distribution are eliminated.

This measure is known as the interquartile range and is used in association
with the median. It is the most commonly used method for measuring the dis-
persion of ordinal-level data and, while it can also be used for discrete and
grouped interval-level and ratio-level data, it only allows for rather simple
mathematical procedures. The two points along a distribution, 25 per cent and
75 per cent, are calculated in a similar way to the median. Instead of locating
the point that divides a distribution into two equal parts, we find the points that
divide the lowest 25 per cent, and the highest 25 per cent, from the rest.

If we want to calculate the interquartile range for the Age distribution in
Table 3.11 (Resident sample), we have to first find the point that separates the
lower 25 per cent, the first quartile. A similar equation to that for the median
position is used.

401 + 1First quartile position (Q1) = = 100.5
4

This indicates that there are, theoretically, 100.5 respondents in each quartile.
Hence, the second quartile position (Q2), which is the same as the median, is
double this (201) and the third quartile (Q3) is three times it (301.5). By inspect-
ing the cumulative frequencies in Table 3.11, we can see that Q1 falls in the ‘32’
Age category (which means somewhere between 31.5 and 32.5), and Q3 in the
‘61’ Age category (between 60.5 and 61.5). We could simply subtract the mid-
points of these two Age categories to get an approximate interquartile range (29).

However, it is possible to get a more precise figure by using the same proce-
dure as that for calculating the median with grouped data. As there are 98
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respondents below age 32, an additional 2.5 respondents are needed to takes us
to Q1. With 13 respondents in this Age category, we have to take in 0.2 of the
category (2.5/13) to reach Q1. Hence Q1 = 31.5 + 0.2 = 31.7. Repeating this
procedure in the 61 Age category, Q3 = 60.5 + 0.4 = 60.9. Therefore, the
interquartile range is 29.2 (60.9 − 31.7).

Percentiles

Calculating quartiles is a variation of calculating percentiles. The latter are used
to divide a distribution into 100 parts but, more commonly, into deciles or
10 per cent intervals (the lowest 10 per cent, the next 10 per cent, and so on
to the highest 10 per cent). If the score or frequency is calculated for all these
points, this method produces a reasonably precise description of the shape of a
distribution. Again, each point, at whatever interval is chosen, is calculated by
the method described for the interquartile range. While percentiles or deciles
have their uses, the interquartile range is the most frequently used accompani-
ment to the median.

Metric Data

Range

Of all the measures of dispersion, the range is the easiest to calculate and to under-
stand. It is simply the highest score or frequency minus the lowest. In Figure 3.10
(combined samples), the highest score is 119 and the lowest is 48. Hence, the
range is 71. In this case, the range is quite useful because the distribution is
close to a symmetrical normal curve. However, the longish tail at the lower end
leads to the midpoint of the range (83.5) being some way off both the mean
(89.6) and the median (89.3).

The disadvantage of the range is that very extreme scores can affect it. This
is illustrated in Table 3.4 (Student sample), which is a very skewed distribution.
The oldest age is 46 and the youngest 18, giving a range of 28 and a midpoint
of 32 years. However, the mean is 21.2 and the median 19.9 (skewness = +2.5).
Therefore, while it may be useful to know the range, for example, when deter-
mining the number of categories required to group scores, it is very difficult to
compare distributions using only this measure of dispersion. As comparing the
characteristics of distributions is a major form of data analysis, some other mea-
sures are required.

Mean absolute deviation

As we have seen, a technical definition of the mean is the point in a distribu-
tion of values, the sum of the deviations from which is equal to zero. The zero
is achieved because some of the deviations will be negative (those below the
mean) and some will be positive (those higher than the mean). If we disregard
the sign of each deviation, so that we are dealing with what are called ‘absolute
deviations’, the sum of the absolute deviations gives an indication of the spread
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of a distribution: the larger the sum, the greater the spread, and vice versa. If
we calculate the mean of all the absolute deviations, we have an indicator of the
dispersion of the distribution. Hence, the mean absolute deviation is the mean
of the deviations of all values from the mean, disregarding their sign. The equa-
tion for use with grouped data from a sample is:

∑
fx − x–

Mean absolute deviation = (3.15)n

where f is the frequency in a category, x is the value of a category and x− is the
mean. The only aspect of the equation which is new is the two vertical bars.
These indicate that when the mean is subtracted from each value of x, any
negative signs are ignored. Hence, −5 = 5 and +5 = 5.

Note that the midpoint of the category is used for x (for an example, see
Table 3.13). As social research tends to use grouped data, only this equation is
presented here. For data in an array of ungrouped unique scored, f is dropped
from the equation.

We can illustrate the calculation of the mean absolute deviation using the
data in Table 3.12 (see Table 3.16). The first column is Age (x), the second is
the frequency (f), or the number of respondents in each age category, the third
is the deviation of each age from the mean age (x − x−), and the fourth column
is the third (disregarding the sign) multiplied by the second. The other columns
will be dealt with shortly. The mean absolute deviation is the sum of all the
individual deviations, without regard to sign (i.e the sum of the fourth column),
divided by the size of the sample:

∑
fx − x– = 6100.4Mean absolute deviation = = 15.2n 401

This value provides an indication of how dispersed this Age distribution is
around the mean.

Standard deviation

While the mean absolute deviation is based on a relatively simple idea, it is
rarely used. Instead, the preferred method for measuring the dispersion of dis-
tributions based on interval-level and ratio-level data is the standard deviation.
However, the standard deviation, and its sister method, the variance, are both
derived from the mean absolute deviation.

The basic difference between the mean absolute deviation and the standard
deviation is that in the latter each deviation from the mean is squared. As multi-
plying two negative numbers produce a positive number, squaring a negative
number eliminates the negative sign. In the case of the standard deviation, the
square root is taken of the result to compensate for the earlier squaring. This
procedure gives the standard deviation a number of advantages over the mean
absolute deviation, the most important of which is that standard deviations can
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Table 3.16 Deviations from the mean of Age in years (Residents)
x f x – x– fx – x– (x – x–)2 f(x – x–)2 x f x − x– fx − x– (x − x–)2 f(x − x–)2

18 1 −28.06 28.06 787.36 787.36 55 4 8.94 35.76 79.92 319.69
19 9 −27.06 243.54 732.24 6590.19 56 5 9.94 49.70 98.80 494.02
20 6 −26.06 156.36 679.12 4074.74 57 5 10.94 54.70 119.68 598.42
21 8 −25.06 200.48 628.00 5024.03 58 7 11.94 83.58 142.56 997.95
22 12 −24.06 288.72 578.88 6946.60 59 7 12.94 90.58 167.44 1172.11
23 8 −23.06 184.48 531.76 4254.11 60 5 13.94 69.70 194.32 971.62
24 3 −22.06 66.18 486.64 1459.93 61 6 14.94 89.64 223.20 1339.22
25 4 −21.06 84.24 443.52 1774.09 62 8 15.94 127.52 254.08 2032.67
26 9 −20.06 180.54 402.40 3621.63 63 3 16.94 50.82 286.96 860.89
27 6 −19.06 114.36 363.28 2179.70 64 6 17.94 107.64 321.84 1931.06
28 8 −18.06 144.48 326.16 2609.31 65 8 18.94 151.52 358.72 2869.79
29 11 −17.06 187.66 291.04 3201.48 66 3 19.94 59.82 397.60 1192.81
30 7 −16.06 112.42 257.92 1805.47 67 9 20.94 188.46 438.48 3946.35
31 6 −15.06 90.36 226.80 1360.82 68 4 21.94 87.76 481.36 1925.45
32 13 −14.06 182.79 197.68 2569.89 69 3 22.94 68.82 526.24 1578.73
33 9 −13.06 117.54 170.56 1535.07 70 10 23.94 239.40 573.12 5731.24
34 8 −12.06 96.48 145.44 1163.55 71 1 24.94 24.94 622.00 622.00
35 12 −11.06 132.72 122.32 1467.88 72 3 25.94 77.82 672.88 2018.65
36 6 −10.06 60.36 101.20 607.22 73 5 26.94 134.70 725.76 3628.82
37 10 −9.06 90.60 82.08 820.84 74 2 27.94 55.88 780.64 1561.29
38 10 −8.06 80.60 64.96 649.64 75 5 28.94 144.70 837.52 4187.62
39 7 −7.06 49.42 49.84 348.91 76 0 29.94 0.00 896.40 0.00
40 9 −6.06 54.54 36.72 330.51 77 5 30.94 154.70 957.28 4786.42
41 7 −5.06 35.42 25.60 179.23 78 3 31.94 95.82 1020.16 3060.49
42 5 −4.06 20.30 16.48 82.42 79 2 32.94 65.88 1085.04 2170.09
43 7 −3.06 21.42 9.36 65.55 80 6 33.94 203.64 1151.92 6911.54
44 6 −2.06 12.36 4.24 25.46 81 2 34.94 69.88 1220.80 2441.61
45 12 −1.06 12.72 1.12 13.48 82 0 35.94 0.00 1291.68 0.00
46 9 −0.06 0.54 0.00 0.03 83 2 36.94 73.88 1364.56 2729.13
47 8 0.94 7.52 0.88 7.07 84 0 37.94 0.00 1439.44 0.00

(Continued)
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Table 3.16 (Continued)
x f x − x– fx − x– (x − x–)2 t(x − x–)2 x f x − x– fx − x– (x − xx–)2 f(x − x–)2

48 5 1.94 9.70 3.76 18.82 85 1 38.94 38.94 1516.32 1516.32
49 3 2.94 8.82 8.64 25.93 86 0 39.94 0.00 1595.20 0.00
50 11 3.94 43.34 15.52 170.76 87 1 40.94 40.94 1676.08 1676.08
51 3 4.94 14.82 24.40 73.21 88 0 41.94 0.00 1758.96 0.00
52 3 5.94 17.82 35.28 105.85 89 1 42.94 42.94 1843.84 1843.84
53 3 6.94 20.82 48.16 144.49 90 3 43.94 131.82 1930.72 5792.17
54 2 7.94 15.88 63.04 126.09

n = 401
∑

fx − xx–  = 6,100.4
∑

f(x − x–)2 = 129,129.4
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be compared across different types of distributions (hence the qualification
‘standard’); mean absolute deviations are not comparable.

The standard deviation can be described as the square root of the sum of the
squared deviances of all values from the mean, divided by the number of values.
The equation for grouped data from a sample is a variation of that for the mean
deviation:

Standard deviation(s) =

√ ∑
f(x − x–)2

(3.16)n

Again, f is eliminated in the case of data in ungrouped unique scores.
If we go back to the data presented in Table 3.16, all that is necessary is to

square each of the deviations from the mean, that is, (x − x−)2, before it is
multiplied by its frequency. The calculation is:

Variance

The variance is arrived at by squaring both sides of equation (3.16). The left
side becomes s2 and the square root sign on the right disappears. Hence the
equation for the variance is:

The symbol for population standard deviations is σ and for population variances
is σ2. To change these equations for use with populations, it is just a matter of sub-
stituting X, X–(or µ) and N for x, x− and n, respectively. When the sample or popu-
lation size is less than 40, the divisor for both the standard deviation and variance
needs to be N − 1 or n − 1. The reason for this need not concern us here.

There are simpler methods than the ones just described for calculating both
variance and standard deviation. Instead of calculating all the individual devia-
tions from the mean and then squaring them, we proceed as follows.

• The value for each category is multiplied by its frequency.
• This is squared.
• These squares are added together and divided by the number of categories.
• The square of the mean is subtracted.
• Then the square root is applied to the result.
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s = 

√∑
f (x − x–)2

= 

√
129,129.4 

= √322.0 = 17.9
n 401

Variance (s2) = 
∑

f (x − x–)2

n
(3.17)
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The equation for the standard deviation with grouped sample data becomes:

and for the variance:

It is necessary to be careful with the 
∑

fx2 expression in the equation. It can be
stated more clearly as 

∑
f(x2), and should be read backwards: square all the x

values, multiply each one by its f, and then sum them. The expressions 
∑

(fx)2

and (
∑

fx)2 are quite different. Subtle differences, due to the presence or absence
of brackets and their positioning, are very important.

While the interquartile range is readily interpreted, the standard deviation is
rather more complex. The basic idea is that if the standard deviation is small,
then the spread of the distribution must be narrow; that is, the values cluster
around the mean. Conversely, if the standard deviation is large, then the distri-
bution is widely spread. However, the standard deviation really only makes
sense with normal distributions.

Characteristics of the Normal Curve

Earlier we noted that the normal curve is a symmetrical distribution in which
the mode, median and mean are the same. It also has some other important
characteristics. As with all frequency curves, the line is determined by the
frequencies at each point along the distribution; the frequencies are greatest at
the mean and then decline as the values deviate from the mean. The area
under the curve represents the sum of all responses or scores. In the theoret-
ical distribution, the declining curve on either side of the mean never reaches
zero frequencies; the curve goes off into infinity in both directions but never
touches the base of the graph. However, empirical distributions have to
stop somewhere; the extreme scores or categories must eventually have zero
frequencies.

In order to discuss the normal curve, it is necessary to introduce the idea of
standard scores or z-scores. The z-score provides a precise means of interpret-
ing any value of a variable in which the distribution approximates the normal
curve. If we want to know how a particular category or score relates to the
distribution in which it is located, or if we want to compare a person’s position
on the distribution of two or more variables, the position or scores must
be standardized. This is done by dividing the deviation from the mean of a

Analyzing quantitative data

84

s = 
√∑

fx2

− x–2
n

s2 = 
∑

fx2

− x–2
n

(3.18)

(3.19)
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particular category or score by the standard deviation of the distribution. The
equation is:

score − mean x − x–
Standard score (z) = =    (3.20)

standard deviation s

This procedure turns raw categories or scores into standard scores. The idea
of z-scores also provides a useful basis for discussing the characteristics of the
theoretical normal curve, also known as the standard normal distribution.

Converting the characteristics of an actual distribution to the standard nor-
mal distribution by means of z-scores is like converting frequencies to percent-
ages. In the latter, frequencies are transposed to a base of 100. In converting our
data to z-scores, we are simply making the mean 0 and the standard deviation 1.
Hence, values to the left of the mean are negative, and to the right are positive.
We simply transpose the data into a set of standard units without changing the
shape of the curve.

Two points should be noted. First, this conversion can only be applied to dis-
tributions that approximate the normal curve, that is, it cannot be applied to
skewed distributions. Second, it does not turn a non-normal distribution into
one that resembles a normal curve. It just allows data in distributions that
approximate a normal curve to be compared on the basis of standard units.

Perhaps the most important characteristic of the standard normal curve is
that 68.26 per cent of the distribution lies within 1 standard deviation on either
side of the mean or midpoint, 95.44 per cent lies within 2 standard deviations
and 99.74 per cent lies within 3 standard deviations (see Figure 3.11). Hence,
nearly 100% of the distribution lies within a total of 6 standard deviation units.
These facts reveal nothing more than the particular characteristics of the normal
curve. However, whenever we have a distribution that approximates the normal
(as in Figure 3.10), we can estimate the percentage of the distribution that lies
on either side of any category or score.

Tables have been prepared that reflect the relationship between any z-score
and the shape of the standard normal curve (see Table 2 in Appendix D). The
figures in Table 2 indicate the proportion of the area under the normal curve
that lies between a particular positive z-score and the right-hand tail. For
example, a z-score of 1.00 shows a value of 0.1587. This means that 15.87 per
cent of the area lies between here and the tail. By subtracting this value from
0.5, we get the area under the curve that lies between this value of z and the
mean. The reason for using 0.5 is that half the area lies on each side of the
mean (0.5000 − 0.1587 = 0.3413 or 34.13 per cent). Note that doubling this
percentage gives us the percentage that lies within ± 1 standard deviation of
the mean (68.26 per cent, which is the figure given above). Therefore, the
values in Table 2 can be used to indicate what proportion of a distribution lies
above and below any point in the distribution, as well as between that point
and the mean.

Take the example of results from a national examination. We may want to know
where a particular student lies in relations to the top students and the mean mark.
If the student’s score has been converted to a z-score, and it happens to be +1.24,
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Table 2 indicates that 0.3925 of the distribution lies between this point and the
mean (0.5000 − 0.1075). If 10,000 students sat the examination, we know that
our student has 3,925 students between her and students with the mean mark.
Given that the mean divides the distribution in half, which makes 5,000 students
above and below the mean mark, our student has 8,925 students below her and
1,075 students above her. We do not have to have a distribution of student scores
to do this, just the mean and standard deviation of the distribution and an assur-
ance that the distribution approximates the normal curve.

While these characteristics of a normal curve remain constant, the shape of
empirical curves can vary depending on the combination of their means and
their standard deviations. Some curves will be ‘flat’ and spread, while others
will be ‘high’ and narrow, and anything in between. The first extreme has a
relatively small value for the mean and a large standard deviation, while the
other extreme has a relatively high value for the mean and a much smaller stan-
dard deviation. However, there is only one normal curve for any given mean and
standard deviation.

The standard normal distribution, and hence z-scores, can usually only be
used with data from large populations or samples in which the variables being
measured form bell-shaped distributions. Simple examples relate to human
physiological features, such as height and weight, and to performance on stan-
dardized tests, such as intelligence and aptitude. With small numbers, distribu-
tions on such variables may be skewed, but with large numbers the distributions
are likely to approach the normal curve. In contrast to the variables used by
behavioural scientists, many of the variables used by social scientists are not
normally distributed. Hence, the translation of distributions into z-scores is
restricted to limited areas of research.

In order to be able to use z-scores, and other statistical procedures that
require normal distributions, it is possible to transform a skewed distribution

Analyzing quantitative data

86

−3.0 −2.0 −1.0 0.0 1.0 2.0 3.0
0

0.1

0.2

0.3

0.4

Standard deviations
68.26%
95.44%
99.74%

Figure 3.11 Area covered under the normal curve by one to three stan-
dard deviations

3055-ch03.qxd  1/10/03 3:21 PM  Page 86



into an approximately normal one. This involves changing the intervals of the
measurement scale, such as gradually increasing their width from the low to
the high end of a negatively skewed distribution. What this does is stretch out
the categories in which the responses are bunched at the high end of the scale,
thus changing the shape of the distribution. A popular method for doing this is
to use the natural logarithm of the variable.

Summary

• Univariate analysis involves describing the characteristics of distributions on
variables.

• Categorical data, and discrete and grouped metric data, are described at the
most basic level in terms of frequency counts.

• Frequency counts can be summarized and compared in terms of propor-
tions, percentages, ratios and rates.

• Distributions and such summary values can also be expressed pictorially in
bar charts and pie charts (categorical data), and in histograms and line
graphs (discrete and grouped metric data).

• Distributions can take many shapes, ranging from symmetrical to skewed.
Positively skewed distributions are clustered towards the lower end values and
negatively skewed distributions are clustered towards the higher end values.

• The characteristics of a distribution can be summarized in terms of measures
of central tendency and dispersion. For categorical data, and discrete and
grouped metric data, the mode and the median measure central tendency.
For metric data, both discrete and continuous, the mean is appropriate.

• The main measure of dispersion for categorical data, and a companion to the
median, is the interquartile range. For metric data it is the standard devia-
tion and variance.

• The normal curve is a special case of a symmetrical distribution. It is a
theoretical distribution around a mean, which constitutes the peak of the
curve. The curve declines on either side of the mean and approaches but
never reaches zero. This distribution is extremely important in a number of
the procedures used in data analysis.

• The shape of the normal curve is described in the distribution of z-scores, or
standard scores, which assume a mean of 0 and a standard deviation of 1. 

• Real distributions can only approach, but never replicate, the normal curve.

Notes

1This section of the chapter is inspired by a similar discussion in Elifson et al. (1998: 20–3).
2Convention does not require the number 2 to be placed before the square root symbol, that

is, 2√  .
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3I am adopting the convention of capitalizing the first letter of the variables that were
measured or constructed in these samples.

4This set of categories for religious affiliation is typical of contemporary Australia. It reflects
the Anglo-Celtic character of the early European settlers up until World War II and the subse-
quent waves of migration since then, initially from Europe, particularly Italy and Greece, and
more recently from West and South East Asia, particularly Turkey and Vietnam.

5As we shall see, there are many ways in which age (in years) can be coded into categories.
These procedures will be discussed in Chapter 7.

6This procedure is easily carried out in software packages such as SPSS.
7Two or three decimal places are commonly used.
8It has been necessary to use three decimal places here to avoid cumulative errors produced,

say, by multiplying the one-seventh  interval by 6. Even when two decimal places are used, the
two calculations of the median do not agree. The second calculation comes to 43.41. However,
using anything more than one decimal place in the final result is not justified. There is another
issue here. Strictly speaking, adjoining categories cannot have the same value for their bound-
aries. One convention would be to start each category in this example on 0.5, that is 42.5, and
end it on 0.4, that is 43.4. Thus, the width of the category would be only 0.9 years (or 0.99 if
two decimal places were used). It is possible to do the calculations with these values, and the
result would be marginally different. Nevertheless, given how crude a measure the median is,
and the uses to which it is likely to be put, such a refinement is not justified.

9The missing cases have been eliminated from each sample, hence the slight differences from
sample sizes used elsewhere in this discussion.

10Freeman (1965) has proposed the variation ratio, the proportion not in the modal category.
A high proportion indicates that the mode inadequately reflects the overall distribution.
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4

Descriptive Analysis – Bivariate: Looking for Patterns

Introduction

One of the primary tasks in social research is to establish patterns or relationships
in the phenomenon under investigation. Many of the research questions listed
in Chapter 2 are concerned with the relationships between variables, for example,
between aspects of environmentalism (attitudes and behaviour), and between
environmentalism and both age and gender. What does it mean to establish a
relationship between two variables? How do we establish whether such a
relationship exists, and how strong it is? This chapter explores the major ways
in which relationships between various types of variables can be demonstrated
and their strength measured.

Establishing patterns in data is just an elaborate form of description. Distrib-
utions tell us about the characteristics of single variables, while measures of
association tell us about the connections between variables. Measures of associ-
ation establish what is commonly referred to as correlations. However, they do
not tell us anything about how one variable might influence another variable. To
take this step beyond association to explanation requires either that research
designs be constructed in a special way, usually as a controlled experiment, or
the ability, among other things, to make assumptions about the time ordering of
variables. For the moment, we will concern ourselves with the forms of relation-
ships between variables and we will impute nothing about whether and how
they might influence each other. We are simply looking for patterns. The issue
of the direction of influence between variables is discussed in Chapter 5.

The association between two variables is described in different ways. Two
variables are said to be associated if the values of one variable vary or change
together with the values of the other variable. Another way of expressing this
in social research is to say that respondents’ positions on one variable are consis-
tent with their positions on another variable. For example, persons with a high
level of education may also have a high income, and those with a low education
a low income. As level of education increases, so does level of income.

Some writers express such a relationship as the position on one variable pre-
dicting the position on the other variable. That is, if education and income are
closely associated, knowing a person’s level of education allows us to predict their
level of income. The reverse would also be true. However, this way of express-
ing association between two variables tends to imply a direction of influence.
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Suggesting such a direction, or wishing to make predictions, goes beyond what
is necessary to understand an association.

The relationship between two variables can take different forms. Sometimes
there may be no relationship. This means that a position or score on one vari-
able is not associated with a position or score on the other variable. For exam-
ple, persons with a high level of education are no more likely than those with a
low or moderate education to have a high income. Similarly, persons with a low
education are no more likely than others to have a low income. When a high
position or score on one variable is associated with a high position or score on
the other variable, and vice versa, a positive relationship is said to exist. Alter-
natively, if a high position or score on one variable is associated with a low posi-
tion or score on the other variable, and vice versa, then there is a negative
relationship. We will examine these differences shortly in the discussion of asso-
ciation between nominal-level and ordinal-level variables.

It is important to note that any variable to be used in the exploration of an
association must have a good distribution across its categories, positions or
scores. In other words, the variable must not have a restricted or truncated
range. Take the distributions for Age in the two samples, for example. In the
Student sample, the Age distribution is very truncated, that is, it is severely
skewed in the positive direction: 87 per cent of the sample is in the 18–24 age
category (see Figure 3.6). The result is that in the Student sample it is difficult
for another variable to have much of an association with such a distribution.
The limited variation in Students’ Age means that the distribution on another
variable has little scope to reveal any association with it. The situation is differ-
ent in the Resident sample, where there is a more even distribution across the
Age categories.

To illustrate how a truncated distribution can affect the association between
two variables, let us examine the relationship between Environmental World-
view (EWV) and Age in the Student sample, using the appropriate measure of
association. Just what this is does not need to concern us here; everything will
be revealed later in the chapter. All that we need to know for now is that its
value can range from −1 to + 1, with 0 indicating no association, −1 a perfect
negative association and + 1 a perfect positive association. It turns out that the
value is only 0.04, indicating a negligible association. It could be that there is
very little association between these two variables, but the skewed age distrib-
ution prevents us from finding out. The data in the Resident sample suggest
that there is at least some association as the value of the coefficient is 0.31.

About the only way there could be a relationship in the type of Age distrib-
ution found in the Student sample would be if there was a big difference in
EWV between, say, those who are 20 and under and those who are 25 and over.
Something dramatic would need to happen in the early 20s to bring about a
dramatic change in worldview, or a very different age cohort would need to be
passing through.

Some measures of association, particularly those for interval-level and ratio-
level data, require that the distributions on both variables also approximate the
normal curve. When this is not the case, some researchers apply transforma-
tions to distributions to make them resemble a normal curve, thus allowing
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procedures to be used that have this requirement. However, methods for doing
this will not be discussed here.

The methods used to establish an association between two variables depend
on the level of measurement of the variables. In general, a number of measures
can be used with nominal-level data, ordinal-level data requires its own partic-
ular measure and interval-level and ratio-level data use very different measures.
We will examine the following:

• contingency coefficient, phi and Cramér’s V (nominal-level);
• gamma (ordinal-level data and categorized interval-level and ratio-level

data); and
• covariance and Pearson’s correlation coefficient (interval-level and ratio-

level data).

Association with Nominal-Level and Ordinal-Level Variables

The measures of association discussed here are appropriate for the two lowest
levels of measurement and for variables at a higher level of measurement that
have been converted to categories (such as Age), that is, for any categorical data.
In fact, if an association is to be established between variables at different levels
of measurement (e.g. one nominal-level and the other interval-level), it may be
necessary to convert the variable at the higher level of measurement into cate-
gories. In other words, the appropriate measure of association is likely to be
determined by the lower level of measurement. There are exceptions to this
that will be discussed in due course.

Contingency Tables

Relationships between combinations of nominal-level and ordinal-level variables
are best understood with the use of contingency tables. Such tables set out, cate-
gory by category, the extent to which two variables are or are not related. This
is done by cross-tabulating the distributions of the two variables. Before pro-
ceeding to a discussion of how to construct a contingency table, we need to
describe and label its parts (see Figure 4.1).

Tables are made up of columns and rows that produce cells at the intersec-
tion of each one. Each variable has a name (called a ‘variable label’ in SPSS
speak) and a set of categories with labels (called ‘value labels’). The size of the
table is determined by the number of categories in each variable. Figure 4.1 is
an example of a 2 by 2 table: there are two categories for each variable, thus
making four cells. Each cell will contain certain data, perhaps a frequency count
or a percentage, or both. Each value label produces either a row or a column of
the table, and each row and column has a total. These are known as row margi-
nals or column marginals. In the bottom right-hand corner of a table is the
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‘table total’, which is the sum of the row or column marginals and, therefore, is
the sum of all the cells.

As an example of a simple table, let us take two variables from the Resident
sample, Religion and Gender. If we want to see if there is any relationship
between these two variables, we can construct a table of cells in which, for each
of the categories of Religion, we can see the number of respondents who are
male and female. The distributions on these two variables were shown previ-
ously in Tables 3.2 and 3.10. For simplicity, Religion has been recoded into five
categories, ‘Catholic’, ‘Anglican’, ‘Protestant’, ‘Other’ and ‘No religion’, thus
producing a 2 by 5 table1 (see Table 4.1).

Table 4.1 reports the ‘observed’ frequencies (the plain numbers), ‘expected’
frequencies (in square brackets) and percentages (in parentheses) for males and
females in the five categories of religion. ‘Observed’ simply means what the
research results show. We can see that of the 100 respondents who have ‘No
religion’, 67 are males and 33 are females. It would appear as if more males
than females have ‘no religion’. However, this is deceptive; we cannot simply
compare the raw data to draw such conclusions. There are two main ways to
proceed.

The first is to see how many males and females there would be in each of
these cells of the table if they were evenly distributed, that is, if there was no
relationship. These are called the ‘expected’ frequencies and are calculated by
multiplying the row and column marginals and dividing by the table total. For
example, the expected frequency for males who stated they have ‘No religion’
is 200 multiplied by 100 and then divided by 399, which equals 50.1. The
expected frequencies for the other cells are calculated in the same way. The
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Table number and title

Column variable label

Row variable label Row totals

Value label

Value label

Row marginal

Row marginal

Column totals

Value label Value label

Cell values

Cell values

Cell values

Cell values

Column marginal Column marginal Table total

Figure 4.1 Parts of a table

Table 4.1 Religion by Gender (Residents; observed and expected frequencies, and
percentages) 

Religion

Gender Catholic Anglican Protestant Other No religion Total

Male 34 (40%) 44 (49%) 27 (45%) 28 (43%) 67 (67%) 200 (50%)
[42.6] [44.6] [30.1] [32.6] [50.1]

Female 51 (60%) 45 (51%) 33 (55%) 37 (57%) 33 (33%) 199 (50%)
[42.4] [44.4] [29.9] [32.4] [49.9]

Totals 85 (100%) 89 (100%) 60 (100%) 65 (100%) 100 (100%) 399 (100%)
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differences between observed and expected frequencies form the basis of a
number of statistical procedures that we shall encounter shortly. In the mean-
time, we shall use them to interpret the data in this table.

Reading down the ‘Anglican’ column of the table, we can see that the
observed and expected frequencies in each cell are almost the same. This means
that the number of males and females who are ‘Anglican’ is almost the same as
we would expect if males and females were distributed in this category in the
same way as they are in the sample. It turns out that there are 50 per cent of
males and females in the sample and, among the ‘Anglicans’, 49 per cent are
males and 51 per cent are females. However, when we compare the observed
and expected frequencies in the other columns, differences are evident. Com-
pared with the overall male/female composition of the sample, females are
overrepresented among ‘Catholics’, ‘Protestants’ and ‘Other’ religions, and
underrepresented in the ‘No religion’ category when the observed frequency is
higher than the expected, there is overrepresentation, and vice versa. While
these differences are only small, they do indicate a trend in the data.

It is also possible to interpret the data in this table by using percentages
rather than frequencies. Percentages are commonly used to present such data.
In order to discover whether or not there may be some relationship between
these variables, we need to compare the percentage in each cell either with its
row marginal, or with percentages in the other categories in the same row. If we
find that the cell value is lower than the marginal, we can say that there is
underrepresentation in that cell. A higher cell value indicates that there is over-
representation. If we compare the percentage of ‘Catholic’ males with males in
the row marginal, that is, with the percentage of all males in the sample, we
find an underrepresentation (40 per cent compared with 50 per cent). How-
ever, when comparisons are made for ‘No religion’ males, we find the cell value
is higher than the marginal value (67 compared with 50), and vice versa for the
females (33 compared with 50). Hence, males are overrepresented and females
underrepresented among respondents with ‘No religion’. The reverse is the case
for the ‘Other’ religion category. Comparing these pairs of percentages estab-
lishes how much the frequency in any cell deviates from the sample distribu-
tion on that variable. This procedure simply confirms what we found by
comparing observed and expected frequencies. In this latter case, we were also
looking for deviations from the overall distribution. We can either use the raw
data and expected frequencies, or percentages to do this.

The percentages can also be compared along the rows. For example, we can
see that 43 per cent of respondents in the ‘Other’ religion category are males
compared with 67 per cent in the ‘No religion’ category. This also suggests
under- and overrepresentation. The direct comparison of percentages across the
rows is particularly useful in 2 by 2 tables.

It is possible to calculate percentages in a table like Table 4.1 in the other
direction, that is, across the rows rather than down the columns. In associa-
tional analysis, this is optional and may be determined by what a researcher
wants to say about a particular association. The only change will be in the way
the association is discussed, that is, by comparing the categories of Religion
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across the Gender categories, rather than the other way around. However, as
we shall see, in analysis that explores influence between variables, the direction
in which the percentages are calculated is critical. More on this later.

Contingency tables are also used for ordinal-level variables, and interval-level
and ratio-level variables that have been coded into categories. In short, they are
used for any categorical variables. This means that variables at different levels
of measurement can be included in the same table. For example, in Table 4.2,
the EWV of Residents has been recoded into four categories, each including the
following range of scores: ‘Low’ (56–79), ‘Moderate’ (80–89), ‘High’ (90–99)
and ‘Very high’ (100–119); and Age has been recoded into three categories:
18–34, 35–54 and 55 +. Ignore the alphabetic identification of the cells for the
moment.

Following the method of interpretation used for Table 4.1, we find that
younger people tend to have ‘Very high’ scores (although they are also reason-
ably well represented in the three other EWV categories), middle-aged people
tend to have ‘Very high’ and, more particularly, ‘High’ scores, and older people
have ‘Moderate’ and, more particularly, ‘Low’ scores. Clearly, there is some
association between these two variables, with the suggestion of a curve rather
than a straight line. It is possible to describe this relationship in terms of
percentage differences. However, it is difficult to judge the strength of the
relationship from such comparisons. It is necessary to turn to other forms of
analysis to achieve this, as we shall see shortly.

Forms of Association

An association between two variables can take various forms:

• positive or negative;
• linear or curvilinear; and
• symmetrical or asymmetrical.

Positive and Negative

Positive and negative associations are illustrated using a simplified form of Table 4.2.
Environmental Worldview (recoded into two categories) is cross-tabulated with
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Table 4.2 Environmental Worldview by Age (Residents; observed frequencies and
percentages)

Age
Environmental Worldview 18–34 35–54 55+ Total

Low a 21(16%) b 16 (12%) c 42 (31%) 79 (20%)
Moderate d 45(35%) e 46 (33%) f 65 (48%) 156 (39%)
High g 30(23%) h 52 (38%) i 22 (16%) 104 (26%)
Very high j 32(25%) k 24 (17%) l 6 (4%) 62 (15%)

Total 128(100%) 138(100%) 135(100%) 401(100%)
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Age (in three categories) giving a simple 2 by 3 table. Table 4.3 presents four
examples of the different ways in which these two variables could be related,
as well as their actual relationship in the Resident sample.

Table 4.3(a) indicates how the table would appear if there was no relation-
ship; cell percentages in each row are the same as the row marginal percent-
age. Table 4.3(b) shows what a strong positive relationship would look like.
This is indicated by the cells in which there is overrepresentation, that is, in
which there are more respondents than would be expected if there was no
association. This relationship is described as positive because the oldest age
category (‘high’) is associated with a ‘High’ score on the EWV scale, and the
youngest age category (‘low’) is associated with a ‘Low’ score. The reverse is
the case in Table 4.3(c). Older age is associated with a ‘Low’ score’ and
younger age with a ‘High’ score. Hence, as the variable categories are defined,
this is a negative relationship.

It is possible to imagine a diagonal drawn across Tables 4.3(b) and 4.3(c), in
the former, from the top left-hand cell to the bottom right-hand cell, and in the
latter, from the bottom left-hand cell to the top right-hand cell. It is in the two
corner cells of the table to which the line goes that the overrepresentation
occurs. This line would be in the other direction (bottom left-hand corner to
top right-hand corner) if the order of the categories for one of the variables
had been reversed. Hence, the direction of the line does not indicate whether
a relationship is positive or negative; it is necessary to look closely at the order
of the categories.

In order to help recognize the patterns in cross-tabulations, in all subsequent
tables, cells in which there is overrepresentation will be shown in bold, and if
the percentage exceeds the marginal by at least 20 per cent, it will be shown in
italics as well as bold.
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Table 4.3 Environmental Worldview by Age
(percentages)

(a)  No relationship

Age
EWV 18–34 35–54 55+ Total

Low 47 47 47 47
High 53 53 53 53

Totals 100 100 100 100
n (128) (138) (135) (401)

(b)  Strong positive relationship

Age
EWV 18–34 35–54 55+ Total

Low 91 47 5 47
High 9 53 95 53

Totals 100 100 100 100
n (128) (138) (135) (401)

(d)  Actual relationship (Residents)

Age
EWV 18–34 35–54 55+ Total

Low 45 30 67 47
High 55 70 33 53

Totals 100 100 100 100
n (128) (138) (135) (401)

(c)  Strong negative relationship

Age
EWV 18–34 35–54 55+ Total

Low 6 47 86 47
High 94 53 14 53

Totals 100 100 100 100
n (128) (138) (135) (401)
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Linear and Curvilinear

Tables 4.3(b) and 4.3(c) represent positive and negative linear relationships.
Table 4.3(d), which reports the actual form of the relationship in the Resident
sample, is clearly also negative: as Age increases, EWV score decreases. How-
ever, there is a suggestion in 4.3(d) that the actual relationship is curvilinear.
The overrepresentation starts in the bottom left-hand cell, then goes across into
the ‘35–54’ and ‘High’ cell, and then goes up to the top right-hand cell. A line
through these cells forms a simple curve. In fact, the Age category with the
greatest overrepresentation among the three ‘High’ EWV cells is ‘35–54’. The
overrepresentation is much less in the ‘18–34’ age ‘High’ cell. This can only be
explored with a wider range of categories on both variables. See what you can
make of the pattern of the relationship in Table 4.2. Note that the table is con-
structed differently than Table 4.3.

There are other ways of identifying whether an association is linear or curved.
We shall do this later in the chapter with these two variables in their continu-
ous rather than categorical forms.

Symmetrical and Asymmetrical

The third way in which an association can be described is in terms of symmetry –
whether it is symmetrical or asymmetrical. The measures of association that are
discussed in this chapter are referred to as symmetrical, which means that the
relationship can be examined from the point of view of either of the variables.
All that is being established is whether the variables are associated, and to what
extent. No assumptions are made about whether one variable has an influence
on the other. However, there is another set of measures that are used when it
is possible or desirable to assume that there is a direction of influence between
two variables, when it can be assumed that a person’s position on one variable
influences their position on the other variable. For example, it can be argued
that a person’s level of education has an influence on their income, or on the
type and status of occupation that they occupy. These measures of association
are referred to as being asymmetrical. The variables are examined from only
one point of view.

Measures of Association for Categorical Variables

The inspection of contingency tables can indicate whether or not there is an
association between two variables and, perhaps, can provide a rough idea of the
strength of a relationship. It is clear that the associations in Tables 4.3(b) and
4.3(c) are stronger than in Table 4.3(d). The percentage differences between
‘High’ and ‘Low’ EWV categories for extreme age categories are smaller in the
latter than in the two former parts of the table. However, while percentage dif-
ferences can give some indication of the strength of association, what is needed
is a summary measure that can not only indicate this, but also be used to make
comparisons with associations between other variables. This problem is dealt
with by the use of measures of association.
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Nominal-level Variables

Measures of association for nominal-level variables usually produce a number
between 0 and 1. A value of zero indicates little or no association, while 1 indi-
cates a perfect association or relationship.

Different coefficients are required for different levels of measurement. Four
major measures of association are used with categorical data. Three of them,
the contingency coefficient, the phi coefficient and Cramér’s V, can be used
with both nominal-level and ordinal-level data, although they are particularly
appropriate when one or both variables are nominal. All are based on the dif-
ferences between the observed and expected frequencies in the cells of a con-
tingency table. Another coefficient, gamma, can only be used when both
variables are at ordinal level, or with interval-level or ratio-level variables that
have been coded into categories. Some exceptions to the uses of these coeffi-
cients will be encountered in due course.

Contingency coefficient

The contingency coefficient is derived from chi-square (χ2, pronounced ‘kie’ to
rhyme with ‘tie’). First, it is necessary to explain how χ2 is calculated for different-
sized tables. It is based on the squared difference between the observed (O) and
the expected (E) frequencies, divided by E, for every cell of a contingency table.
This calculation provides an indication of how much each individual cell con-
tributes to the overall association between the variables. The total χ2 value for
all cells provides the basis for a measure of overall association. If E and O are the
same in all cells of a table, there will be no association between the variables. The
extent to which they are different indicates some kind of association. The larger
the total χ2, the stronger is the association. The equation is:

(O – E)2

χ2 =
∑

(4.1)
E

χ2 can be calculated for tables of any size. All the necessary information is avail-
able in Table 4.1 to be able to calculate the total χ2 value.2 In the top left-hand
cell, 

(34 − 42.6)2

χ2 = 1.7385
42.6

Repeating this procedure for all ten cells produces the following figures, set out
in the order of their cell position in the table.

1.7385 + 0.0084 + 0.3144 + 0.6442 + 5.6809 
+ 1.7473 + 0.0084 + 0.3160 + 0.6475 + 5.7094 = 16.8150
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It is no coincidence that the χ2 values for the two cells in each column are
very similar. This is inevitable when there are only two categories for a variable.
It is also worth noting that it is the two cells in the ‘No religion’ column that
make the greatest contributions, 68 per cent of the total χ2 in fact. As we have
already noted, there is a considerable difference between males and females in
this category.

This method can be used with a contingency table of any size. However, a
2 by 2 table is a special case in which a different procedure can be used, parti-
cularly when N (or n) is greater than 40. The equation includes what is known
as a correction for continuity, which is supposed to improve its efficiency. It is
also easier to calculate.

If the four cells in a 2 by 2 table are identified as a, b, c and d, as follows,

the equation for a sample is:

n([a × d] − [b × c] − n/2)2

χ2 = (4.2)
(a + b)(c + d)(a + c)(b + d)

The expressions ‘a × d’ and ‘b × c’ simply indicate that the diagonally opposite
cell values should be multiplied. The square brackets mean that this calculation
should be done before any others in the numerator (top line). The denomina-
tor (bottom line) simply means that all four marginals are multiplied in pairs.
Let us explore this by recoding Religion into two categories, ‘Some religion’ and
‘No religion’.

Table 4.4 is a simplified 2 by 2 version of Table 4.1. We can calculate χ2 using
the above equation:

399([133 × 33] − [67 × 166] − 399/2)2 399(−6932.5)2

χ2 = = = 16.114
200 × 199 × 299 × 100 1,190,020,000

While this value is lower than for the 2 by 5 table, it is higher than the value
that would be arrived at by using the previous method (15.245 with the 2 by 2
data). This is due to the continuity correction that the 2 by 2 equation contains.

There are some restrictions on when the χ2 can be calculated legitimately.
This is because cells with small expected frequencies can produce inflated χ2

values. Therefore, for tables of 2 by 3 and larger, the following rules must be
followed:

• Not more than 20 per cent of the expected frequencies can be less than 5.
• No expected frequency can be less than 1.
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In the case of 2 by 2 tables, all the expected frequencies should be at least 5.
In order to satisfy these rules, it may be necessary to collapse some categories

in a table, if this is meaningful, particularly those that have small marginal
totals. However, not much can be done in the case of 2 by 2 tables. These rules
can be a problem when the table total is small, or one or both of the variables
is badly skewed. It is these requirements that make it necessary to use relatively
large samples or populations when it is expected that the analysis of the data
will require the use of contingency tables.

Now that we can calculate χ2, we can return to the contingency coefficient.
This is the most basic measure of association between two nominal-level vari-
ables. It is derived directly from the total χ2 in a contingency table. However,
as the magnitude of the total χ2 can be influenced by the table total, the χ2 has
to be modified to take this into account. Hence, the equation for the contin-
gency coefficient (C), for data from a sample, is:

For data from a population, n is replaced by N.
Returning to Table 4.1 and the χ2 value calculated for it above, we can now

get an indication of the strength of this relationship using the equation for the
contingency coefficient:3

The values for the contingency coefficient range from 0 to 1.
The coefficient has a number of strengths. It can be used with nominal-level

data, and it can detect an association regardless of whether it is linear curvilin-
ear or more complex. However, it has some major limitations. While it produces
a value of 0 if there is no association, it can never produce a value of 1 for a per-
fect association. This means that it is only possible to compare contingency
coefficients across tables of the same size.

Standardized contingency coefficient

The upper limit, or maximum value, of the contingency coefficient is depen-
dent on the size of the table. For example, in a 2 by 2 table the maximum
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Table 4.4 Religion by Gender (Residents; observed frequencies)
Religion

Gender Some religion No religion Total

Male a 133 b 67 200
Female c 166 d 33 199

Totals 299 100 399

C = 

√
χ2

n + χ2 (4.3)

C = 

√
16.8150     

= 

√
16.8150  

= √0.0404 = 0.201
399 + 16.8150 415.8150
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possible value is 0.707 and in a 3 by 3 table, 0.816. It is only with tables larger
than 5 by 5 that the upper limit exceeds 0.900. These values can be calculated
using the following equation. The one for a ‘square’ table, that is, one with the
same number of rows and columns, is

where r is the number of rows or columns. If the table is not square, then

where r is the number of rows and c is the number of columns.
There is a simple solution to the problem of the variation in the upper limits

of the contingency coefficient. They can be standardized by dividing them by
their upper limit. This makes all maximum values, regardless of the table size
or shape, equal to 1.4 These standardized coefficients (Cs) can be compared
between tables of any size. As we shall see, other attempts have been made to
overcome this problem, namely the use of Cramér’s V (see below).

If we calculate the upper limit for Table 4.1 we find that it is 0.795 (you
might like to try this as an exercise). Then applying this correction to the C that
we have just calculated, Cs = 0.201/0.795 = 0.253. This coefficient can be
compared with others that use a χ2-based procedure.

The second limitation derives from the requirements for the computation of
χ2. The table must be of a form that meets these requirements before the con-
tingency coefficient can be calculated. The third limitation is that C cannot
really be compared with many other measures of association, mainly because
they can normally only detect linear relations (see the next section for a dis-
cussion of this issue).

Before leaving the contingency coefficient, it is necessary to outline the con-
vention to be followed in the rest of the book for indicating the strength of an
association, based on the value of the coefficient. This convention will be used
for all measures of association.5
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Upper limit (L) = 

√
r − 1

r 

L = 4

√
r − 1 × c − 1

r c
(4.5)

0.00 None
0.01–0.09 Negligible
0.10–0.29 Weak
0.30–0.59 Moderate
0.60–0.74 Strong
0.75–0.99 Very strong
1.00 Perfect

(4.4) 
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Phi

For 2 by 2 tables, or tables in which one variable is in two categories, a special
version of the contingency coefficient should be used, known as phi (φ), pro-
nounced to rhyme with ‘pie’. It uses a simplified version of the equation for the
contingency coefficient:

For this size of table, or any table with one dichotomized variable, phi ranges
from 0 to 1, but when applied to larger tables, its maximum value can exceed
1. Hence, it should only be used with 2 by 2, or 2 by c or r by 2 tables.

This means that we could have used φ in Table 4.1, the 2 by 5 version. Using
the χ2 value for this table (16.8150), φ can be calculated as follows.

The 2 by 2 version of the table (Table 4.4) produced a χ2 of 16.114. Hence,

While the two values are not identical, the difference is only in the third deci-
mal place, or in the second if rounded to two places, so that 0.205 becomes
0.21. This difference is of no consequence.

Cramér’s V

The most commonly used measure of association for categorical variables, par-
ticularly at the nominal level, is Cramér’s V. Again, it is a variation of the con-
tingency coefficient and it is designed to yield values between 0 and 1. The
denominator is replaced by the smaller of the two values r − 1 and c − 1:

Applying this equation to Table 4.1, we get

Note that this calculation ends up being the same as that for φ (see above). The
reason is that one variable, Gender, is dichotomized, giving the value of 1 for
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φ = 

√
χ2

n 
(4.6)

φ = 

√
16.8150 

= √0.0421 = 0.205
399

φ = 

√
16.114 

= √0.0404 = 0.201
399 

V =

√
χ2

n × (smaller of r − 1 and c − 1)
(4.7)

V = 

√
16.8150   

= 0.205
399 × (2 − 1)
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the r − 1 component of the equation. In a table with at least three categories
for both variables, this component would be at least 2. Hence, for Table 4.1,
C = 0.201, Cs = 0.253, φ = 0.205 and V = 0.205.

When it is possible to use more than one of these coefficients, it is not always
easy to know which one is the most appropriate. They all are. However, it is not
advisable to use C except with large tables, and φ cannot be used if both vari-
ables have more than two categories. In my experience, Cramér’s V appears to
be a conservative measure and Cs usually produces a higher figure. Cramér’s V
is the most commonly used measure where φ cannot be used.

There are no exact answers to the calculation of the strength of association
between categorical variables. Different statisticians have devised different
methods, each with its own strengths and weaknesses. In the end, we are look-
ing for a general indication upon which a judgement can be made as to the
importance of the results of the analysis.

Ordinal-level Variables

Gamma

There is a more appropriate measure of association for use with contingency
tables that have two ordinal-level variables, namely, Goodman and Kruskal’s
gamma (γ or G). It is based on the idea of comparing every possible pair of
respondents in a sample or population to see whether their positions on the two
variables are concordant or discordant. For example, the age and attitudes of
two respondents, A and B, can be compared to see whether, say, older age is
associated with a higher attitude score. If B is older than A, and has a higher
score, this pair would be regarded as concordant. Similarly, there would be con-
cordance if B is younger and has a lower score. If neither is the case, the pair
would be discordant. In other words, we are looking for the level of consistency
in the pattern of responses on two variables. If every pair is concordant, there
is a perfect relationship, that is, there is absolute consistency in the way all
respondents are located on the two variables. On the other hand, if every pair
is discordant, there is no relationship. Hence, the balance between concordant
and discordant pairs determines the relative strength of a relationship.

Gamma ranges from −0.1 to + 0.1. The equation is:

C − DG = (4.8)
C + D

where C is the number of concordant pairs and D the number of discordant
pairs. The equation is deceptively simple. However, the work involved in
manually comparing every pair in a large sample is horrendous. While computers
can now do this in the blink of an eye, there is a manual computational method
that can be used with contingency tables.

The method for calculating gamma will be demonstrated with the data in
Table 4.2, in which both variables are ordinal, although based on higher levels
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of measurement. We have already noted that the percentages in the cells
suggest a negative and slightly curvilinear relationship. As we shall see, this may
cause some slight problems. The cells have been assigned letters for conve-
nience of reference in calculating gamma.

To calculate the concordant pairs (C), we start at one end of the positive
diagonal, that is, at the ‘18–34’ years and ‘Low’ EWV cell (a) and work towards
the ‘55 +’ years and ‘Very high’ EWV cell (l). We start by focusing on the
respondents in cell a, and compare them with those in all the cells to the right
of and below a, that is, e, f, h, i, k and l.6 Respondents in these latter cells are
older and have higher EWV scores than respondents in a. The number of con-
cordant pairs here is arrived at by multiplying the number in a by the sum of
the numbers in the other six cells. Now we move to cell b and identify the cells
in which respondents are older and have higher scores, that is, f, i and l. The
same calculation is done. We now do the same by focusing on cells d, e, g and
h in turn. The number of concordant pairs is the sum of these products (see
Table 4.5).

To calculate the discordant pairs (D), we work from one end of the nega-
tive diagonal. This diagonal runs from the cell that links the ‘18–34’ years
and ‘Very high’ EWV cell (j), to the ‘55 +’ years and ‘Low’ EWV cell (c).
This time we start by focusing on the respondents in cell j and compare them
with those in cells to the right and above j, that is, b, c, e, f, h and i. Respon-
dents in these latter cells are older and have lower EWV scores than respon-
dents in cell j. The number in j is then multiplied by the sum of the other
six cells. Next we focus on cell k and multiply it by the sum of its discordant
cells c, f and i. Then we move to cells g, h, d and e in turn, and do similar cal-
culations. The sum of all these products is the total number of discordant
pairs (see Table 4.5).
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Table 4.5 Calculation of gamma (from Table 4.2)
Focal cell Paired cells Concordant pairs

a e, f, h, i, k, l 21 (46 + 65 + 52 + 22 + 24 + 6) = 4,515
b f, i, l 16 (65 + 22 + 6) = 1,488
d h, i, k, l 45 (52 + 22 + 24 + 6) = 4,680
e i, l 46 (22 + 6) = 1,288
g k, l 30 (24 + 6) = 900
h l 52 (6) = 312

Total = 13,183

Discordant pairs

j b, c, e, f, h, i 32 (16 + 42 + 46 + 65 + 52 + 22) = 7,776
k c, f, i 24 (42 + 65 + 22) = 3,096
g b, c, e, f 30 (16 + 42 + 46 + 65) = 5,070
h c, f 52 (42 + 65) = 5,564
d b, c 45 (16 + 42) = 2,610
e c 46 (42) = 1,932

Total = 26,048
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We can now calculate gamma for Table 4.2:

The coefficient indicates a moderate, negative association between these two
variables.

While G is the most appropriate measure of association for Table 4.2, it is
also possible to use C, Cs and V, particularly if the form of association is not
linear. The χ2 for this table is 49.706, and this produces the following values for
these measures of association; C = 0.332, Cs = 0.396 and V = 0.249 (you may
like to calculate these as an exercise). It would be inappropriate to use φ with
this table. When the relationship is linear, in theory, gamma should produce a
higher value than these other coefficients. However, as there is a tendency
towards a curve in this relationship, with the exception of V, which tends to be
rather conservative, the other coefficients are about the same as or higher than
gamma.

Gamma has two main limitations. Firstly, it can only detect linear relation-
ships while C, Cs, φ and V can all detect any kind of relationship. Therefore,
when a curvilinear or other form of relationship is present, it is useful to also
use these other coefficients with categorical data. However, this disadvantage is
not peculiar to gamma (more on this shortly). The second disadvantage is that
gamma ignores all tied pairs, that is, when the members of a pair have the same
scores or positions on one or both variables. When there are many tied pairs,
gamma will overestimate the strength of the relationship. Kendall’s tau-b and
Somer’s d can be used in such cases. I will discuss tau-b here and return to
Somer’s d in the next chapter.7 In spite of these limitations, gamma is widely
used with ordinal-level data.

Kendall’s tau-b

Kendall’s tau-b (τb) is an alternative measure of association to gamma, particu-
larly in square tables, where there is the same number of rows and columns. It
allows for ties on both variables. The equation is a variation on the one for
gamma:

C − Dτb = (4.9)
√(C + D + Tx)(C + D + Ty)

where Tx is the number of ties on one variable and Ty the number of ties on the
other.

Using the same example as for gamma (see Tables 4.2 and 4.5), we already
know the values for C − D (12,865) and C + D (39,231). To calculate Tx, the
ties on Age, we multiply cell a by the sum of the other three cells in the col-
umn (d, g and j), repeat the same procedure in the other two columns, then
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G = 
C − D

= 
13,183 − 26,048

=
−12,865 

= −0.328
C + D 26,048 + 13,183 39,231 
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sum the results. Ty, the ties on EWV, is arrived at using the same procedure
along each row. Hence,

Tx = 21(45 + 30 + 32) + 16(46 + 52 + 24) + 42(65 + 22 + 6) = 8105
Ty = 21(16 + 42) + 45(46 + 65) + 30(52 + 22) + 32(24 + 6) = 9393

Now entering these figures in the equation,

C − D 12,865τb = =
√(C + D + Tx)(C + D + Ty) √(39,231 + 8105)(39,231 + 9393)

12,865 12,865= = = 0.268
√47,336 × 48,624 47,975.68

This value is more conservative than that for gamma (0.328). As a result of the
ties being included, tau-b will never be larger than gamma.

Other Methods for Ranked Data

Two other coefficients are available for use when objects or individuals can be
ranked in two ordered series, rather than in ordered categories. Suppose a class
of students is rank-ordered according to their performance on both their mid-
semester test and their end-of-semester examination. If we wanted to know
how consistent the students’ performances were, we could use one of two tests:
Spearman’s rank correlation coefficient (rs), known as rho, or Kendall’s rank
correlation coefficient known as tau (τ).8 These coefficients may be useful with
small numbers where persons or items have unique ranks. See Siegel and
Castellan (1988) and Elifson et al. (1998) for a discussion.

Combinations of Categorical and Metric Variables

We have noted that if a measure of association is required in a contingency table
that combines nominal-level or ordinal-level with interval-level or ratio-level
variables, such as EWV and Gender, then it may be necessary to transform the
continuous variable (e.g. EWV) into a categorical variable.9 Of course, when a
measure of association is required between two continuous variables, it is pos-
sible to transform both into the categorical form (as in Table 4.2) and then use
G or even Cs or V.

Coding interval-level and ratio-level variables into categories, and creating
contingency tables, will usually allow the form of the relationship to be deter-
mined. However, these measures of association are not as powerful as those
that have been developed for use with interval-level and ratio-level variables.
They are likely to produce more conservative or lower values than the more
powerful measures (this will be discussed in the next section). However, Cs and
V have one distinct advantage: they can detect any pattern in the relationship
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between two variables, while the more powerful measures can only detect
linear relationships. Hence, if a relationship is curvilinear, or if it is suspected to
be so, it may be useful to recode metric variables into categories and use Cs or V.

Association with Interval-Level and Ratio-Level Variables

We now turn to measures of association that are appropriate when both vari-
ables are metric, that is, they are either interval-level or ratio-level. The same
measures can be used with variables at both levels of measurement. As the mea-
sures of association discussed in this section of the chapter are only designed to
detect linear relationships, it is important to first establish what form a relation-
ship takes in order to know whether the measure is appropriate and to be able
to interpret the results.

Scatter diagrams

We have seen how the nature or pattern of a relationship can be detected in a
cross-tabulation. However, with interval-level and ratio-level variables, this
would require transforming them into categorical variables. Instead, it is possible
to construct a scatter diagram by plotting all points of intersection between the
two variables. In other words, the combination of each person’s position on the
two variables is plotted.

Figure 4.2 shows a scatter diagram for the relationship between EWV and
Age in the Resident sample. This is a real rather than a contrived scatter dia-
gram. It indicates a clustering of responses among the over 50s at the lower end
of the EWV scale. Between 40 and 50, the clustering tends to move up the
scale. However, under 40 years, the clustering is not as consistent; it is spread
from the middle to higher scores. In fact, there is evidence of a slight curve at
this end of the diagram. In other words, rather than the younger respondents
having high EWV scores, they, and those up to about 40, tend to be clustered
around moderate scores. The most conservative line we could draw to repre-
sent this clustering would start as a ‘flat’ line through moderate scores for the
younger respondents, and then ‘drop off ’ to lower scores in older age. It would
be a ‘bent’ rather than a straight line.10 You might like to compare Figure 4.2
with Table 4.2. However, the coefficients to be discussed in this section cannot
detect the ‘bend’; they can only assume a straight line, from reasonably high
scores among the younger respondents to rather low scores among the older
respondents.

It is a common practice to simplify such scatter diagrams into a line that
represents the shape of the association, be it straight or curved. However, this
can lead to the loss of important information, as is evident in Figure 4.2. It is
possible to view this relationship as either linear or curvilinear. While the
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latter may be a more accurate representation,  it may be forcing the data into a
pattern that overlooks important differences. It is clear that younger people in
the sample have a range of attitudes towards the environment. They may even
be divided into two main groups, and these groups may be related to some
other variable, such as education. It is always important to inspect scatter
diagrams and contingency tables very carefully for diversity as well as for associ-
ations, for in the dispersion may be clues to important patterns in the data.

Covariance

Another way of thinking about any association is how much commonality there
is in, say, the responses of a sample or population on two variables. Or, to put
this more technically, how much does the variance on one variable coincide
with the variance on the other variable? This is what is meant by covariance.

In examining the characteristics of single continuous (metric) variables, we
explored the notion of variance in terms of the sum of the deviations of indi-
vidual scores from the mean score. We found that this principle is also con-
tained in the idea of mean absolute deviation and standard deviation (see
pp. 79–84). This same idea can be used to examine the relationship between
two variables. However, in this case, the deviations from the means of the
scores on both variables are multiplied together. For sample data, this is

Descriptive analysis – bivariate

107

Age in years

100806040200

EW
V 

sc
al

e

120

110

100

90

80

70

60

50

Figure 4.2 Scatter diagram: Environmental Worldview by Age (Residents)
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expressed as (x − x–)(y − y–). To arrive at the covariance, the products of the two
deviations are summed for all respondents, and this is divided by n, or prefer-
ably n − 1 (see the discussion on variance):

Unfortunately, this coefficient has limited value on its own as the size of the
covariance is dependent on the units of measurement used. Large units (such as
Age in 10-year intervals) produce larger values than when smaller units are used
(such as Age in years). However, covariance provides the major ingredient in the
most commonly used measure of association for continuous variables, Pearson’s r.
In fact, all that this latter measure does is standardize the covariance.

Pearson’s r

There is one measure of association, commonly referred to as the correlation
coefficient, which is almost universally used with interval-level and ratio-level
variables. It is Pearson’s r or, more technically, Pearson’s product moment corre-
lation coefficient. The latter term identifies its use in bivariate analysis.

Pearson’s r represents the extent to which individuals, events, etc., occupy
the same relative position on two variables. This coefficient builds on the idea
of covariance, of how much the variance on one variable coincides with the vari-
ance of the other variable – in other words, how much they vary together, how
much they are related, that is, co-related.

Peasron’s r is produced by standardizing the covariance. This is done by divid-
ing the covariance by the product of the standard deviations of the two vari-
ables. The display below begins with a simple version of this procedure and is
followed by the more elaborate versions that include the calculation of the
covariance component as well as the two variances.

Covxy
Pearson’s r = (4.11)sx sy∑

(x − x–)(y − y–)
= (4.12)

(n − 1) sx sy)

∑
(x − x–)(y − y–)

= (4.13)
√[

∑
(xi − x–)2 

∑
(yi − y–)2]

This correlation coefficient ranges from −1 to +1. Its sign is determined by whether
one or other of the deviations from the mean is negative; if both are positive or
negative, the sign will be positive; if both are different, the sign will be negative.

There are two commonly used ways of calculating r, the mean deviation
method and the raw score method. The former allows for a clearer understanding
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∑
(x − x–)(y − y–)

Covariance (Covxy) = (4.10)
n − 1
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of the principles involved, while the latter is easier for manual calculations.
They will both be illustrated using a subsample of 21 respondents from the
Resident sample.11 Figure 4.3 shows a scatter diagram of the relationship between
Age and EWV in this subsample.

Table 4.6 provides the data required to use the mean deviation method. The
equation for this method is (4.13). Substituting the data in the equation we get:

The equation for the raw score method is:

n(
∑xy) − (

∑x)(
∑y)r = (4.14)

√[n(
∑x2) − (

∑x)2][n(
∑y2) − (

∑y)2]

Entering the data in Table 4.7 into this equation we get:

(21 × 83,527) − (988 × 1877)
r =

√(21 × 51,672 − 9882)(21 × 172,687) – 18772

1,754,067 − 1,854,476 −100,409= = = −0.946
√(1,085,112 − 976,144)(3,626,427 − 3,523,129) 106,095.13

−4,781.38 −4,781.38= = = −0.946
√5,188.95 × 4,918.95 5,052.15

Figure 4.3 Scatter diagram: Environmental Worldview by Age (subsample
of Residents)
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Table 4.7 Raw score method for computing r (subsample of Residents)
Age EWV score

Respondent x x2 y y2 xy

1 20 400 118 13,924 2,360
2 23 529 102 10,404 2,346
3 27 729 109 11,881 2,943
4 28 784 114 12,996 3,192
5 33 1,089 107 11,449 3,531
6 36 1,296 100 10,000 3,600
7 37 1,369 90 8,100 3,330
8 39 1,521 94 8,836 3,666
9 40 1,600 103 10,609 4,120

10 43 1,849 89 7,921 3,827
11 47 2,209 85 7,225 3,995
12 50 2,500 93 8,649 4,650
13 51 2,601 88 7,744 4,488
14 55 3,025 79 6,241 4,345
15 61 3,721 77 5,929 4,697
16 62 3,844 71 5,041 4,402
17 64 4,096 78 6,084 4,992
18 65 4,225 67 4,489 4,355
19 68 4,624 75 5,625 5,100
20 69 4,761 72 5,184 4,968
21 70 4,900 66 4,356 4,620

n = 21
∑

x = 988
∑

x2 = 51,672
∑

y = 1877
∑

y2 = 172,687
∑

xy = 83,527

Table 4.6 Mean deviation method for computing r (sub-sample of Residents)
Age EWV score

Respondent x x − x– (x − x–)2 y y − y– (y − y− )2 (x − x–)( y − y–)

1 20 −27.05 731.57 118 28.62 819.05 −774.08
2 23 −24.05 578.29 102 12.62 159.24 −303.46
3 27 −20.05 401.91 109 19.62 384.91 −393.32
4 28 −19.05 362.81 114 24.62 606.10 −468.93
5 33 −14.05 197.34 107 17.62 310.43 −247.51
6 36 −11.05 122.05 100 10.62 122.76 −117.32
7 37 −10.05 100.95 90 0.62 0.38 −6.22
8 39 −8.05 64.76 94 4.62 21.34 −37.17
9 40 −7.05 49.67 103 13.62 185.48 −95.98

10 43 −4.05 16.38 89 −0.38 0.15 1.54
11 47 −0.05 0.00 85 −4.38 19.19 0.21
12 50 2.95 8.72 93 3.62 13.10 10.68
13 51 3.95 15.62 88 −1.38 1.91 −5.46
14 55 7.95 63.24 79 −10.38 107.76 −82.55
15 61 13.95 194.67 77 −12.38 153.29 −172.74
16 62 14.95 223.57 71 −18.38 337.86 −274.84
17 64 16.95 287.38 78 −11.38 129.53 −192.93
18 65 17.95 322.29 67 −22.38 500.91 −401.79
19 68 20.95 439.00 75 −14.38 206.81 −301.32
20 69 21.95 481.91 72 −17.38 302.10 −381.55
21 70 22.95 526.81 66 −23.38 546.67 −536.65∑

988 5,188.95 1877 4,981.95 −4781.38
x– = 47.05 y– = 89.38
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The Pearson correlation coefficient for this example is extremely high. The
scatter diagram indicates what a distribution would need to be like to achieve
such a value. Note that if these two variables were perfectly correlated (nega-
tively), the ages would decrease in perfect order, in the same way as the EWV
scores increase. An inspection of either Tables 4.6 or 4.7 indicates that when
Age is in order, from youngest to oldest, the EWV scores do not decrease uni-
formly. This accounts for the scatter in Figure 4.3.

It is also possible to calculate Pearson’s r from the z-scores of both variables.
In this case, the equation is:

∑
(zx zy)Pearson’s r = (4.15)n

The attention given to Pearson’s r here is intended to reinforce the idea that
it is a universal and extremely useful coefficient. It also forms the basis of many
other types of data analysis.

A measure of the actual ‘overlap’ between these two variables can be obtained
by squaring r. Hence, in the example of the association between EWV and Age
(Figure 4.3), r2 = 0.896. Translated, this means that 89.6 per cent of the variance
of the two variables is common. Put differently, knowing a person’s position or
score on one variable gives an 89.6 per cent chance of predicting their position
or score on the other variable. Of course, in real research this figure is usually
much lower. For example, in the actual relationship between these two variables
in the Resident sample, r = −0.308 and r2 = 0.095. Hence, only 9.5 per cent of
the variance is in common.

In the earlier discussion of the contingency coefficient, I provided a conven-
tion for describing the strength of any association. Cohen (1988) has provided
a simpler scheme for Pearson’s r in which a coefficient of approximately 0.1 is
regarded as ‘small’, 0.3 as ‘medium’ and 0.5 or more as ‘large’.

When used in bivariate relationships, r is sometimes referred to as a zero-
order correlation coefficient. This distinguishes its bivariate use from use in
multivariate analysis. We shall return to this in the next chapter.

Comparing the Measures

It is very important to select a measure of association that is appropriate for the
levels of measurement of the variables being analyzed. Nevertheless, we have
already noted that there is some flexibility in their application. For example, a
number of measures are available when both variables are nominal: φ for tables
where at least one variable is dichotomized, and C, Cs and V for tables with
variables in three or more categories. These coefficients can also be used for ordinal-
level data, although G is more appropriate if the association is linear. Pearson’s r
is the most commonly used measure when both variables are interval or ratio.
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However, when a set of ordinal-level categories can be assumed to approximate
interval-level data, it is possible to also use r, albeit with some caution.

Now let us examine an example in which it is possible to use all of these
measures (except for φ). We can then compare the values of the various coeffi-
cients. EWV and Age have been coded into categories of approximately equal
intervals, EWV into four categories and Age into six categories. In Chapter 3
we noted that converting such variables into categories of equal width does not
destroy the interval-level character of the data. However, it must be noted that
the categories used for both variables do not completely conform to the inter-
val-level requirements. The extreme categories, which incorporate the tails of
the distributions, are not the same width as the other categories of the variable;
with one exception, the 18–24 Age category, they are all wider, although of
uniform width. In spite of this, I believe it is useful to apply Pearson’s r to the
categorical as well as to the continuous form of these two variables.12

First, let us compare the values of r for this association, for both the contin-
uous and categorical forms of the variables. In the Resident sample, r is −0.31
for both forms of measurement. This illustrates that recoding scores (e.g. EWV)
or discrete continuous measures (e.g. Age) into categories may not affect the
value of the correlation coefficient.

Here is another example in which all the measures of association can be com-
pared. Table 4.8 reports a contingency table for two continuous variables that
have been categorized, Education and Age (Residents). Education was originally
an ordinal-level variable, but is now dichotomized, and Age was a ratio-level
variable, now in six categories. As we have seen, even in its categorical form,
Age closely approximates at least an interval-level variable. Any variable that is
dichotomized, regardless of its original level of measurement, is amenable to
the use of measures of association appropriate for interval-level and ratio-level
data. Hence, the whole range of measures of association can be applied to this
cross-tabulation.

An inspection of the table shows a genuine curvilinear relationship; the
extreme Age categories (‘18–24’, ‘55–64’, ‘65 +’) are overrepresented in the
‘No university education’ category, and the middle Aged categories (25–54) are
overrepresented in the ‘University educated’ category. It is possible to trace a
curve through these overrepresented categories. Clearly, there is some associa-
tion. However, when we compare C, Cs, V, G and r we find a discrepancy; G
and r are very different from the other coefficients (C = 0.290, Cs = 0.361,
V = 0.303, φ = 0.303, G = −0.182, r = −0.138).13 The latter two are lower
because they cannot detect the curve.

The curve in this relationship is even more marked when five education
categories are used; postgraduate qualification is definitely more common among
the ‘35–44’ and ‘45–54’ Age categories. In this case, φ cannot be used and r
must be used with caution as the intervals in the ordinal-level measurement of
Education are certainly not equal. The coefficients for this form of the contin-
gency table are: C = 0.408, Cs = 0.451, V = 0.225, G = −0.151, r = −0.160.
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Hence, in both cases, the measures that can only detect linear relationships, G
and r, produce much more conservative and less useful results. Even the added
power of r is of no value in such cases. The choice is between Cs and V; use the
former if you want the most ‘flattering’ value and the latter if you wish to be
more conservative.

Association Between Categorical and Metric Variables

When two variables are at the same level of measurement, the choice of mea-
sure of association is straightforward. When they are both nominal, there are
two main possibilities. When they are both ordinal, the choice will depend on
whether the association is linear or not. When both variables are metric (inter-
val or ratio) there is really no choice; Pearson’s r is it. However, invariably in
social research we have to deal with variables at different levels of measurement
when we are trying to establish associations. There are a number of strategies
available, most of which we have already discussed. What follows here is mainly
a summary of the methods that can be used when one variable is categorical and
the other is metric.

Code Metric Variable to Ordinal Categories

A common strategy is to reduce the metric variable to a set of ordinal-level
categories. This is done using recoding techniques that were discussed earlier
for EWV scores (originally interval) and Age (originally ratio).

Dichotomize the Categorical Variable

If the categorical variable is already dichotomized, or can be recoded into two
categories, it is possible to use the measure of association appropriate to interval-
level and ratio-level variables, namely, Pearson’s r. This is an acceptable practice,
the technical reasons for which do not need to concern us here.
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Table 4.8 Education by Age (percentages; Residents)
Age

Education 18–24 25–34 35–44 45–54 55–64 65+ Total

No uni. edn 77 42 43 53 63 78 58
Uni. edn 23 58 57 47 37 22 42

Totals 100 100 100 100 100 100 100
n 47 81 77 58 56 78 397
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Summary

• Associational analysis is an elaborate form of description in which the
patterns or connections between variables are investigated. Such connec-
tions are expressed statistically as measures of association, or correlation
coefficients, which indicate the extent of common variance between two
variables. Establishing the strength of such associations provides some
understanding of social phenomena and is a necessary step towards explanatory
analysis.

• The choice of measure of association depends of the levels of measurement
of the two variables. The measures discussed in this chapter are used under
the following circumstances.

1. Nominal-level variable with nominal-level variable:

(a) three or more categories on each variable-Cramér’s V and
standardized contingency coefficient (Cs);

(b) one or both variables are dichotomies-phi (φ);

2. Nominal-level variable with ordinal-level variable;
as for 1.

3. Ordinal-level variable with ordinal-level variable:

(a) ordered categories-gamma (G) and Kendall’s tau-b;
Somer’s d (asymmetric version; not discussed) can also be used;

(b) ordered items with small samples-Spearman’s rho and Kendall’s tau
(not discussed).

4. Metric-level variable with metric-level variable;
Pearson’s r.

5. Nominal-level variable with metric-level variable:

(a) recode metric-level variable to ordinal categories-use 1(a) above;
(b) if nominal-level variable is a dichotomy: Pearson’s r;
(c) if nominal-level variable can be dichotomized sensibly-Pearson’s r.

6. Ordinal-level variable with metric-level variable:

(a) recode metric-level variable to ordinal categories-use 3(a) above;
(b) if ordinal-level variable can be dichotomized sensibly-Pearson’s r.

Notes

1It is conventional to give the number of rows first. Hence, 2 by 5 means that the table has
2 rows and 5 columns.

2Note that the expected values have been rounded in Table 4.1 to one decimal place, and that
more decimal places are needed in order to produce the accrate results given here.

3Normally, two decimal places are sufficient for any measure of association. I have included
a third decimal place here just to facilitate comparisons.
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4I am indebted to my former mentor in statistics, Oscar Roberts, for this simple solution. I
have used it extensively (see, for example, Blaikie, 1968, 1969, 1979, 1993b; Blaikie and Ward,
1992) without any negative feedback from statistical experts and continue to be surprised that
it is not widely used.

5A number of different conventions are used in the literature, and some writers suggest that
different conventions be used for different types of coefficients. You may wish to follow some
other practice.

6Again, it is also possible to start by focusing on cell l and then working in the other direc-
tion. The result will be the same.

7Somer’s d can be used as a symmetrical measure of association as well as an asymmetrical
measure of influence. However, different values will be produced for each purpose.

8The difference between tau and tau-b is that the former deals with small samples where
objects or individuals are ranked on two variables, while the latter has been adapted to handle
ordered categories, each of which contains a number of objects or individuals.

9There are other alternatives when the nominal variable is in just two categories, or has been
recoded into two categories. We shall discuss these later.

10The curvilinear nature of this relationship has been established in a combination of the
1989/90 samples, similar to those being used in this book (see Chapter 2). Calculating the mean
EWV scores for six Age categories, and plotting them in a graph, revealed a definite curve in the
relationship (see Blaikie, 1992). The highest EWV mean occurred in the ‘25–34’ Age category
for males and in the ‘35–44’ Age category for females.

11These are ‘real’ respondents, but their selection from the Resident sample was not random;
the purpose of the selection is purely illustrative.

12I need to make it clear that I am not advocating wholesale infringement of the requirements
of measures of association, only a pragmatic approach when it can be justified. There is consid-
erable disagreement between the purists and the pragmatists on whether it is appropriate to use
Pearson’s r on ordinal-level data, such as the Likert response categories to attitude statements.
I think it can be justified as long as it is carried out with caution. In fact, it could be argued that
the EWV scale is only ordinal because any score is the sum of arbitrarily numbered ordinal-level
responses categories used with Likert-type items (usually ranging from ‘Strongly agree’ to
‘Strongly disagree’).

13Note that C, Cs and V detect any differences between observed and expected frequencies
in a cross-tabulation; they cannot detect the direction of a relationship, if one exists. Hence
their values are always positive, ranging between 0 and 1.
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5

Explanatory Analysis: Looking for Influences

Introduction

The ultimate and most challenging objective in quantitative social research is to
establish the elements, factors or mechanisms that are responsible for produc-
ing the state of some social phenomenon, or regularities and trends in it, that
is, to explain why social phenomena are as they are or behave as they do. In
other words, social researchers want to be able to answer ‘why’ questions. The
common-sense way of expressing this is in terms of causes. However, the
language of causation is rather complex and has been contested philosophically.

As we have seen in the previous chapter, the establishment of associations
between variables is an important part of descriptive analysis. The existence of
an association is a necessary but not a sufficient condition for explanatory analy-
sis. Association on its own does not allow us to infer that one variable has an
influence on the other. While it may be possible to make limited predictions on
the basis of well-established associations, the fact that two variables may vary
together consistently does not necessarily mean that one is the cause of the
other. Something more is required.

Huff (1954) referred to the faulty causal inference from correlations as the
post hoc fallacy. He offered the example of the association between having a
university education and having a high income. While the association between
education and income may not be perfect (for example, because some wealthy
people do not have a university education), we cannot assume that it was going
to university that led these people to be in the higher income brackets. They
may have been economically successfully without it, either because they are
smart or they come from wealthy families – the smart can be rich and money
breeds money. Hence, the attributes that made it possible for these people to
go to university could be the same attributes that have given them a high
income, such as inherited wealth. The problem is to know what the relative
contributions of ability, education and economic advantage are to being
economically successful. It is to this problem that this chapter is directed.

This brings us back to the discussion on causation in Chapter 1, in particular,
the distinction between the successionist and generative views. What follows in
this chapter is based on the successionist view. It examines the influence of
one variable on another, of a predictor variable on an outcome variable, or a
number of predictor variables working in parallel or sequence. In general, this
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type of quantitative data analysis is unsuitable for the testing of explanations
based on the generative view.1

The Use of Controlled Experiments

In social research, it is generally accepted that causality can only be inferred
when the following three criteria have been met:

• The two variables must be associated.
• The causal variable must produce its influence before the outcome occurs.
• Other possible explanations must be eliminated, such as a third variable that

influences both variables under consideration.

It is not easy to fulfil these criteria in cross-sectional research, particularly the
second and third.

It is generally felt that the most effective way of fulfilling these criteria is to
conduct a controlled experiment. An experiment involves testing hypotheses
about possible causes. In its most basic form, such an experiment involves
measuring some phenomenon, then modifying some aspect of a situation
through an intervention of some kind, and then remeasuring the phenomenon
to see if any change has occurred. From this basic idea, a variety of more elab-
orate experimental designs have been developed, the most common of which
involves the use of a control group. Before and after measurements are also
made on this group without any intervention.

What experiments attempt to do is to establish a connection between a
variable that is regarded as the cause and another that is regarded as the effect,
to control the order in which things happen (to ensure that the hypothesized
cause precedes the effect), and to eliminate alternative explanations (to control
their possible influences). In short, controlled experiments are a structured
form of a longitudinal study that is designed to satisfy the criteria for inferring
causation.

In experiments, the time order of the variables is artificially manipulated. For
example, the knowledge children have about HIV/AIDS can be measured at one
point in time, the children can then be exposed to an education programme on
the topic, and then their level of knowledge measured again. A control group
could have its knowledge measured at the same times as the experimental group,
but not be exposed to the education programme. Assuming that other factors
that could affect their knowledge have been controlled, or can be assumed
to have been absent during this time period, then the extent to which the
education programme has improved the children’s knowledge can be assessed.

Take another example. A lecturer may want to know whether teaching a
course with a particular textbook helps students to achieve higher grades than
teaching without a textbook. The lecturer could split the class into two, say, by
matching students according to their academic ability (assuming this is possible),
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and then conducting one class with the textbook and one without. The average
grades of the two classes, and the distribution of the grades, can then be
compared at the end of the course. This experiment sounds simple enough,
but what the lecturer cannot do by conducting such an experiment in a non-
laboratory situation is to control for other influences on the students during the
course of the semester. For example, the students from the two classes may talk
to each other, and those in the class not using the textbook may read it anyway.
Even if the lecturer asked the students not to do this, and they conformed,
other factors may influence one group and not the other between the beginning
and end of the experiment, thus confounding the results.

Sometimes the influence of one variable on another can occur with the passage
of time in a natural rather than an artificial experimental setting. The best that
most social scientists can hope for is that a naturally occurring situation lends
itself to some kind of ‘before and after’ study. For example, it may be possible
to gauge the effects of a sudden increase in tourism on a given town if relevant
features of it can be studied both before and after the increase occurs. Assuming
that other factors have not had an effect on the town during this period, such
as an economic recession in the country, then the effect of tourism can be
gauged. However, such pseudo-experiments fall short of the ideal experimental
requirements, mainly because of the researcher’s lack of ability to control other
possible influences on the community during this time period.

While experiments are reasonably common in the behavioural sciences, such
as psychology, they are rather rare in disciplines such as sociology and political
science. This is largely the result of these disciplines being concerned with
different phenomena. It is easier to conduct experiments on individuals, and
perhaps small groups, under different conditions, than it is to conduct experi-
ments on larger groups, organizations, communities or societies. The latter
naturally occurring social phenomena cannot be manipulated experimentally.
Therefore, I shall not discuss data analysis associated with social experiments,
except in so far as other general methods may be appropriate.2

Explanation in Cross-Sectional Research

In social research, it may be very difficult or even impossible to undertake
longitudinal research even in a natural setting. Instead, a great deal of social
research has used what is commonly called a cross-sectional design. This simply
means that all the variables are measured at the same time, as in social surveys.
This is in fact what was done in the two samples being used here to illustrate
data-analysis techniques. If ‘why’ questions are to answered with these data,
assumptions have to be made about the time ordering of the variables – that
there is some kind of order or sequence in the way variables relate to each other.

One of the problems in the social sciences is that the phenomenon we
want to explain may have a number of ‘causes’ that interact with each other
and/or are connected in a sequence or network, and that these ‘causes’ may act
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differently under different conditions. It is impossible to reduce all this to a
combination of experimental and control groups, and if such a thing was
attempted, it is likely to produce artificial distortions in the phenomenon.

Whether social research is cross-sectional, or includes some longitudinal
features, it is a conventional practice to divide variables into two types: indepen-
dent or predictor variables and dependent or outcome variables (see Chapter 1).
Some writers have argued that the concepts of ‘independent’ and ‘dependent’
are only appropriate in controlled experiments and that other concepts should
be used in cross-sectional research. Certainly, when the objective of research is
prediction, the use of predictor and outcome is appropriate. We shall encounter
some of these later in the chapter. I will follow the predictor/outcome usage
throughout the rest of the book.3 However, it would also be appropriate to call
predictor variables explanatory variables when explanation rather than predic-
tion is the concern.

As has already been indicated, in order to differentiate between
predictor/explanatory and outcome variables, some assumptions have to be
made about the direction of influence and about the time ordering of the vari-
ables. In the Student and Resident samples, it might be argued that Environ-
mental Worldview is a predictor variable and the various forms of Environmentally
Responsible Behaviour are outcome variables. This is based on the common
assumption that attitudes influence behaviour. However, this is only an assump-
tion, as the reverse may be the case in some situations. For example, it is
possible that by being encouraged to engage in Environmentally Responsible
Behaviour, perhaps through some incentive scheme, people may begin
to change their views on environmental issues. The influence may be in the
opposite direction.

This brings us to a critical issue. Any attempt to establish influence between
variables in cross-sectional research of necessity requires assumptions to be
made. As we know, it is one thing to establish associations between Age or
Gender and variables such as EWV, but quite another to claim that either Age
or Gender ‘influences’ EWV. But what does it mean to say that a person’s Age
influences their EWV? Certainly a person’s age does not cause them to hold a
particular worldview. Whatever influence growing older has on such attitudes is
much more complex than one variable (e.g. Age) statistically influencing
another (e.g. EWV). There must be social process and cognitive mechanisms
at work.

It may be that being a person of a particular age has meant that certain expe-
riences, different from those of other age cohorts, have led a person to hold
certain views and to behave in certain ways. ‘Age’ simply becomes shorthand for
these different experiences. Hence, the classification of variables as either
‘independent’ or ‘dependent’, or as ‘predictor’ and ‘outcome’, masks the theo-
retical complexities that lie behind the variables themselves. Having said this,
additional understanding, beyond bivariate association, can be obtained by
analyzing three or more variables together. This will be illustrated by going back
to the variables used to illustrate the methods of associational analysis.

With this somewhat sceptical view of the assumptions that are commonly
made about the direction of influence between variables, let us review
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the major attempts that have been made to answer ‘why’ questions using
cross-sectional data.

Bivariate Analysis

Explanatory analysis can be conducted on both bivariate and multivariate relation-
ships. In the previous chapter on associational analysis, only bivariate relation-
ships were examined. Consideration of multivariate associations was deferred
to this chapter as such analysis inevitably explores directions of influence.
Before we consider multivariate analysis, we will concern ourselves in this
section with the simpler case of bivariate explanatoty analysis. The following
methods are reviewed: lambda (nominal-level variables), Somer’s d (ordinal-
level variables) and bivariate regression (metric variables).

In the discussion of associational analysis in Chapter 4, we noted that measures
are divided into two types, symmetrical and asymmetrical. Symmetrical measures
assume that a relationship can be examined for the point of view of either of the
variables; that no direction of influence is inferred. Asymmetrical measures make
assumptions about the direction of influence, and the value of the coefficient will
usually vary depending on which direction is being considered. It is important to
note that this analysis is based on assumptions, not a demonstrated direction of
influence. Asymmetrical measures are concerned with the prediction of one vari-
able by another, rather than with genuine explanation. They take us only a limited
distance beyond associational analysis. As we shall see, much more is required to
produce convincing explanations with cross-sectional data.

Influence Between Categorical Variables

Procedures are available for both nominal-level and ordinal-level data, lambda
for the former and Somer’s d for the latter. While they are both based on a
fairly simple idea, they are asymmetric measures of association. Note that while
symmetric versions of both lambda and Somer’s d are available, only the asym-
metric versions are discussed here.

Nominal-level Variables: lambda

In Chapter 4, we discussed four measures of association that are suitable for
two nominal-level variables, the contingency coefficient (C), the standardized
contingency coefficient (Cs), Cramér’s V and phi (φ). These measures simply
indicate the degree of dependence between two variables; they are symmetri-
cal procedures in that no direction of influence is implied. A measure that can
allow us to predict the position on one nominal-level variable from another is
Goodman and Kruskal’s lambda (λ). One variable has to be designated the
predictor and the other the outcome. The value of lambda can vary, depending
on how the variables are identified.4
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Lambda can be used with any size of contingency table. It tells us how helpful
is it to know the distribution on the predictor variable when predicting the dis-
tribution on the outcome variable. Lambda is based on two types of predictions
and the possible errors involved in making them. The first prediction or guess
just uses the information provided by the distribution on the outcome variable,
and the second prediction then takes into account knowledge of the distribu-
tion on the predictor variable. Lambda allows us to calculate the reduction in
prediction errors when knowledge of the predictor variable is taken into
account. This is based on the logic of the proportional reduction in error (PRE).
These two predictions are expressed as two rules.

Rule I: Predict the modal category of the outcome variable.
Rule II: Predict the modal outcome category for each predictor variable

category.

While these rules appear to be complex, the ideas contained in them are quite
simple, as we shall see.

Lambda provides a coefficient that expresses the reduction in prediction
errors. It ranges from 0 to 1, zero meaning that the distribution on the predictor
variable has no value in predicting the distribution on the outcome variable, and
1 meaning that there is complete predictability. Lambda is calculated as follows.

(5.1)

Let us consider an example. How useful is it to know a person’s religion in
order to predict their occupation?5 Table 5.1 is the result of simplifying
the distributions on these two variables in the Resident sample.6 Occupation,
the outcome variable, has been recoded into four categories and Religion, the
predictor variable, has been recoded into five categories. The ‘Protestant’
category, which includes ‘Uniting’ and ‘Baptist’, comes closest to what Weber
(1958) had in mind when he referred to the inheritors of Calvinist theology.

In the example, Rule I requires that the modal occupational category, the
category with the highest frequency, be identified; it is ‘Professional/manage-
rial’. This is shown by the marginal totals at the right of Table 5.1; there are
138 in this category. Rule II requires that the modal occupational category be
identified in each of the categories of Religion. For the categories of
‘Catholic’, ‘Anglican’ and ‘Other religion’ it is ‘White collar/self-employed’,
while for ‘Protestant’ and ‘No religion’ it is ‘Professional/managerial’. Accord-
ing to Rule I, we have made 263 prediction errors in the occupational cate-
gories outside the modal category, this being the sum of the non-modal
occupational categories (122 + 74 + 67). According to Rule II, we have made
256 prediction errors, this being the sum of all the non-modal occupational
categories for each of the Religion categories (61 + 58 + 31 + 44 + 62). By
comparing these two totals, we can establish that the prediction errors have
been reduced by only 7 when knowledge of the distribution on Religion is
introduced.
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(errors using Rule I) − (errors using Rule II)
λ = 

errors using Rule I
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Using the information from the example,

Thus by using Rule II we eliminate only 2.7 per cent of the prediction errors
made by using Rule I. What this means is that we have not learnt very much
about the occupational distribution by knowing a respondent’s Religion. Using
relevant symmetrical measures of association on the data in Table 5.1, we find
that Cramér’s V is 0.12, and Cs is 0.23. In general, asymmetrical measures
produce lower values than symmetrical ones.

A close examination of Table 5.1 shows that there are differences between
‘Catholics’ and ‘Protestants’, the categories with which Weber (1958) was origi-
nally concerned. Certainly, their percentage differences on all the Occupation
categories are greater than between any of the other categories of Religion.
Table 5.2 presents these two Religion categories as a subsample for which
lambda can be calculated as follows.

In this case the coefficient is even smaller; there is only a 2.1 per cent reduction
in prediction errors.

It is important to note that if the direction of prediction was the reverse of
the one just discussed, that is, using Occupation to predict Religion, the value
of lambda is only 0.050. Such a prediction only makes theoretical sense if we
can assume that people choose a religion related to their occupational status.

Lambda has some strengths and limitations. Its strengths are that it can be
used with nominal-level variables, the distributions on these variables need not
be normal, and it can be applied to contingency tables of any size. However, it
has two major limitations. The first is that as the coefficient has no sign, the
direction of the relationship is not clear. This would have to be obtained from
an inspection of the table. The second limitation arises from a particular case of
the application of the two rules. Lambda will always be 0 whenever all the
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Table 5.1 Occupation by Religion (Residents; observed frequencies and percentages)
Religion

Occupation Catholic Anglican Protestant Other No religion Total

Professional/ 22 (26%) 30 (33%) 29 (48%) 19 (29%) 38 (38%) 138 (34%)
managerial

White-collar/ 24 (28%) 33 (36%) 18 (30%) 21 (32%) 26 (26%) 122 (30%)
self-employed

Manual 17 (20%) 14 (15%) 7 (12%) 14 (22%) 22 (22%) 74 (18%)
Not employed 22 (26%) 14 (15%) 6 (10%) 11 (17%) 14 (14%) 67 (17%)

Totals 85 (100%) 91 (100%) 60 (100%) 65 (100%) 100 (100%) 401 (100%)

263 − 256 7λ = = = 0.027
263 263

94 − 92 2λ = = = 0.021
94 94
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within-category modes of the predictor variable are in the same row as the
modal category of the outcome variable. For example, if we collapse Table 5.2
to a 2 by 2 table, with Catholics and Protestants cross-tabulated against
‘Professional/managerial’ and all ‘Other’ occupations (see Table 5.3), the calcu-
lation is as follows:

An inspection of the percentages in the table indicates that Catholics are
considerably less likely than Protestants to have ‘Professional/managerial’
occupations; only about a quarter of Catholics (26 per cent) compared with
about half of the Protestants (48 per cent). In fact there is a weak association
(φ = 0.23). However, lambda cannot detect any possible influence. It is a rather
crude measure, mainly because it is based on a very insensitive measure of
central tendency, the mode.

A somewhat simpler method for calculating lambda is available and is useful
for tables with many rows and columns. Instead of using the errors (i.e. the sum
of the values in the non-modal categories), it uses the values of the modal
categories. Expressed in words, the equation is:

This procedure can be illustrated with the data from Table 5.1.

This agrees with the previous procedure.
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Table 5.2 Occupation by Religion (subsample of Residents)
Religion

Occupation Catholic Protestant Total

Professional/ 22 (26%) 29 (48%) 51 (35%)
managerial

White collar/ 24 (28%) 18 (30%) 42 (29%)
self-employed

Manual 17 (20%) 7 (12%) 24 (17%)
Not employed 22 (26%) 6 (10%) 28 (19%)

Totals 85 (100%) 60 (100%) 145 (100%)

51 − 51 0λ = = = 0.00
51 51

sum of the within-category modes model frequency of 
of the predictor variable the outcome vaiable

λ = 
sample size – model frequency of the outcome variable

–
(5.2)

(24 + 33 + 29 + 21 + 38) − 138 7
λ = = = 0.027

401 − 138 263
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Ordinal-level Variables: Somer’s d

The most suitable measure for predicting the influence of one ordinal-level
variable on another is Somer’s d. It uses a procedure similar to gamma in that it
is based on pair-by-pair comparisons. In fact, its equation is a variation of that for
gamma. The difference is that it includes tied pairs on the outcome variable,
shown by Td in the equation below. As with gamma, it is necessary to determine
the number of concordant (C) and discordant (D) pairs. The equation is:

where C is the number of concordant pairs, D is the number of discordant
pairs, and Td is the pairs with different values on the predictor variable but with
the same values on the outcome variable.

The rationale for including Td in the denominator of the equation is that a tie
on the outcome variable will not contribute to the influence between the vari-
ables. In other words, the predictor variable exerts no influence on the outcome
variable in these instances. It is assumed that including ties on the outcome
variable in the equation gives a more accurate measure of the strength of the
influence between the two variables. As a result, Somer’s d is more conserva-
tive than gamma; d will always be equal to or less than G.

To illustrate the method used to calculate Somer’s d, we can use the
categorical versions of Age and EWV, and the same table that provided the
illustration for the calculation of gamma (see Table 4.2). However, now we
assume that Age is the predictor variable and EWV is the outcome variable,
that is, Age is assumed to have an influence on EWV. The numbers of concordant
and discordant pairs are calculated in the same way and, as before, are 13,183
and 26,048, respectively (see Table 4.5). To calculate Td, we multiply each
cell, in each column, by the sum of the values in the cells below it. This means
that cell a is multiplied by the sum of cells d, g and j, then d is multiplied by
g plus j, then g is multiplied by j. Similarly, b is multiplied by the sum of e, h
and k, e is multiplied by the sum of h and k, and h is multiplied by k. The
same calculation is done in the third column. All of these products are
summed. Therefore,
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Table 5.3 Occupation by Religion (subsample of Residents;
2 by 2 table)

Religion

Occupation Catholic Protestant Total

Professional/ 22 (26%) 29 (48%) 51 (35%)
managerial

Other 63 (74%) 31 (52%) 94 (65%)

Totals 85 (100%) 60 (100%) 145 (100%)

C − Dd =
C + D + Td

(5.3)
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Td = 21(45 + 30 + 32) + 45(30 + 32) + (30 × 32) + 16(46 + 52
+ 24) + 46(52 + 24) + (52 × 24) + 42(65 + 22 + 6) + 65(22 + 6)
+ (22 × 6) = 18,551

Then entering these figures in the equation, we get:

The sign of the coefficient indicates that the influence of Age on EWV is negative;
the older a person becomes, the lower their EWV becomes.

Another equation can be used that requires less calculation – see Siegel and
Castellan (1988: 303–7) for details. It is:

The marginals in the example are for the rows. Notice that this figure is
lower than gamma (calculated as −0.33) for the same cross-tabulation. If we
wished to reverse the predictor and outcome variables, a different set of tied
pairs would be calculated (by working down the columns rather than along the
rows in Table 4.2), thus producing a different coefficient. In this case it is
−0.24. However, this direction of influence makes even less sense than in the
example used to calculate lambda. Holding a particular Environmental World-
view cannot influence a person’s Age.

Influence Between Metric Variables: Bivariate Regression

We now come to the most popular measure of influence between two variables,
bivariate regression, also referred to as simple linear or ordinary least-squares
(OLS) regression.7 The popularity of regression stems from the fact that, because
it requires both variables to be metric, it has more power to measure influence
than the measures we have just discussed. Hence, many researchers will make
every effort to measure variables at interval-level or ratio-level just to be able to
use regression analysis. Multiple regression will be dealt with later in this chapter.

Just as with Pearson’s r, the commonest form of regression analysis assumes
that the relationship between two variables is linear, that is, that an increase in
the values on one variable is associated with either an increase (positive relation-
ship) or a decrease (negative relationship) on the other variable, and that the
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C − D 13,183 − 26,048 −12,865
d = = = = −0.22

C + D + Td 26,048 + 13,183 + 18,551 57,782

2(C − D)
d =

n 2 − sum of the squares of the marginals for the outcome variable
(5.4)

2(13,183 − 26,048) −25,730 −25,730
= = = = −0.22

4012 − (792 + 1562 + 1042 + 622) 160,801 − 45,237 115,164
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changes in value on both variables occur at the same rate. Regression is based
on the idea of fitting a straight line to a scatter plot of the pairing of values on
the two variables. The regression line represents the best estimate of the
relationship between two variables, or, more precisely, how the values on one
variable predict or influence the values on the other variable. Prediction implies
influence.

When the metric versions of Age and EWV are used, a scatter plot reveals a
tendency for older persons to have relatively low EWV scores, for younger
persons to have relatively high scores, and for middle-aged persons to have
more average scores (see Figure 4.2). While Pearson’s r provides us with a
coefficient to measure how consistent this pattern is in a population or sample,
that is, how much variance two variables share in common, regression describes
the characteristics of a line that best represents the influence of one variable
on the other. In bivariate regression, the regression coefficient (R) has the
same value as Pearson’s r. However, r is a symmetric measure, while R is an
asymmetric measure.

Before examining the relationship between Age and EWV, let us explore a
contrived example of two variables that would usually be perfectly related.
Employees in a company are allowed to work very flexible hours per week.
They can work for between 2 and 5 days a week, for between 7 and 9 hours a
day. While a majority work 8 hours a day for 5 days a week, others work dif-
ferent combinations of days and hours per day. Table 5.4 provides the data for
a sample of 10 employees who are all on the same hourly rate, but who work
different arrangements. The scatter plot (Figure 5.1) indicates that the points
form a straight line. The relationship is perfectly linear.
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Table 5.4 Working hours per week and weekly wage
Employee Hours worked Weekly wages ($)

A 14 210
B 16 240
C 21 315
D 24 360
E 27 405
F 28 420
G 32 480
H 36 540
I 40 600
J 45 675

Regression analysis can be used to describe the nature of this relationship.
However, to do so, it is necessary to identify one variable as the predictor and
the other then becomes the outcome variable. As with the examples earlier in
this chapter, the description of the relationship will be different, depending on
how the variables are identified. In this example, hours worked per week is
regarded as the predictor variable (usually referred to as the x variable) and
wages per week is the outcome variable (the y variable). In other words, it is
assumed that the hours worked determines the wages. It would be possible to
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view this relationship differently, in terms of the desired level of wages
determining the hours that need to be worked. When the assumed direction of
influence is different, the regression calculation and results will also be different.

The regression line that joins up the points in Figure 5.1 can be described
in the same way as on any straight-line graph. The equation for a positive
relationship is:

y = a + bx (5.5)

where x and y are the two variables (predictor and outcome, respectively), b
represents the slope of the line, and a the point at which the line intersects the
vertical or Y axis. Hence, in words:

y = intercept + (slope × x)

The slope of the line indicates the extent to which a change in the predictor
variable produces a change in the outcome variable. For example, a change of
one unit of x may produce a change of two units of y, or one unit, or only half
a unit. In the first example, b = 2.0, in the second, b = 1.0, and in the third,
b = 0.5. The slope of the line will be steepest in the first example, flattest in
the third example, and at 45° in the second.

Coming back to the example of the relationship between hours worked and
wages, it is possible to establish the values of a and b without doing any calcu-
lations. First, a must be zero because if no hours are worked, no wages are
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Figure 5.1 Scatter plot of weekly hours worked by weekly wages
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received. If the line was extended in the lower left direction it would intersect
the both the X and Y axes at zero.8 Second, b must be 15.00, because all work-
ers in this sample receive $15 per hour. Therefore, substituting the values for a
and b in the equation, we get:

y = 0 + 15x = 15x

With this information, it is now possible to predict the wages (y) that any
worker will receive if the number of hours worked (x) is known. If a worker
works 35 hours a week, his/her weekly wages would be 15 × 35 = $525.

Of course, we could have arrived at this answer without the help of regres-
sion analysis because we know what the weekly wage is. Unfortunately, social
science data are not normally like this. A scatter plot is usually scattered; that
is, the points do not fall along a perfect line. The challenge is to find a line that
would best represent this scatter.

Why do we want to find such a line? The main reason is that it allows us to
make a prediction about a person’s position on the outcome variable, given that
we know their position on the predictor variable. Knowing a person’s Age would
allow us to predict their EWV score. If the relationship between Age and EWV
was a perfect one (all the points in the scatter plot falling in a straight line), then
we could make an absolutely accurate prediction. However, if the relationship is
not perfect, we can only make the best possible estimate of a person’s position
on the outcome variable. Regression analysis provides us with the best estimate
of how well a particular predictor variable predicts a particular outcome variable.

Two Methods of Regression Analysis

Let us take another example where the points in a plot all cluster around a straight
line. In the discussion on Pearson’s correlation coefficient, an example was pre-
sented based on a subsample of Residents (see Figure 4.3). We can also do a regres-
sion analysis on these data (see Tables 4.6 and 4.7). Just as there are two methods
for calculating Pearson’s r by hand, so there are also two methods for doing regres-
sion analysis, the raw score method and the mean deviation method. The calcula-
tion for the raw score method is simpler, although the logic behind it is not as
obvious as it is for the mean deviation method. Before illustrating both methods,
we need to review the principles behind regression analysis.

It is possible to draw a line on Figure 4.3 that would run down between the
points. We could then measure the vertical distance from each point to this
line. The best line would be the one for which the total of these distances is the
smallest. However, as we saw with calculating r, to avoid the problem caused
by some of these measurements being negative (the ones above the line), the
practice is to square all the measurements. Hence, this is known as the method
of least squares. Rather than trying to locate the best line by trial and error,
regression analysis calculates its position.

Let us look at the mean deviation method first. Table 4.6 provides us with
all the information needed. To calculate a, we have to rearrange and adapt
equation (5.5), as follows:
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a = y– − bx– (5.6)

where x− and y– are the means of all the values of x and y, respectively. The minus
sign is used when the relationship, that is, the slope of the line, is negative. To
calculate a, we must first calculate b using the following equation.

Inserting the data from Table 4.7, we get:

Now, entering the known information in the equation for a, we get:

a = 89.3810 − (−0.9215)47.0476 = 89.3810 + 43.3522 = 132.73

Hence, the best estimate of the regression line indicates that for every year of
increase in Age, there is a corresponding decrease of 0.92 in EWV score. It also
suggests that, at least in theory, all children are born with a potential EWV score
of 133 (rounded). In fact, the method of measurement used to produce the
EWV scores has a maximum of 120. Hence, this point of intersection of the
line with the Y axis is purely theoretical and makes no sense in practice. We can
only entertain the range of scores between the possible maximum and mini-
mum, that is, from 24 to 120. This example illustrates that in most social
research the intercept is of very little interest, particularly for interval-level
variables in which the zero is arbitrary.

The raw score method uses the following equation to calculate b.

Now inserting the data from Table 4.7 we get:

It is worth noting that these equations for calculating b are very similar to
those used to calculate Pearson’s r. The numerator is the same, as is part of the
denominator. Hence, the same table of data can be used for both.

As we shall discover later in discussing multiple regression, b becomes much
more useful if it is standardized. All values of it are dependent on the
measurement scale used. For example, Age and EWV are measured on differ-
ent scales and, if regressed, will produce values for b that cannot be compared
with variables using different scales. The solution is standardization, which
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∑
(x − x– )(y − y– )

b = ∑
(x − x– )2

(5.7)

−4781.3810b = = −0.9215
5188.9524

n(
∑xy) − (∑x)(

∑y) 
b =

n(∑x2) − (∑x)2

21 × 83,527 − 988 × 1877 1,754,067 − 1,854,476 −100,409
b = = = = −0.9215

21 × 51,672 − 9882 1,085,112 − 976,144 108,968

(5.8)
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means transforming the values of b to z-scores. By definition, z-scores have a
mean of 0 and a standard deviation of 1. This means that not only is the slope
of the regression line standardized, its intercept is also transformed to become
zero. Standardization is achieved by multiplying b by the ratio of the standard
deviations of the two variables, with the predictor over the outcome. The stan-
dardized value is known as beta (β). Thus,

where sp is the standard deviation of the predictor variable and so is the stan-
dard deviation of the outcome variable. In bivariate regression, beta has the
same value as Pearson’s r. The methods used to calculate these coefficients are
just different ways of arriving at the same answer.

Coefficients

Two further calculations are required to complete regression analysis. First, it is
possible for this line to be produced by different combinations of respondents’
scores. For example, it is possible for the scatter plot to be much more dis-
persed than in Figure 4.3 and yet for the same line to be produced. Hence, we
need a measure of how well the line ‘fits’ the data, or, put differently, how
much of the variation between the two variables the line explains. To do this,
the value of the regression coefficient (R) is squared. Note that in bivariate
regression, R indicates the extent to which the predictor accounts for the out-
come. In multiple regression, R is like a multiple correlation coefficient between
all the independent predictor variables and the outcome variable. R-squared
(R2) is known as the coefficient of multiple determination and indicates the total
amount of variance explained by all the predictor variables. More on this later
in the chapter.

As we saw in Chapter 4, the value of Pearson’s r for the relationship between
these two variables was calculated as −0.946. Therefore, by squaring this value
and turning it into a percentage, we know that the regression line explains 89.6
per cent of the variance. We need to note that this remarkably high figure is not
normally found in social science data and is the result of this example being
contrived for illustrative purposes.

The second calculation provides a measure of how well the regression line
predicts values of y, given the values of x. The first step is to calculate the unex-
plained variation. This is based on how close the points in a scatter plot are to
the regression line. If they are all on the line, all the variation between the two
variables is accounted for. However, in practice, the deviations from the line
may be considerable. To calculate the unexplained variation, it is necessary to
calculate the sum of the vertical distances between each point in the scatter
plot and the regression line using the method of least squares. To calculate the
individual deviations, for each value of x, we have to find the value of y if the
point had fallen on the regression line. The difference between this calculated
point for y and its actual value is a measure of the error involved in predicting
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a value of y from a value of x, referred to as the residual. These values are
represented by the length of the arrows in Figure 5.2. As some of these values
will be negative (the arrows pointing up), they are all squared before they are
added together. The expression for the unexplained variation is 

∑
(y − y′)2,

where y is the value for the point on the regression line (the tail of the arrow)
and y′ is the actual value (the head of the arrow). In Figure 5.2, the values for
the fifth point up the line are y = 7.0 and y′ = 9.2, making a residual of −2.2.
This value would need to be squared and then added to the sum of similar
values for each of the other seven points.

In order to be able to compare this value with others, it is possible to calcu-
late the standard error of the estimate. This has similar properties to the stan-
dard deviation of the mean: the smaller its value, the less dispersed the points
are about the regression line. The equation used to calculate this is:

Table 5.5 provides the data needed to calculate both the unexplained varia-
tion and the standard error of the estimate. The values of y′ for each value of x
are calculated from the standard regression line equation, y′ = a + bx. Substi-
tuting the data in the equation, we get:
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Figure 5.2 Residuals from a regression line (hypothetical data)

∑
(y − y′)2

seest y =

√
(5.10)

n − 2

513.130seest y =
√

= 5.20
21 − 2
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One way of dealing with these residuals, or the unexplained variance, is to
introduce an error term into the equation. Hence, the more correct equation
for calculating the regression line is:

y = a + bx + ε (5.11)

where ε is an error term that represents all the other influences on y that are
not accounted for by x, that is, it is the error in making the prediction. How-
ever, this equation is not commonly used and the error is dealt with in terms of
the coefficient of determination and the standard error of the estimate.

An Example

Now back to the real world. If we take all the data in the Resident sample, and
apply regression analysis to Age and EWV, the picture is rather different (see
Figure 4.2). There is a considerable dispersion among the points and only a ten-
dency towards a linear pattern. Applying regression analysis to these data pro-
duces the following:

a = 96.490; b = −0.185; r = −0.308; R2 = 0.095; seest y = 10.26.

These values are very different from those for the subsample. They tell us that
the regression line cuts the Y axis on the graph at the EWV score of 96.5
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Table 5.5 Unexplained variation and standard error of the estimate
(subsample of Residents)

Respondent x y y′ y − y′ (y − y′)2

1 20 118 114.304 3.696 13.660
2 23 102 111.540 −9.540 91.006
3 27 109 107.854 1.146 1.314
4 28 114 106.932 7.068 49.950
5 33 107 102.325 4.675 21.854
6 36 100 99.561 0.439 0.193
7 37 90 98.639 −8.639 74.639
8 39 94 96.796 −2.796 7.820
9 40 103 95.875 7.125 50.765

10 43 89 93.111 −4.111 16.897
11 47 85 89.425 −4.425 19.579
12 50 93 86.660 6.340 40.190
13 51 88 85.739 2.261 5.112
14 55 79 82.053 −3.053 9.322
15 61 77 76.524 0.476 0.226
16 62 71 75.603 −4.603 21.188
17 64 78 73.760 4.240 17.977
18 65 67 72.839 −5.839 34.090
19 68 75 70.074 4.926 24.263
20 69 72 69.153 2.847 8.106
21 70 66 68.231 −2.231 4.979

n = 21 ∑x = 988 ∑y = 1877 ∑(y – y′)2 = 513.130
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(rounded); that for every year of increase in Age, the EWV score decreases by
0.185; that only 9.5 per cent of the variance is accounted for; and that the stan-
dard error of the estimate is 10.26.

Points to Watch For

First, it is worth checking to see if there are any outliers in the scatter plot. Out-
liers are points that are very deviant from the dominant pattern. For example,
in Figure 4.2, there are two points in the top right-hand area, four in the bottom
left-hand area, and one in the centre at the bottom that are out of character. In
small samples, such outliers can have a big impact on the value of r and on the
regression analysis. Consideration might be given to excluding them, particularly
if there is reason to believe that they are the result of errors of some sort, such
as in coding or data entry.

When these seven outliers are excluded from the analysis, the results are:

a = 98.396; b = −0.221; r = −0.380; R2 = 0.145; seest y = 9.56.

This produces some improvement in the proportion of explained variation
(coefficient of determination) and in the ability of the regression line to predict
y values (standard error of the estimate). A procedure is available in SPSS for
identifying outliers by specifying the number of standard deviations from the
regression line beyond which cases or respondents should be excluded from the
analysis. In effect, these are the cases for which the predicted value of y (EWV
score), based on the regression line, deviates widely from the actual value.
When 2 standard deviations were specified, 18 cases became candidates for
exclusion. They included the 7 arrived at by an inspection of the scatter plot,
plus 8 respondents with high EWV scores (mostly aged between 20 and 40) and
3 older persons with low scores. In fact, removing all 18 does improve the level
of explained variation and the predictive capacity, but also flattens the regres-
sion line. The results are:

a = 96.515; b = −0.187; r = −0.349; R2 = 0.122; seest y = 8.88.

For more details on how to deal with outliers, or cases with high residuals, see
Fielding and Gilbert (2000), Hair et al. (1998) and Miles and Shevlin (2001).

A word of caution is in order. It is possible to improve the regression analysis
and produce ‘neater’ results by excluding outliers, those that lie outside some
arbitrary boundary. However, this has to be tempered with a concern for retain-
ing the validity of the data. For example, we might suspect that the two very
elderly respondents who have high EWV scores (top right-hand corner of the
scatter plot) might have misunderstood how to respond to the items in the EWV
scale. However, it is also possible that they are both keen environmentalists who
just happen to be different from others in their age cohort. Hence, this kind of
manipulation should not be undertaken lightly, or simply by using arbitrary rules.

Second, the scatter plot should be inspected to see whether there is a
pattern in the spread of points around the line. For example, at one end of the
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line, the points may cluster closely to it, while at the other end they may be
very dispersed. The ideal is a uniform spread on both sides along the length of
the line. The latter is referred to as homoscedasticity and the former as
heteroscedasticity. For the calculations of both r and regression, homoscedasticity
is a requirement. In its absence, caution must be exercised in interpreting the
results.

Third, it is important to check the distributions of both variables. If one is
widely dispersed and the other is not (particularly if it is badly skewed as well),
the correlation coefficient will be smaller than if they were both widely dis-
persed. Such a combination may also produce a curvilinear relationship or even
an L-shaped pattern. The type of regression analysis being discussed here cannot
handle such patterns.

There is another issue that needs to be considered. As we have seen, bivariate
regression analysis endeavours to establish how well positions on one variable
can predict positions on another variable. It is possible, of course, that some
other variables are also involved. Hence, it may be appropriate to examine more
than one predictor variable. In other words, we can also do multiple regression
analysis, and this will be discussed later in the chapter.

Influence Between Categorical and Metric Variables

Just as there are procedures for dealing with associations between categorical
and metric variables, so there are similar procedures for such combinations in
explanatory analysis.

Coding to a Lower Level

In discussing methods of analysis to establish association between two variables
at fundamentally different levels of measurement (categorical and metric), it
was suggested that one strategy is to code the metric variable into categories,
and then use methods appropriate for two categorical variables. The same
applies to explanatory analysis. However, there are a number of alternatives to
this that can also be used.

Means Analysis

Another method can be used when the predictor variable is nominal, ordinal or
dichotomous and the outcome variable is metric. This involves calculating the
mean on the outcome variable for each of the categories of the predictor vari-
able. For example, if Gender is the predictor variable and EWV the outcome
variable, the mean EWV score can be calculated for males and females sepa-
rately. A comparison of the means can give an indication of the influence of
Gender on EWV.

It is also possible to measure the level of influence by using a coefficient
known as eta (η). Just as r2 indicates the proportion of the variance that is com-
mon to two variables, so eta-squared (η2) is the proportion of variance in the
outcome (interval-level or ratio-level) variable that is explained by differences
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among the categories of the predictor (nominal-level or ordinal-level) variable.
Put differently, η2 is a regression coefficient for a non-linear regression line
(a curve) that is assumed to pass through all the means of the categories of the
predictor variable.

The results of undertaking this type of analysis with Gender and EWV in the
Resident sample is: for males, x− = 86.4 (n = 199); for females, x− = 89.5
(n = 200); η = 0.14; and η2 = 0.021. The difference between the means is only
3.1, and only 2.1 per cent of the variance has been explained. Another
dichotomized example is education coded as ‘University educated’ and ‘Non-
university educated’: for the ‘University educated’, x− = 89.6 (n = 167); for the
‘Non-university educated’, x− = 86.8 (n = 231); η = 0.13; and η2 = 0.016. In this
case, the difference between the means is 2.8, with 1.6 per cent of the variance
explained. Clearly, in both examples, the influence is very weak.

Similar analysis can be done with a predictor variable that has a limited
number of nominal-level or ordinal-level categories. For example, with Education
coded into five categories, the difference in the means between the lowest and
highest education categories is 6.3 and η = 0.195 (see Table 5.6). With one
exception (‘Technical certificate’) the mean EWV scores increase as education
increases, thus suggesting that Education has some influence on EWV. The
exception can be accounted for if ‘Technical certificate’ is taken to be a lower
category than ‘Completed secondary’. These certificates are largely associated
with apprenticeships in trades that can be entered before secondary education
is completed. It might be argued that the academic level achieved for the
certificate is not as high as that required to complete secondary education. If
these assumptions are correct, the order of ‘Completed secondary’ and ‘Tech-
nical certificate’ could be reversed, thus producing a perfect linear relationship.
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Table 5.6 A means analysis of Education and Environmental
Worldview (Residents)

Environmental Worldview

Education –x s n
Primary/some secondary 84.3 9.4 74
Completed secondary 89.1 11.4 96
Technical certificate 86.3 11.3 61
Degree/diploma 89.4 10.7 143
Postgraduate qualification 90.5 8.6 24

Total 88.0 10.8 398

Dummy Variables

When the outcome variable is metric and the predictor variable is
dichotomized, can be sensibly dichotomized, or consists of a number of cate-
gories, it is possible to use regression analysis with dummy variables. Methods
appropriate for metric variables can be applied to such dichotomies. This is a
very convenient trick. It is achieved by assuming that one category is coded as
0 and the other as 1, and that this creates interval-level measurement. When a
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set of categories is involved, it is possible to dichotomize each category against
all the others. For example, in Table 5.6, the ‘Primary/some secondary’ category
can be dichotomized against all the other Education categories combined. This
can be repeated with each category in turn, thus producing five separate
dichotomies. In effect, this categorical variable is turned into five different
dichotomized variables. As we shall see later, regression analysis can be con-
ducted on any four of these dichotomies with the outcome. As this method of
analysis takes us into procedures that are used in multivariate regression, its
discussion will be postponed until later in the next section of this chapter.

Multivariate Analysis

The basis for any attempt to establish connections or patterns in quantitative data
is bivariate relationships. The challenge is to see if two variables vary together and
how strong either the association between them is or the influence of one on the
other. For more sophisticated analysis, we usually want to establish networks of
relationships between variables. This provides a better understanding of how
things are connected and influence each other in the social world. However, some
kinds of multivariate analysis sit on the border between associational and explana-
tory analysis. This is because in using data from cross-sectional research as a
surrogate for data from longitudinal or experimental research, multivariate analy-
sis has to work with an assumed ordering of variables. In this section the following
methods are reviewed: three-way contingency tables (categorical variables) and
partial correlation and multiple regression (metric variables).

Trivariate Analysis

To begin this exploration, let us initially extend the relationship between two
variables to include a third variable, that is, trivariate analysis. There are a
number of reasons for introducing a third variable (or even a fourth or fifth)
into the analysis. For the most part, the task is to see how the three variables
are interrelated and, more particularly, what influence they have on each other.

Forms of Relationships

Let us assume three variables, A, B and C, with C being the outcome variable.
What we want to discover is whether A and B have an influence on C, and if
so, how. There are a number of theoretical possibilities (see Figure 5.3).

(i) A has an influence on C, but B does not.9

(ii) A and B separately have an influence on C, but they are not themselves
associated.

(iii) Both B and C are outcomes of A. This means that any association
between B and C is spurious because they are both outcomes of A.
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(iv) The influence is in a sequence, A influences B which in turn influences C,
or B influences A which in turn influences C. In this combination the
middle variable is known as an intervening variable.

(v) B has an effect on the influence of A on C, that is, B changes the form of
the relationship between A and C. In this case, B is regarded as a moder-
ating variable and the influence of B on C involves an interaction effect.

(vi) Both A and B have an influence on C while they are themselves associ-
ated. The question here is: what is their relative influence? This issue is a
major concern of multivariate analysis and, of course, can include more
than two predictor variables.

Interacting Variables

Concerning (V), two variables are said to interact when their association is not
uniform across all categories of a third variable, that is, the influence of one
variable on another is contingent on the presence of a third variable. For exam-
ple, we may be interested in the influence of Religion on people’s support of
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Figure 5.3 Possible forms of relationships between three variables
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political parties (Political Party Preference) and wish to know whether there are
Gender differences in this relationship. If it turns out that the influence is
stronger for males than females, we would conclude that there is a statistical
interaction between Religion and Political Party Preference (PPP). What this
means is that the influence of Religion on PPP is not as simple as it seems.
Gender is a moderating variable.

Interaction is explored by examining differences between a measure of asso-
ciation or influence in a bivariate relationship and similar measures for differ-
ent segments of the sample or population. For example, if we wish to know
whether the association between A and C is moderated by B, we could not only
examine this association, but we could also see what happens to it for different
categories within B. These are known as conditional associations. If the strength
of association or influence between A and C is more or less the same for each
category of B, we would conclude that B is not a moderating variable on the
overall association. However, if there are differences in the strength of associa-
tion or influence within each category of B, then B can be considered to be a
moderating variable, and there is interaction between A and C. This kind of
analysis relies entirely on comparing a number of associations or influences,
both full and conditional, and inferring interaction from the changes in the
coefficients.

The logic of Trivariate Analysis

To illustrate the logic of the analysis for spuriousness, for intervening and
moderating variables, and for multiple influences, let us imagine possible coeffi-
cients for the types of relationships outlined in Figure 5.3. Table 5.7 sets out the
forms of the relationships, the methods of statistical control, possible coeffi-
cients of influence and the conclusion to be drawn. The values of these coeffi-
cients are purely hypothetical and may not even be possible in practice. Their
purpose is simply to illustrate what could happen and what it means. It is
assumed that all relationships are linear.

The three pairs of bivariate relationships between A, B and C, as shown in
Table 5.7(a), are moderate to strong.10 This means that it is worth proceeding
with an exploration of possible forms of trivariate relationships between them.
If there had been little or no influence between one or more pairs of variables,
there would be no point in exploring their interrelationships. The first test is
to see whether the relationship between B and C is spurious, that is, whether
this association is the result of each being influenced by a third variable, A (see
Table 5.7(b)). If the influence of A on B and of A on C is high, then there is the
possibility of a spurious relationship between B and C. If both of the measures
of influence of A on the other two variables are low, then it is certain that A is
not responsible for the association between B and C. For example, a strong asso-
ciation between Willingness to Act (B) and Environmentally Responsible Behav-
iour (ERB, C) may be the result of both variables being strongly influenced by
EWV (A). This means that the strong association betweem Willingness to Act
and ERB is spurious because it is mainly the result of the influence of EWV on
both of them. However, is social research, the issue of spuriousness is usually
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not black and white. Low to moderate coefficients tend to leave the issue open
for further analysis.

Once these preliminaries are settled, there are three further issues to be
examined. First, does one variable intervene between the other two, that is, is
the influence of one variable on another dependent on the third variable creat-
ing a link, or stepping-stone, between them? The first of the two examples in
Table 5.7(c) indicates that the influence of A on B and then of B on C is very
much higher than that of A on C directly. This suggests that B intervenes
between A and C. In the second example, B is not an intervening variable as the
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Table 5.7 Forms of relationships between three variables
Form Method of control Coefficients Conclusion
(a) Bivariate No control

It is worth proceeding

(b) Spurious B with C by A

B with C could be spurious

B with C is not spurious

(c) Intervening A on C by B B is intervening

B is not intervening

(d) Moderating Category X of B B is moderator of A with C

Category Y of B

Category X of B B is not moderator

Category Y of B

(e) Multiple No control

Separate influence

Combined influence

A 0.45 C

B 0.55 C

A 0.60 B

0.60

A 0.55

0.45

0.05

A 0.55

0.10

A 0.60 B 0.55 C

0.15

A 0.15 B 0.10 C

0.60

A 0.80 C

A 0.10 C

A 0.60 C

A 0.55 C

0.45

0.05

0.55

0.55

A

B

0.45

0.50 C

A

B

C

B

C

B

C
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influence of A on C is strong on its own. For example, if EWV (A) has a weak
influence on ERB (C), but there is a strong influence on both EWV on Willingness
to Act (B) and then of Willingness to Act on ERB, Willingness to Act can be
regarded as an intervening variable between EWV and ERB. However, if the
strengths of these coefficients are reversed, or if they were all fairly similar, say
moderate, then Willingness to Act would not intervene. In short, it is only when
the coefficients through the intermediate variable are both higher than that
between the first and last variables, that an intervening variable can be said to
be present.

In order to establish whether one variable, say B, moderates the influence of
one variable on another, say A on C, it is necessary to examine their relationship
for different categories of B, say two categories (see Table 5.7(d)). If there is a
substantial difference between the coefficients for the influence of A on C for
the two categories of B, say one is very strong and the other is weak, we can
conclude that B moderates this relationship. The strength of the influence is
dependent on category X of B and not on category Y. Hence, B is a moderating
variable. For example, a moderate influence of EWV (A) on ERB (C) might be
due to differences in Willingness to Act (B) across categories of EWV. There
may be a very strong Willingness to Act among those with above average EWV
scores but a variation from high to low amongst those with below average
scores; the coefficient for the former will be strong and for the latter, weak or
negligible. Hence, Willingness to Act is a moderating variable. However, if both
of these EWV categories (above and below average scores) have a similar level of
influence on ERB, then Willingness to Act does not moderate the influence of
EWV on ERB.

Another interest in trivariate relationships is whether two predictor variables
(A and B) separately or together influence the outcome variable (C) (see Table
5.7(e)). The first step in this direction is to examine the coefficients for each
pair of relationships. If the association between the two predictor variables is
negligible, it is possible to conclude that the two predictors have an indepen-
dent influence; if there is a strong association between them, then their influence
is probably combined. For example, if there was a negligible association between
EWV (A) and Willingness to Act (B), but both have a moderate influence on
ERB (C), the conclusion would be that their influence is not related. However,
a moderate association between EWV and Willingness to Act, and moderate
influences of both on ERB, would suggest that their influence is combined.

A common form of multivariate analysis, multiple regression, is designed to
establish the relative influence that a set of predictor variables has on an out-
come variable.This procedure can indicate the contribution of each predictor
variable when the influence of all the other predictors is controlled.

Each of the five forms of relationships between three variables constitutes an
analytical model. It is up to the researcher to select a model to structure the
analysis of a particular data set, preferably on theoretical grounds. The values
of the coefficients will then determine whether or not the model is appropri-
ate for the data. If not, other models can be tried. Sorting out the forms of
bivariate relationships requires a clear understanding of the logic of the rela-
tionships and a careful inspection of the values of the bivariate coefficients.
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When categorical variables are involved, a comparison of cell percentages is also
a useful procedure.

The logic of the various relationships between these three variables is the
same regardless of the levels of measurement. We have already encountered
methods of analysis for all types of variables, including combinations of vari-
ables at different levels of measurement. However, as with bivariate analysis,
multivariate analysis is more cumbersome with categorical variables than it is
with metric variables. Some examples of both methods will be discussed
shortly. For an alternative approach to spuriousness, and intervening and
moderating variables with categorical data, see Bryman and Cramer (1997:
239–50).

Relationships in bivariate analysis are often referred to as zero-order relation-
ships. When a third variable is introduced as a control, the analysis deals
with first-order relationships, and adding a fourth variable as a control leads
to second-order relationships. Most of what follows deals with first-order
relationships.

Influence Between Categorical Variables

One way of doing trivariate analysis with categorical variables is to use three-way
contingency tables. While this type of analysis is usually done using measures of
association, it makes sense to use measures of influence as the logic of the analy-
sis is to discover influences.

Three-way Contingency Tables

In Chapter 4, contingency tables were used to establish associations between
two categorical variables. Earlier in this chapter we also used contingency tables
to examine bivariate relationships between combinations of nominal-level and
ordinal-level variables in order to establish the degree of influence of predictor
variables on outcome variables. In three-way contingency tables, the cross-
tabulation between two variables is controlled by a third variable. This involves
creating two or more conditional tables, one for each of the categories of the
third variable. By comparing the measures of association or influence between
the conditional tables with that for the bivariate relationship in the full table, it
is possible to work out what form the relationships between the three variables
take. These comparisons can be confirmed by calculating the differences
between cell percentages in the conditional and full tables.

An example

Let us examine the relationship between two categorical variables, Age and
EWV, with two other categorical variables, Gender and Education, as separate
controls (Resident sample). Environmental Worldview, the outcome variable,
has been coded into four categories (‘Low’, ‘Moderate’, ‘High’ and ‘Very high’),
and Age, the main predictor variable, has been coded into three categories
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(‘18–34’, 35–54, ‘55+’). Education has been recoded into three categories:
‘Low’ (primary, some secondary and technical certificate), ‘Moderate’ (completed
secondary) and ‘High’ (university educated). What we wish to discover is
whether the influence (or association) between Age and EWV is spurious, or
whether either Gender or Education is an intervening or moderating variable.
To do this, we shall explore a number of three-way contingency tables.

First, we need to examine the bivariate influence and association between
Age and EWV (see Table 5.8). The appropriate coefficients are Somer’s d for
influence and gamma for association. The standardized contingency coefficient
is also included for comparison, even though it is more appropriate with
nominal-level variables. It is clear that Age has an influence on EWV (d = −0.24)
and that there is a moderate association (G = −0.33; Cs = 0.39). The association
is almost linear, with younger people tending to have ‘Very high’ EWV scores,
middle-aged people having ‘High’ scores and older people having ‘Moderate’ or
‘Low’ scores.
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Table 5.8 Environmental Worldview and Age (Residents)
Age

EWV 18–34 35–54 55+ Total

Low 16 12 31 20
Moderate 35 33 48 39
High 24 38 16 26
Very high 25 17 5 15

Total 100 100 100 100
n 128 138 135 401

Somer’s d = −0.24 (G = −0.33; Cs = 0.39)

Age can be a difficult variable to interpret in cross-sectional research as there
is always the dilemma of either viewing changes in Age as a developmental
process, or regarding it as an indicator of the different experiences of each age
cohort as their biographies intersect with history in different ways. One of
these differences in life experiences is level of education. Younger people have
greater educational opportunities and higher educational expectations than
were available for older people. Therefore, it is possible that Education is
confounding the association between Age and EWV, that is, if Education is also
associated with EWV. Gender can also enter into this possible network of asso-
ciations. To save space, only the bivariate influences and associations between
these variables are given, including Age with EWV for comparison:

Age with EWV d (EWV outcome) = −0.24 (G = −0.33;  Cs = 0.39)

Gender with EWV d (EWV outcome) = 0.15 (G = 0.21;  Cs = 0.28)

Education with EWV d (EWV outcome) = 0.17 (G = 0.23;  Cs = 0.23)

Age with Education d (Educn outcome) = −0.18 (G = −0.28;  Cs = 0.34)

Gender with Education d (Educn outcome) = 0.06 (G = 0.08;  Cs = 0.19)

Age with Gender (G = 0.02;  Cs = 0.03)
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There is some influence of both Gender and Education on EWV, but less than
Age. Age also has an influence on Education, no doubt reflecting the point just
made. While it makes no sense to examine any kind of influence between Age
and Gender, we can note that the low coefficients of association indicate that
there is a Gender balance across the three Age categories. It is also evident that
there is very little difference between males and females in terms of their
Education: males are slightly more inclined to have a ‘Low’ Education and
females a ‘Moderate’ Education; and there is a Gender balance in terms of
‘High’ Education. These data need to be taken into account in interpreting
three-way contingency tables involving these variables.
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Table 5.9 Environmental Worldview and Age controlled for
Education (Residents)

Age

Education EWV 18–34 35–54 55+ Total

Low Low 14 22 35 27
Moderate 38 38 51 44
High 28 32 10 20
Very high 21 8 4 9

Total 100 100 100 100
n 29 37 69 135

Moderate Low 20 7 22 17
Moderate 34 37 44 38
High 22 30 30 26
Very High 24 26 4 19

Total 100 100 100 100
n 41 27 27 95

High Low 15 7 32 15
Moderate 35 30 45 35
High 22 44 18 31
Very High 28 20 5 19

Total 100 100 100 100
n 58 71 38 167

In view of the bivariate analyses, Education and Gender will be used as
controls on the relationship between Age and EWV. Table 5.9 shows three
conditional tables with Education as the control variable: ‘Low’ (primary/some
secondary/technical certificate); ‘Moderate’ (completed secondary); and ‘High’
(university educated). By inspecting the percentages in the three conditional
tables, we find the same slightly curvilinear pattern that was found in the bivari-
ate relationship, particularly for those with ‘High’ Education. In this conditional
table, the younger respondents tend to have ‘Very high’ EWV scores, the
middle-aged respondents tend to have ‘High’ scores and the older respondents
tend to have ‘Moderate’ and, more particularly, ‘Low’ scores. For the ‘Low’
education conditional table, the relationship is linear. However, in the ‘Moderate’
education conditional table, the pattern is more complex. While it tends to be
curvilinear, the distribution is more dispersed and there is an exception in the
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‘18–34’ and ‘Low’ EWV score cell, in which there is overrepresentation. The
coefficients reflect these patterns, and are as follows.11

Age with EWV d (EWV outcome) = −0.24 (G = −0.33; Cs = 0.39)

‘Low’ education d (EWV outcome) = −0.30 (G = −0.42; Cs = 0.41)

‘Moderate’ education d (EWV outcome) = −0.11 (G = −0.15; Cs = 0.33)

‘High’ education d (EWV outcome) = −0.19 (G = −0.25; Cs = 0.42)

It is clear that respondents with ‘Low’ education contribute more to the relation-
ship between Age and EWV than the other Education categories, while those
with a ‘Moderate’ education make the least contribution. In other words, the
relationship is stronger for those with ‘Low’ education, followed by those with
‘High’ education and then those with ‘Moderate’ education. This analysis
suggests that Education is a moderating variable.

While it is not critical to this analysis, it is worth noting that about half
(51 per cent) of those with ‘Low’ Education are aged 55 and over, that approach-
ing half (43 per cent) of those with ‘Moderate’ Education are aged 18–34, and
that a similar proportion (42 per cent) of those with ‘High’ Education are aged
35–54. This is not unexpected as some older respondents would be less likely
to have had the same educational opportunities as younger respondents today,
that the youngest respondents (18–20), if they are at university, will not yet
have completed their studies, and that some middle-aged respondents (35–54)
will either have completed a university education or may have taken up first or
further university studies later in life, particularly postgraduate studies. These
factors account for the different distributions across the three Age categories in
each of the conditional tables.

Table 5.10 shows two conditional cross-tabulations of Age with EWV, one
for males and the other for females. As with the full table, there is a
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Table 5.10 Environmental Worldview and Age controlled for
Gender (Residents)

Age

Gender EWV 18–34 35–54 55+ Total

Males Low 22 18 42 27
Moderate 36 30 43 37
High 16 31 12 20
Very high 27 21 3 16

Total 100 100 100 100
n 64 67 69 200

Females Low 11 6 18 12
Moderate 34 37 54 42
High 31 44 22 33
Very High 23 13 6 14

Total 100 100 100 101
n 64 70 65 199
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consistent curvilinear pattern in both conditional tables. The coefficients
are as follows.

Age with EWV d (EWV outcome) = −0.24 (G = −0.33; Cs = 0.39)

Males only d (EWV outcome) = −0.26 (G = −0.34; Cs = 0.43)

Females only d (EWV outcome) = −0.22 (G = −0.31; Cs = 0.36)

Controlling for Gender reveals very little difference between males and
females: the relationship is only slightly stronger for males than females. This
confirms that Gender is not a moderating variable on this relationship and it
could hardly be a candidate as an intervening variable.

While this use of three-way contingency tables provides only a weak form of
explanatory analysis, it does provide a better understanding of how variables
interact than can be gained from the more powerful multiple regression analy-
sis. Fortunately, when the analysis uses lambda (nominal-level variables) and
Somer’s d (ordinal-level variables) as the measures of influence, it is not neces-
sary to satisfy the normal requirements for chi-square analysis on contingency
tables, that is, that fewer than 20 per cent of expected frequencies can be less
than 5 and no expected frequency can be less than 1. However, care needs to be
taken when the numbers in any cells get very small. In this situation, it may be
advisable to combine categories with smaller numbers even if some information is
lost. However, care must be exercised when the analysis involves ordinal-level
variables as combining categories can change the form of an association.

Other Methods

Loglinear analysis can be applied to relationships between two or more cate-
gorical variables. It is particularly useful when four or five variables are
involved. However, in contrast to the analysis of three-way contingency tables
just elaborated, loglinear analysis requires the formulation of models in order to
explore the relationships in the data. These models are derived from theory and
are developed iteratively until the best fit with the data is found.

The basis of this method is the calculation of expected cell values in the same
manner as occurs in chi-square analysis (see Chapter 4). A model is constructed
in which the expected frequencies in the cells of the table are those that would
occur if there were no associations between the variables. However, while this
is a simple procedure for bivariate contingency tables it is much more complex
in contingency tables with three or more variables. It is difficult to do manually
but, fortunately, it can be done automatically by statistical packages.

As with the use of three-way contingency tables, loglinear analysis lies on the
border between association and explanatory analysis. Its purpose is to discover
whether there is any interaction between a set of variables rather than to estab-
lish influence between a set of predictor variables and an outcome variable.
Nevertheless, it provides a useful extension to the multivariate analysis of
categorical variables. While it is beyond the scope of this book to deal with this
method, a detailed elaboration can be found in Gilbert (1993).
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Influence Between Metric Variables

It is much easier to conduct multivariate analysis with metric variables than it
is with categorical variables. Most of this subsection is devoted to a discussion
of multiple regression as this has become the major method of choice. How-
ever, a brief consideration of partial correlation precedes this as it is an impor-
tant aspect of multiple regression.

Partial Correlation

Partial correlation is the metric equivalent of three-way contingency tables. It
allows a researcher to examine the effect of one variable, the control, on the
relationship between two other variables. It is possible to test for spuriousness,
and an intervening or moderating variable (see Table 5.7). However, the analy-
sis is much simpler than that required in three-way contingency tables. After
computing Pearson’s r for all three bivariate associations, say A with B, A with
C, and B with C, the possible effect of B on the association between A and C
is explored by computing a partial correlation coefficient to remove the associ-
ation that B has with both A and C.

The first possibility is that B is strongly associated with A (say, 0.75) but has
a very weak association with C (say, 0.10). Therefore, B cannot affect the asso-
ciation between A and C. A second possibility occurs when B is strongly asso-
ciated with both A and C. When the effect of B is removed, the partial
correlation between A and C could become very weak (say, 0.05). This would
suggest that the association between the latter is spurious as both are related to B.
A third possibility is that controlling for B could reduce the strength of associ-
ation between A and C. In social research, this is the most likely possibility. The
difficult question is: what does it mean? It could be that the association
between A and C is partly spurious, that B is an intervening variable between A
and C, that the strength of the latter association is dependent on B providing
the link, or that B has a moderating effect, that is, B changes the form of the
association between A and C. The only way that this can be settled is by exami-
ning both the zero-order and the first-order coefficients, and considering the
logic of the relationships themselves (see Table 5.7).

Multiple Regression

Of all the methods available in the social sciences for multivariate explanatory
analysis, multiple regression is the most widely used.12 Multiple regression is a
method for analyzing the relationship between a single, metric outcome vari-
able and two or more predictor variables. Just as with bivariate regression,
predictions can be made about the outcome variable, based on the observed
values of the predictor variables. The analysis establishes the relative magnitudes
of the contributions of each predictor variable. It is assumed that using more
than one predictor variable leads to better predictions.

In addition to prediction, it is also possible to use multiple regression for
explanatory analysis. It is possible to assess the influence of each predictor

Analyzing quantitative data

146

3055-ch05.qxd  1/10/03 3:23 PM  Page 146



variable by statistically controlling the influence of all the others. In other
words, the analysis tells us what happens when one of the predictor variables
changes while all the other predictor variables remain the same. Hence, the
independent influence of all the predictor variables can be established and their
total influence can also be measured. It is then possible to see what proportion
of the variance in the outcome variable is explained by each predictor variable,
and by a set of them together.

It is important to note that regression analysis requires that the outcome vari-
able is metric. Normally, the predictor variables will also be metric but, as we
shall see, it is possible to work with categorical variables. When the outcome
variable is categorical, a different method of analysis must be used, namely,
logistic regression. We shall return to this later in the chapter.

The statistical purists may argue that the only satisfactory way to hold vari-
ables constant, and to control for extraneous variables, is to conduct randomi-
zed experiments. However, given that it is not possible to design experiments
for many of the problems that social scientists wish to investigate, multiple
regression provides a useful alternative. There are, nevertheless, some limita-
tions. First, it must be possible to assume that all the relationships between
each of the predictor variables and the outcome variable are linear. Second, it
must be possible to measure all the variables that might have an effect on the
outcome variable. Third, it must be possible to measure these variables pre-
cisely. In practice, it would be rare to meet the second and third requirements
fully, even though the third is an aspiration of quantitative social research.

The issue of what we assume is being measured by a variable is extremely
important in regression analysis, particularly multiple regression. Frequently,
variables are just shorthand for complex social processes. Being clear about
what we are measuring, and having appropriate methods for doing it, involves
philosophical, theoretical and methodological considerations. Measuring any
concept in the social sciences is a complex process, with the result that the
techniques that are involved in the analysis of quantitative variables cannot capture
the meanings and assumptions that are built into them. This interpretation is a
separate process.

The principles behind multiple regression are exactly the same as for bivari-
ate regression. The expression y = a + bx is extended to include a combination
of bs and xs for every predictor variable. In the case of two predictor variables,
the equation is written as:

y = a + b1 x1 + b2 x2 + … (5.12)

where y is the value on the outcome variable, a is the intercept on the Y axis,
x1 and x2 are the corresponding values on the two predictor variables, and b1 and b2

are their respective slopes. Additional predictor variables and their slopes can
be added to the equation. Whereas it was possible to draw a simple graph of the
regression line between two variables, the graphical representation of a multiple
regression is rather more complex and needs to be in one more dimension than
there are predictor variables.
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In discussing bivariate regression earlier in the chapter, dummy variables
were introduced to make it possible to include categorical predictor variables in
the analysis. It is possible to use a categorical predictor variable in simple regres-
sion as long as it can be recoded into two categories (dichotomized), with one
category assigned the value ‘1’ and the other ‘0’. However, when it is necessary
or desirable to use more than two categories of a nominal-level or ordinal-level
predictor variable, multiple regression must be used. Take the variable Education,
for example. In the Resident sample, Education was coded into five categories:
‘Primary/some secondary’, ‘Technical certificate’, ‘Completed secondary’,
‘Degree/diploma’ and ‘Postgraduate qualification’. It is possible to dichotomize
these categories into ‘University educated’ versus ‘No university education’, as
was done earlier (see Table 4.8). However, Table 5.6 suggests that more homo-
geneous categories would be produced if the dichotomy was based on a combi-
nation of ‘Primary/some secondary’ and ‘Technical certificate’ against the other
three categories. This will be used here.

An example

It is now possible to take the example of simple regression between Age and
EWV a step further by introducing additional predictor variables. As with the
analysis of three-way contingency tables, let us start with two more variables,
Gender and Education. The question is, what are the relative strengths of their
contributions in explaining a person’s level of EWV? Gender, as a dichotomized
variable, is coded ‘1’ for ‘Female’ and ‘0’ for ‘Male’; and Education is dichoto-
mized as ‘High’ (completed secondary/diploma/degree/postgraduate qualifica-
tion), coded ‘1’, and ‘Low’ (primary/some secondary/technical certificate),
coded ‘0’.

The results of multiple regression analysis, using these three predictor vari-
ables, are shown in Table 5.11. While the means and standard deviations of
these variables, and their Pearson’s r (with EWV), are not normally shown in
such a table, they are included here mainly to show what happens with
dichotomized or dummy variables, to confirm the distributions on the two
dichotomized variables, Gender and Education, and to compare r with the beta
coefficient. The means indicate that there is a gender balance in the sample
(x– = 0.50), and that the ‘High’ education category has about two-thirds of the
sample in it (x– = 0.66).
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Table 5.11 Regression of Environmental Worldview on Age, Gender and Education
(Residents)

Predictor variables –x s r Slope (b) Std error Beta Tolerance VIF

Age 46.01 18.20 −0.308 −0.164 0.030 −0.274 0.93 1.08
Gendera 0.50 0.50 0.143 2.500 1.030 0.116 0.99 1.01
Educationb 0.66 0.47 0.186 2.243 1.127 0.099 0.92 1.09

n = 395 Constant = 92.82 R = 0.346 R2 = 0.119 Standard error of the estimate = 10.17
aFemale coded ‘1’.
b'Completed secondary/diploma/degree/postgraduate qualification’ coded ‘1’.
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The critical question in this analysis is whether knowing the Gender and
Education of our respondents increases our ability to predict or explain their
EWV score. To do this we need to compare R2 and the standard error of the
estimate shown in Table 5.11 with the bivariate regression done with Age alone
(see pp. 132–3).13 The bivariate regression produced an R2 of 0.095, which indi-
cates that 9.5 per cent of the variance was explained, whereas in the
multiple regression 11.9 per cent of the variance was explained (R2 = 0.119).
There is a slight reduction in the standard error of the estimate, from 10.26 to
10.17. What is also evident is that the regression line for Age is now slightly
flatter than it was in the bivariate analysis (b = −0.164 compared with −0.185).
This means that for every year of Age, the EWV score now decreases by 0.164
rather than 0.185. While it is not particularly important, note that a, the point
at which the combined regression effects of the predictor variables intersect
with the Y axis (referred to in multiple regression as the ‘constant’), has been
reduced from 96.49 to 92.82. In other words, it has moved towards the EWV
mean of 87.99.

We now know what the total effect of the three predictor variables is on the
outcome variable. However, we can also assess the individual contributions of
the three variables. If we examine the unstandardized coefficients (b) for each
of the predictor variables (see Table 5.11), we find −0.164 for Age, 2.500 for
Gender and 2.243 for Education. We have already interpreted the coefficient
for Age. What do the other two mean? They indicate that, on average, females
have EWV scores 2.500 higher than males and that, on average, those in the
‘High’ education category have EWV scores 2.243 higher than those in the
‘Low’ education category.

There is a second more complex factor to consider. Because predictor vari-
ables usually have different units of measurement, it is not possible to compare
the unstandardized b coefficients in the hope of assessing the relative influence
of these variables. For example, we cannot say that Gender has a bigger influ-
ence on EWV than Age just because its b is 2.500 compared with −0.164 for
Age. Gender is measured as either ‘1’ or ‘0’ while Age ranges from 18 to 90
years. To make such comparisons, the b coefficients have to be standardized.
This is done by converting them into standard deviation units. They tell us how
many standard deviation units the outcome variable changes for an increase in
one standard deviation unit in the predictor variable.14 The standardised coeffi-
cients are referred to as beta coefficients.

In Table 5.11 we can see that the beta for Age is −0.274, for Gender it is
0.116 and for Education it is 0.099. Now we are in a position to compare the
relative influences of the three predictor variables on the outcome variable.
Clearly, Age has more influence than the other two variables, with Education
having the least influence. This may be the result of the fact that there is some
association between Age and Education (r = −0.273): older people tend to be
less well educated than younger people.

There is some similarity between these beta coefficients and the corres-
ponding values for Pearson’s r (see Table 5.11). They are measures of two
different kinds of relationships between two variables, association (r) and
influence (beta). However, apart from the differences in the mathematics, the
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magnitude of the beta coefficients is the result of the influence of all the other
predictor variables in the analysis being controlled statistically. Pearson’s r is a
measure of the relationship regardless of the associations of other variables.

Collinearity

There is an important feature of multiple regression that needs to be mentioned
here. When sets of predictor variables are themselves highly correlated, the
regression procedure is unable to sort out the contributions of each one. It will
usually rely on the variable with the highest R and then assume that the other
variable (or variables) make little or no contribution. This is known as the
problem of collinearity, or multiple collinearity. In order to determine whether
this is the case, we can examine two diagnostics, tolerance and the variance
inflation factor (VIF). A tolerance value of 1 indicates that the variable is not
correlated with the other(s), and a value of 0 that it is perfectly correlated.
Likewise, a VIF value of more than 2 indicates a close correlation, and a value
approaching 1 indicates little or no association. The simplest way to interpret
these values is to hope that they are both about 1 (low or no collinearity) and
to look very carefully as they deviate in both directions away from 1.15 Of
course, we can check the values of Pearson’s r to confirm this. When there are
only two predictor variables, there will be consistency between r and the diag-
nostics. However, when there are more than two predictors, the r values may
not provide a reliable indicator of the degree of collinearity.

The diagnostics are shown in the right-hand columns of Table 5.11. The
values for both are all close to 1, indicating a low level of correlation between
the variables. This is confirmed by the values of r for Age with Gender (−0.06)
and Gender with Education (0.11), but not as clearly for Age with Education
(−0.27). While the diagnostic values for the latter two variables are further
from 1 than the others, the difference is not as great as might be expected.
Nevertheless, with this possible exception, it can be assumed that the three
variables make relatively independent contributions to the explanation of EWV.

Multiple-category dummy variables

Before exploring a more complex example of multiple regression, we need to
review the use of dummy variables with multiple-category, categorical predictor
variables. Let us use the same three predictor variables, but this time creating
four dummy variables for Education. To do this, each of the education categories
is dichotomized against all the others in turn. For example, ‘Primary/some
secondary’ can be coded as ‘1’ and all the other categories as ‘0’; and similarly
for each of the other categories. When such a variable is entered into the regres-
sion analysis, the number of dummy variables needs to be one less than the number
of categories. The category that is not included becomes the reference category
against which the b coefficient for each of the other categories is compared. In
this case, the reference category is ‘Postgraduate qualification’.

Table 5.12 provides the additional information on these Education categories.
The first thing to note is how to interpret the b coefficients for the four
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Education dummy variables. The missing category, ‘Postgraduate qualification’,
is, in effect, ‘0’ and the values of the other four categories have to be compared
with it. They are all negative, indicating that respondents in each category have
lower mean EWV scores than those with ‘Postgraduate qualifications’. Also, the
differences decrease as the level of education increases, with those in the lowest
education category having an average EWV score of 4.805 less than those in the
highest category. There is clearly a linear relationship between EWV and this set
of ordinal-level education categories (see Table 5.6 for a comparison of means).

What can we learn from the data on the four dummy Education variables?
Without going into technical details, we would have to conclude that while the
difference between the top and bottom education categories has some interest,
overall the dichotomized version of the Education variable is as useful as the
four dummy variables. The only relevant difference is that R2 has increased
slightly with the four dummy variables (0.124 compared with 0.119). How-
ever, the situation might be different when dummy variables are based on
categories from nominal-level variables.

While the coefficients for Age remains the same, the Gender coefficients
have increased slightly (beta from 0.117 to 0.124), and the constant has also
increased (from 92.816 to 96.800). Another important change has occurred in
the collinearity diagnostics; they indicate that the four Education dummy vari-
ables are probably correlated among themselves as well as with Age and Gender.
The correlation matrix for these variables provides some support for this
(see Table 5.13). The pairs of variables with the higher coefficients are as would
be expected, although not uniformly across all the Education dummy variables.
For example, there is a weak association between Age and ‘Primary/some
secondary’ education (r = 0.26), ‘Completed secondary’ (r = −0.16) and ‘Degree/
diploma’ (r = −0.14).

Perhaps it is now time to get in at the deep end and try swimming in a
multiple regression with more predictor variables, and with some nominal-level
data. Table 5.14 adds Marital Status, Religion and Political Party Preference to
Table 5.11. Marital Status has been recoded into five categories: ‘Married’,
‘Separated or divorced’, ‘Widowed’, ‘Stable relationship’ and ‘Never married’.
Dummy variables cover the first four categories and are compared with ‘Never
married’. Religion has been recoded into four categories: ‘Protestant’,16

Explanatory analysis

151

Table 5.12 Regression of Environmental Worldview on Age, Gender and Education in
five categories (Residents)

Predictor variables –x s r Slope (b) Std error Beta Tolerance VIF

Age 46.01 18.20 −0.308 −0.164 0.030 −0.274 0.91 1.10
Gender 0.50 0.50 0.143 2.677 1.047 0.124 0.96 1.04
Primary/some sec.a 0.19 0.39 −0.166 −4.805 2.406 −0.174 0.30 3.36

Technical cert.a 0.15 0.36 −0.066 −3.220 2.468 −0.108 0.33 3.03

Completed sec.a 0.24 0.43 0.069 −2.459 2.338 −0.097 0.27 3.78

Degree/diplomaa 0.36 0.48 0.093 −1.778 2.252 −0.079 0.23 4.45

n = 395 Constant = 96.80 R = 0.352 R2 = 0.124 Standard error of the estimate = 10.18
aCompared with ‘Postgraduate qualification’.
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‘Catholic’, ‘Other religions’17 and ‘No religion’. Dummy variables have been
created from the first three categories and are compared with ‘No religion’.
Political Party Preference has been recoded into three categories: ‘Conservative’
parties,18 ‘Liberal’ parties19 and ‘Undecided’. The first two categories have been
converted into dummy variables and are compared with ‘Undecided’.

Now to interpret Table 5.14. The first thing to note is that R2 has increased
from 0.119 (Table 5.11) to 0.272. Hence, this set of predictor variables can
explain 27.2 per cent of the variance in the outcome variable. The best that has
been achieved up to this point is 12.4 per cent. Second, the constant has been
reduced to 95.89, between the previous two figures. Third, the beta coeffi-
cients for Age and Education are now somewhat lower (from −0.274 to −0.220,
and from 0.099 to 0.086, respectively), but for Gender marginally higher (from
0.116 to 0.163). Fourth, Marital Status makes very little contribution. While
the dummy variables ‘Separated or divorced’ (beta = −0.077) and ‘Stable
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Table 5.13 Correlation matrix for Age, Gender and six Education dummy variables
(Residents)

1 2 3 4 5 6 7

1 Age 1.00
2 Gender −0.06 1.00
3 Primary/some sec. 0.26 0.03 1.00
4 Technical certificate 0.07 −0.17 −0.20 1.00
5 Completed secondary −0.16 0.13 −0.27 −0.24 1.00
6 Degree/diploma −0.14 −0.02 −0.36 −0.32 −0.42 1.00
7 Postgraduate 0.02 0.02 −0.12 −0.11 −0.14 −0.19 1.00

Table 5.14 Regression of Environmental Worldview on Age, Gender and Education,
Marital Status, Religion and Political Party Preference (Residents)

Predictor variables Slope (b) Standard error Beta Tolerance VIF

Age −0.134 0.037 −0.220 0.54 1.86
Gender 3.504 0.996 0.163 0.91 1.09
Educationa 1.956 1.061 0.086 0.90 1.12
Marriedb 0.957 1.342 0.044 0.52 1.94
Separated or divorcedb 3.375 2.181 0.077 0.79 1.27
Widowedb 0.352 2.562 0.008 0.57 1.75
Stable relationshipb 3.332 2.248 0.072 0.84 1.20
Protestantc −0.123 1.386 −0.006 0.51 1.97
Catholicc −5.644 1.479 −0.215 0.61 1.63
Other religionsc −4.191 1.556 −0.144 0.69 1.46
Liberal partiesd 4.274 1.184 −0.192 0.69 1.45
Conservative partiesd −3.850 1.248 −0.165 0.68 1.47

n = 395; Constant = 95.89 R = 0.521 R2 = 0.272 Standard error of the
estimate = 9.35

a ‘Completed secondary/diploma/degree/postgraduate qualification’ coded ‘1’
b Compared to ‘Never married’.
c Compared to ‘No religion’.
d Compared to ‘Undecided’.
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relationship’ (beta = 0.072) make minor contributions, the other Marital Status
dummy variables do not. Fifth, Religion seems to make some contribution, but
only from the ‘Catholic’ and ‘Other religion’ dummy variables. Sixth, Political
Party Preference also makes a contribution (for ‘Liberal’ beta == −0.192, and for
‘Conservative’ beta = −0.165).

We could add further predictor variables into the analysis. However, this is
really not the way to try to explain any variable. The selection of predictor vari-
ables should be informed by theory rather than a process of trial and error. It is
possible to give theoretical rationales for the variables included in Table 5.14,
but this is not the place to do it (see Chapter 8). It should be evident from
this discussion on multiple regression that while categorical variables can be
included using dichotomous or dummy variables, their interpretation is more
complex than metric variables.

Other Methods

The methods that have been discussed in this chapter have concentrated on
explanatory analysis that involves one or more predictor variables and one out-
come variable. We have dealt with combinations of categorical and metric
variables and have explored ways of handling combinations of variables at
different levels of measurement. While these methods include those that are
the most commonly used in the analysis of data from social surveys, other more
advanced multivariate methods are available. Some of these are concerned with
explanatory analysis in terms of the influence of a set of predictor variables on
an outcome variable. Such methods are sometimes referred to as dependence
techniques. Those discussed in this chapter belong to this category. Other methods
of multivariate analysis deal with the interrelationships between a number of
variables and involve the simultaneous analysis of all the variables in the set
with no assumptions about direction of influence. These methods go beyond
the bivariate correlations of all pairs of variables in the set and are known as
interdependence techniques.

In addition to the methods that have been discussed in this chapter, a range
of more advanced methods of multivariate analysis is available. However, these
methods are beyond the scope of this book. Most of the more important ones
are simply outlined briefly below, with suggestions for further reading. Perhaps
the most detailed treatment of multivariate techniques of analysis available is
to be found in Hair et al. (1998). A book that is highly recommended for any
reader who wishes to use more advanced methods.

Dependence Techniques

The major distinguishing feature of these various methods is the particular com-
bination of different levels of measurement, categorical and metric, of the pre-
dictor and outcome variables, and the number of variables of each type that can
be handled. While some of the methods are alternatives, most work with a
unique combination of variables.
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Analysis of variance

Analysis of variance (ANOVA) is used to make comparisons between two or
more groups to see if they differ on the outcome variable. The groups are the
equivalent of a multi-category predictor variable for which separate means on
the outcome variable can be calculated. Hence, the outcome variable must be
metric. This will be discussed and illustrated in Chapter 6 in the context of
testing the significance of differences between means. See, for example, Field
(2000: Chapters 7–9) or Wright (1997: Chapter 6).

Multiple analysis of variance

Multiple analysis of variance (MANOVA) is an extension of ANOVA in which
comparisons can be made between groups (the predictor variable) across two
or more outcome variables. The predictor variable is the equivalent of a cate-
gorical variable and the outcome variables need to be metric. Both ANOVA and
MANOVA are particularly useful in experimental research. See, for example,
Field (2000: Chapter 10) or Hair et al. (1998: Chapter 6).

Logistic regression

Logistic regression is equivalent to multiple regression but has an outcome
variable that is dichotomous. The predictor variables can be either categorical
or metric. It predicts to which of two categories a person is likely to belong,
given the information contained in the predictors. See, for example, Hair et al.
(1998: Chapter 5), Scott (1995), Agresti and Finlay (1997: Chapter 15), Miles
and Shevlin (2001: Chapter 6) or Gilbert (1993: Chapter 10).

Logit logistic regression

This method is the same as logistic regression except that there are more than
two categories in the outcome variable.

Multiple discriminant analysis

This method is an alternative to the two forms of logistic regression. It can
handle a single outcome variable in dichotomous or multichotomous categories,
and a number of metric predictor variables. See, for example, Hair et al. (1998:
Chapter 5).

Structural equation modelling

This method, sometimes referred to as LISREL after the commonly used soft-
ware package, is an extension of several multivariate techniques, particularly
multiple regression and factor analysis. Whereas other dependence techniques
can deal with only one predictor variable at a time, structural equation model-
ling can handle the relationships between a series or network of interrelated
predictor variables. It can estimate a series of separate, but interdependent,
multiple regression equations simultaneously. The form of the relationships can
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be specified in a path diagram in which an outcome variable in one relationship
can become a predictor variable in the next relationship in the series. The final
outcome variable must be metric but the predictor variables can be either
categorical or metric. See, for example, Hair et al. (1998), Hayduk (1996);
Kaplan (2000) or Kelloway (1998).20

Interdependence Techniques

These multivatiate techniques are not concerned with influence or explanation,
but rather with how a set of variables relate to each other. They search for what
a set of variables has in common and reduce them to one or a few factors or
dimensions.

Factor analysis

Factor analysis is an interdependence technique in which a large set of variables
is considered simultaneously in terms of their bivariate relationships. It is used
to discover the underlying patterns or relationships in a large number of vari-
ables and can reduce these variables to a smaller set of factors or new variates.
Factor analysis is not concerned with predicting an outcome variable. The origi-
nal variables all need to be metric, although the method is commonly applied
to ordinal-level variables in which it is reasonable to assume equal intervals
between the categories. Exploratory factor analysis will be discussed in detail in
Chapter 7. See, for example, Hair et al. (1998: Chapter 3), Field (2000:
Chapter 11), Gorsuch (1983), Lewis-Beck (1994) or Kim and Mueller (1978a,
1978b).

Cluster analysis

Cluster analysis is a technique for classifying a set of individuals or objects into
a smaller number of mutually exclusive groups, based on the similarities among
them. The aim is to maximize the homogeneity within clusters while maximi-
zing the heterogeneity between clusters. Whereas factor analysis is concerned
with grouping variables together as factors, cluster analysis is concerned with
grouping individuals or objects together in terms of some criterion. The
measurement of this criterion variable must be metric. See, for example, Hair
et al. (1998: Chapter 9) or Aldenderfer and Blashfield (1984).

Multidimensional scaling

Multidimensional scaling, or perceptual mapping, identifies key dimensions
underlying people’s judgements and perceptions, such as their evaluations of
objects, comparison of physical qualities or perceptions of objects, people or
issues. It transforms such judgements and perceptions into distances repre-
sented in multidimensional space. It can determine the dimensions people use,
their relative importance and how the objects etc. are related perceptually.
Whereas in cluster analysis the researcher must specify the variable on which
the clusters are to be based, multidimensional scaling is like having the outcome
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variable (judgements or perceptions) and then working out what the independent
variables (perceptual dimensions) might be. This technique can handle both
metric (ratings) and ordinal-level (rankings) input data and can produce an
output in metric data. See, for example, Hair et al. (1998: Chapter 10).

Summary

• Explanatory analysis is concerned with answering ‘why’ research questions
about the patterns or connections between variables. It builds on bivariate
descriptive (associational) analysis to achieve the ultimate objective in quan-
titative social research.

• Because of the philosophical complexities associated with the notion of cau-
sation, social researchers limit their discussions to statistical influence among
variables. To do this, variables are labelled as either predictors (independent)
or outcomes (dependent). Procedures are used to demonstrate the extent of
influence of one or more predictor variables on an outcome variable.

• While it may be more convincing to conduct explanatory analysis using
controlled experiments, social researchers usually have to be content with
techniques that have been designed for cross-sectional research. This
involves making assumptions about the time order of variables and using
statistical rather than experimental controls.

• In bivariate explanatory analysis, three main methods are used to demon-
strate influence between variables. The choice of method depends on the
levels of measurement of the variables.

1. Nominal-level predictor and nominal-level outcome;
lambda (equations (5.1) and (5.2)).

2. Ordinal-level predictor and ordinal-level outcome;
Somer’s d (5.3).

3. Interval-level predictor and interval-level outcome;
bivariate regression (5.5).

4. Nominal-level predictor and ordinal-level outcome;
lambda.

5. Nominal-level predictor and metric-level outcome:

(a) code outcome to ordinal-level-lambda;
(b) conduct means analysis-eta; or
(c) use regression with dummy variables (bivariate regression for a 

dichotomized predictor and multiple regression with multichotomous 
predictors).

6. Ordinal-level predictor and metric-level outcome;
as for 5, but using Somer’s d for (a).

7. Metric-level predictor and nominal-level outcome;
code predictor to ordinal-level-lambda.

8. Metric-level predictor and ordinal-level outcome; 
code predictor to ordinal-level-Somer’s d.
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• In multivariate analysis, in which the influence of a predictor variable on an
outcome variable is controlled by a third variable, and all the variables are
categorical, three-way contingency tables are used. While the control
variable can be either nominal or ordinal, the method of analysis depends on
the level of measurement of the other two variables. Methods of association
or influence can be used. Whether the relationship between the predictor
and outcome variables is regarded as being spurious, or the control variable
intervenes or is a moderator, will depend on the relative values of the
coefficients for the controlled and uncontrolled relationships.

9. Nominal-level predictor and nominal-level outcome;
lambda (5.1), Cramér’s V (4.7) or Cs (4.3). (Loglinear analysis.)

10. Ordinal-level predictor and ordinal-level outcome;
Somer’s d (5.3) or gamma (4.8). (Loglinear analysis.)

11. A combination of nominal-level and ordinal-level variables;
as for 9. (Loglinear analysis.)

12. A combination of metric-level and categorical-level predictor and out-
come variables;
code the metric-level variable to ordinal level categories and use 10 or 11.

13. Metric-level predictor and outcome variables;
partial correlation.

• When multivariate analysis is used to establish the relative influence of two
or more predictor variables on an outcome variable, the following methods
are used.

14. Two or more groups compared on a metric-level outcome variable; 
ANOVA (not discussed).

15. Two or more groups compared on two or more metric-level outcome
variables;
MANOVA (not discussed).

16. Metric-level predictor and outcome variables;
multiple regression (5.12).

17. Metric-level and/or categorical-level predictors and metric-level
outcome;
multiple regression with categorical-level predictors as dummy variables.

18. Metric-level and/or categorical-level predictors and dichotomous
outcome;
logistic regression (not discussed).

19. Metric-level and/or categorical-level predictors and multichotomous 
outcome;
logit logistic regression (not discussed).

20. Metric predictors and categorical outcome;
multiple discriminant analysis (not discussed).

21. A network of interrelated categorical and metric predictors and a final 
metric-level outcome variable;
structural equation modelling (not discussed).
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Notes

1See Pawson and Tilley (1997) for ideas related to this view.
2Should you require information on the variety of experimental models that can be used, and

how data from them can be analyzed, see Campbell and Stanley (1963) and Cook and Campbell
(1979) for classic discussions of experiments in social research, and Kidder and Judd (1986:
Chapters 4 and 5), Neuman (2000: Chapter 9) and Maxim (1999: Chapter 8) for useful
reviews.

3However, computer programs such as SPSS use ‘independent’ and ‘dependent’.
4While lambda can also be used as a symmetrical procedure and with any variables in categories,

both nominal and ordinal, it tends to be a rather conservative measure, that is, it tends to produce
rather low coefficients. It is better to use gamma when both variables are ordinal.

5This relationship, particularly the possible differences in occupation between Protestants
and Catholics, has fascinated sociologists for more than fifty years following the publication in
English of Weber’s The Protestant Ethic and the Spirit of Capitalism (Weber, 1958); see, for
example, Lenski (1961), Blaikie (1969), and Mol (1971).

6In constructing contingency tables in which assumptions are made about the direction of
influence of one variable on another, it is conventional to place the predictor (independent) vari-
able in the columns and the outcome (dependent) variable in the rows, and then calculate the
percentages down the columns. This convention need not be followed in associational analysis.

7For examples of more technical discussions of bivariate and multiple regression than is possible
here, see Allison (1999), Hair et al. (1998), Lewis-Beck (1993) and Miles and Shevlin (2001).

8This is not obvious in Figure 5.1 because SPSS has shortened both axes to save space.
9There is, of course, another possibility in which neither A nor B has an influence on C. In

this case, there is no point in proceeding with any further analysis.
10The double-headed arrows indicate association, while the single-headed arrows indicate

influence. It is possible to do these forms of analysis using only measures of association. How-
ever, the logic is clearer when measures of both association and influence are used.

11While it is not a strictly correct procedure, it is interesting to note the equivalent values for
r: 0.27, 0.32, 0.13 and 0.22. They closely resemble those for Somer’s d.

12In some sociology journals, and in the American Sociological Review in particular, it appears
that the use of multiple regression is almost mandatory in order to get a research article published.

13These figures are based on the analysis without the exclusion of outliers.
14Standard deviation units sound a bit mysterious but were explained in (Chapter 3,

p. 80, 83).
15It is not really necessary to use both diagnostics as one is the reciprocal of the other.

However, as both are given by SPSS, they are used here.
16This includes ‘Anglican’ (n = 91), ‘Uniting’ (n = 55) and ‘Baptist’ (n = 5). 
17This includes ‘Greek Orthodox’ (n = 9), ‘Jewish’ (n = 5), ‘Moslem’ (n = 1) and ‘Buddhist’

(n = 51).
18This includes the Liberal Party (n = 123) and the National Party (although no respondent

in this urban sample intended to vote for the latter, a party with a mainly rural constituency).
19This includes the Australian Labor Party (n = 94), the Australian Democrats (n = 24) and

‘Other’ parties, most of which are left of centre. ‘Liberal’ here should not be confused with the
name of one of the conservative parties.

20For examples of pioneering work on path analysis and structural equation modelling, see
Blalock (1964), Duncan (1966, 1969), Land (1969), Hesse (1969), Goldberger and Duncan
(1973) and Asher (1983).
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6

Inferential Analysis: From Sample to Population

Introduction

Inferential analysis is used to generalize the results obtained from a random
(probability) sample back to the population from which the sample was drawn.
This analysis is only required when:

• a sample is drawn by a random procedure; and
• the response rate is very high.

Hence, this type of analysis is not appropriate when:

• non-probability methods of selection are used;
• the response rate is less than, say, 85 per cent, unless independent evidence

is available to indicate that the sample is reasonably representative; and
• the data are obtained from a population.

There are some technical concepts here that will be explained in due course.
However, I have made these assertions at the beginning because there is a great
deal of confusion in the literature about when inferential analysis should be
used in social research, with the result that it is often applied inappropriately
and unnecessarily.

There are a number of other common misunderstandings when inferential
analysis is applied to measures of association or influence between two variables.

1. Inferential procedures are not a substitute for measures of association.
Many studies appear to use inferential analysis in making decisions about
whether a relationship should be taken seriously, and ignore measures of
association or influence in the process.

2. An inspection of many textbooks on statistics in the social sciences reveals
that a substantial part of the book (usually at least 50 per cent and fre-
quently much more) is devoted to inferential analysis, and the theory behind
it. This gives the impression that this is the most important method of data
analysis. Wrong! We might describe this as an inferential obsession. Inferen-
tial techniques are necessary under very particular circumstances, and in
these situations they are only a supplement to the more basic techniques of
analysis, such as those that have been dealt with in previous chapters.
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3. In reading many textbooks on statistics it would be very easy to come to the
conclusion that using inferential analysis is all that is required in the testing
of hypotheses. If inferential analysis is not appropriate for data obtained
from a population, then how do you test hypotheses in such a situation? I
will show later that inferential analysis is only relevant to a very particular
role for hypotheses in social research.

4. Inferential analysis is sometimes presented as determining whether results
obtained have occurred ‘other than by chance’. Sometimes the notion of
‘chance’ in this context is meant to refer to results occurring by accident or
through some random error in the procedures. As we shall see, chance is
involved in the theory behind inferential analysis, but it does not refer to
accidents or errors.

Having stated these points boldly, we can now proceed to locate this analysis in
its appropriate place and to confine it to the very specific uses for which it was
developed. As inferential analysis is only relevant when probability samples are
used, let us begin by discussing sampling procedures.

Sampling

All social research involves decisions about how to select data from whatever
the source or sources may be. When data are obtained separately from a number
of individuals, social units or social artefacts, the researcher has the choice of
either taking the whole population or selecting a sample from the population.
If sampling is used, then a choice must be made from a variety of methods.

It is a common practice in social research to work with samples rather than
populations, particularly when the population under consideration is very large,
such as a country, a region or an urban area. It is tedious and expensive to study
such large populations. It is also unnecessary as samples of between 1000 and
2000 provide adequate information about most populations in most circum-
stances. However, there is a price to pay when samples are used: first, it is not
possible to be absolutely confident that what a sample shows also exists in the
population; second, it adds considerable complication to the analysis.

Populations and Samples

In order to apply a sampling technique, it is necessary to define the population
(also called the target population, universe or sampling frame) from which the
sample is to be drawn. A population is an aggregate of all units or cases that con-
form to some designated set of criteria. Population elements are single members
or units of a population; they can be such things as people, social actions,
events, places or times. A census is a count of all population elements and is
used to describe the characteristics of a population.
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A population is defined according to the purposes of the research being
undertaken. It can be whatever the researcher needs it to be. It may be large,
as in the case of a national census. It may be small, such as the students on an
introductory university course. In addition, populations are not just collections
of people; they can be made up of many types of elements. Here are some
examples of populations.

• The citizens of a country at a particular time.
• The university students of a country at a particular time.
• First-year university students at a particular university.
• Telephone subscribers in a particular city.
• People of a particular age living in a particular geographical area.
• All the issues of a newspaper published over a 12-month period.
• Only the Saturday issues of the newspaper during this period.
• Only articles in such newspapers that report domestic violence.

A sample is a selection of elements (members or units) from a population and
is used to make statements about the whole population. The ideal sample is one
that provides a perfect representation of a population, with all the relevant fea-
tures of the population included in the sample in the same proportions. How-
ever, while this ideal can be approached, it is difficult to achieve fully in
practice. In some research designs, a sample may be selected deliberately that
does not represent a scaled-down version of the population.

In a probability sample, every population element must have a known and
non-zero chance of being selected. Most types of probability sample will also
give every element an equal chance of being selected. A non-probability sample
does not give every population element a chance of selection. The relationship
between the size of the sample and the size of the population is the sampling
ratio or sampling fraction.

Sampling is used for a variety of reasons. Studying a whole population may be
slow and tedious; it can be expensive and is sometimes impossible; it may also be
unnecessary. Given limited resources, sampling can not only reduce the costs of
a study, but also, given a fixed budget, increase the breadth of coverage. However,
as mentioned earlier, there is a price to pay when it comes to analyzing the data.

The complexity that the use of samples introduces into the analysis of the
data occurs when it is necessary to estimate the characteristics of or patterns in
the population from those found in the sample. This is technically known as
estimating population parameters from sample statistics and involves the use of
methods of inferential statistics. However, it is only possible to make such esti-
mations when probability sampling is used and when it has been possible to
obtain data from all or most of the elements selected.

Probability Samples

To be able to use the results obtained from a sample to draw conclusions about
a population, the sample must be selected using probability techniques. To
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reiterate, a random or probability sample is one in which every population
element has a known (usually equal) and non-zero chance of being selected. As
long as this principle is satisfied in the selection of population elements, it is
possible to generalize the data obtained from a sample to the population from
which it was drawn.

Inferential analysis is a collection of methods for estimating what the popu-
lation characteristics (parameters) might be, given what is known about the
sample’s characteristics (statistics), or for establishing whether patterns or
relationships, both association and influence, or differences between categories
or collectivities that exist in a sample could also be expected to exist in the
population.

It is possible to draw many probability samples from a population. The possi-
ble combinations of population elements that can be selected from a large
population are almost infinite. The ideal sample is one that has a combination
of population elements that are a miniature version of the population, that is,
that represent it in all respects. However, the use of probability procedures can-
not guarantee this. Some samples may be very bad replicas of the population.
It is a matter of chance which combination of elements is drawn. In short, using
probability procedures does not guarantee that a sample accurately represents a
population. As we shall see, there are ways of ensuring that certain population
parameters are represented in the correct proportions, but this is usually
limited to one parameter, such as gender or ethnicity, and two or three at the
very most.

There are a few technical terms that need to be elaborated here.

• Samples can be selected with or without replacement. If replacement is
used, after each population element is drawn, the element is ‘put back’ and
is available for selection again. Selection without replacement means that
once a population element is selected it is not ‘put back’ and is not available
for selection again. Sampling without replacement is the most common in
social research.

• A sample that is not representative is called a biased sample. The extent to
which a sample statistic does not accurately represent the population para-
meter is its error of estimation or sampling error. Because population para-
meters are usually not known, it may be impossible to calculate the error of
estimation. A biased sample produces errors in its estimates of population
characteristics.

The fact that it is usually impossible to achieve a perfectly representative
sample creates one of the most complex problems in social research; namely,
how to generalize from a sample to a population when the sample might be
biased. If all probability samples were accurate replicas of the population from
which they were drawn, we would not need to use inferential analysis. In such
a situation, the characteristics and patterns found in a sample can be assumed
to be the same as those in the population. The only difference is that the
sample is smaller.
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If a population’s characteristics are not known, it is impossible to know to
what extent a sample is biased. Therefore, we have to find a way of estimating
the likelihood of a sample not being an accurate representation of a population.
In other words, we need to know what the chances are that our estimates of
population characteristics are inaccurate. To do this, we have to turn to what is
known as probability theory, which is based on the theoretical chances of not
drawing a representative sample.

Probability Theory

The jump from sample statistics to population parameters is made possible by
the use of probability theory. While it is not necessary to go into the details of
this theory here,1 there are some points that need to be covered in order to be
able to understand what lies behind the methods of inferential analysis. In
terms of a particular population parameter, say age, probability theory allows
us to estimate the distribution of the mean age produced from all possible
samples. It turns out that the possible sample means will tend to be clustered
around the population mean age. However, some samples may have means that
are very different from the population mean. A distribution of these means will
take the shape of a normal curve.

Let us try a hypothetical example using a population of 20 and age as the
variable (see Table 6.1). The age of each member of the population is shown

Inferential analysis

Table 6.1 Hypothetical sampling
No. Age f Samples of four Total Mean

1 18 4 85 20 55 27 187 46.75
2 20 5 55 52 18 65 190 47.50
3 25 2 65 40 18 80 203 50.75
4 27 5 55 30 27 64 176 44.00
5 30 6 60 75 48 18 201 50.25
6 33 2 45 85 33 80 243 60.75
7 35 4 30 35 50 55 170 42.50
8 40 4 40 30 65 35 170 42.50
9 45 2 50 20 65 30 165 41.25

10 48 6 55 25 75 64 219 54.75
11 50 4 48 64 30 27 169 42.25
12 52 1 50 33 60 20 163 40.75
13 55 6 27 75 70 48 220 55.00
14 60 5 70 35 80 60 245 61.25
15 64 4 35 27 20 60 142 35.50
16 65 6 40 70 64 30 204 51.00
17 70 4 48 75 65 50 238 59.50
18 75 4 25 70 60 55 210 52.50
19 80 3 48 65 85 45 243 60.75
20 85 3 48 40 20 18 127 31.50

Total 977 971.00
Mean 48.85 48.55
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(ranging from 18 to 85). Using a table of random numbers, twenty samples of
size 4 were drawn and the frequency with which each member of the popula-
tion was selected is shown (ranging from 1 to 6). The mean age of each sample
is shown in the right-hand column (ranging from 31.75 to 61.25). At the foot
of the table is the mean age of the population (48.85) and the mean of the
sample means (48.55).2

With only 20 samples, we could not expect the distribution to look like a nor-
mal curve. When five-year intervals are used, it certainly does not, but it
approaches a crude normal curve with ten-year intervals (see Figure 6.1). By
increasing the number of samples the distribution would not only look more
like a normal curve, there would also be a greater ‘bunching’ around the popu-
lation mean.

A number of points need to be noted. First, the mean of the sample means is
a very good approximation of the population mean; the difference in this case is
only 0.30 years. If more samples were drawn, the gap should be even narrower;
if all possible samples of size 4 were drawn we would expect the two means to
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Figure 6.1 Distributions of mean ages of 20 samples
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coincide. You could try a simple test of this by drawing 20 more samples and
calculating the mean of the means. Second, using a random selection procedure
does not guarantee that the sample means will be the same as the population
mean. In fact, no sample replicates the population mean; the closest is 47.50,
still 1.35 years away (sample number 2), and the most extreme is 17.35 years
away (sample number 20). Of course, this example creates such extreme
differences because the samples are very small. The larger the samples, the
closer the mean of the sample means will be to the population mean and the
less dispersed will be the distribution of all sample means. You could test this
by drawing twenty samples of size 8 from this same data set; forty samples of
size 12 would be even better.

This example begins to illustrate some of the principles behind probability
theory. One important principle is known as the central limit theorem. This says
that when many probability samples are drawn from a population, increasing
the sample size will increase the possibility of the distribution of sample means
approaching the normal curve and the overall mean of the sample means
approaching the population mean. This is true regardless of the shape of the dis-
tribution of the population values. Just how big such samples should be cannot
be determined precisely. Some writers suggest that it could be as small as 30,
as long as the population distribution on critical variables is not unusual (see, for
example, Freund and Perles, 1999: 276). Hence, if all possible samples of a
particular size are drawn from a population, the following will be the case.

1. If the means of one of the variables from these samples are plotted, the dis-
tribution will form a normal curve. This will happen regardless of the form
of the distribution of this variable in the population and in the samples. It
is only the sample means that are relevant here.

2. The mean of all these means will be the same as the mean for the population
from which the samples were drawn except, perhaps, for very small samples.

3. As the sample size is increased, the dispersion of the sample means
decreases. There will be a greater clustering around the population mean
and shorter tails in the distribution. The standard deviation of this distri-
bution is known as the standard error of the mean. It decreases as the sample
size is increased.

4. The relationship between sample size and the standard error of the mean is
not linear. Increases in the sample size lead to decreasing reductions in the
standard error of the mean. This is because the standard error is inversely
proportional to the square root of the sample size. In other words, the
effect of increasing the sample size gradually diminishes until further
increases do not produce useful gains in reducing the dispersion of the
means (see Table 6.2 and Figure 6.3).

These characteristics of the distribution of sample means allow us to conclude
that when the estimate of a population parameter is based on only one sample,
the larger the sample the closer the estimate will be. Therefore, the accuracy
of estimates of population parameters depends on the sample size.
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Sample Size

For these reasons, the general rule for samples is the bigger the better. However,
increasing the sample size is subject to the ‘law’ of diminishing returns. Large
gains are made initially, but they decrease as the sample size increases. There
comes a point where the cost of further increases outweighs the gain in the
accuracy with which the population parameters or patterns can be estimated.
As stated previously, in studies of large populations, a sample of around 1000
may be satisfactory and one of 2000 will be very satisfactory. Problems only
begin to arise when research is attempted with smaller samples. Note that we
have been able to do useful analysis with our two samples of Students and
Residents, one of 410 and the other of 465. My rule of thumb when advising
students is to say that 300 may be adequate, 500 would be better and 1000
would be even better. However, there are many factors that need to be taken
into account when determining the sample size.

Before discussing these, there is one point that needs to be made very clear.
The decision on sample size has nothing to do with the ratio of the size of the
sample to the population. There seems to be a common belief (at least I seem
to come across it at regular intervals and in many contexts) that samples should
normally be about 10 per cent of the population. This is not the rule of thumb
that should be used. Here are three important considerations.

• First, decisions about sample sizes depend on how widely dispersed are the
population characteristics. In our example, if all members of the population
were the same age, we would need a sample of only one to estimate the
mean age of the population. As the age distribution becomes wider, so the
sample size must be increased, that is, if age is a critical variable. Given that
the age distributions in the populations from which the Student and Resi-
dent samples were drawn are very different, I could have decided to work
with a smaller sample of Students. However, age is not the only variable
under consideration in this research.

• Second, we need to know what the risks are in making an incorrect estima-
tion of a population parameter. In other words, how much sampling error
can be tolerated? If the consequences of being wrong are serious, the sample
size will need to be larger than where they are not as serious. For example,
making an inaccurate estimate of the mean age of a population may not be
as serious as determining whether a drug is safe to use.

• Third, the various methods of data analysis have different requirements as far
as the minimum number is concerned. This is particularly critical when
nominal-level data are analyzed using cross-tabulations. This consideration is
independent of the accuracy of the estimate of population characteristics.

The general rule is that nominal-level data require larger numbers than ordinal-
level data and certainly larger than the methods appropriate for interval-level
and ratio-level data.3 A rule of thumb for nominal-level data is that the cells of
a cross-tabulation need an average of 10. Hence, the sample size can be deter-
mined by the combination of the number of categories in two variables. In practice,

Analyzing quantitative data

166

3055-ch06.qxd  1/10/03 3:37 PM  Page 166



this means taking the table to be used in the analysis with the greatest number
of cells. For example, if the two variables each have six categories, there would
be 36 cells in a cross-tabulation based on them; the sample size would need to
be 360 (6 × 6 × 10). If you wish to undertake multivariate analysis with nominal-
level variables, this number must be multiplied by the number of categories in
the third variable. In this same example, if the third variable had four cate-
gories, the sample size would need to be 1440. Textbooks on statistics usually
specify the minimum numbers required for metric-level analysis and they are
usually quite small, such as 30.

Response Rate

At the beginning of the chapter I raised the issue of the need to achieve a very
high response rate before it is appropriate to use inferential analysis, 85 per cent
in fact. I attribute this figure to one of my statistical mentors. The reason for
insisting on such a high figure is that as the response rate declines, the possibil-
ity of a sample becoming unreliable, or being even more biased, increases. If non-
respondents or non-contacts are not typical of the sample as a whole, their
absence will change the characteristics of the remaining sample. For example, if
non-respondents tend to be elderly people, then the age distribution of the sample
will be distorted and its ability to accurately estimate the mean age of the popu-
lation will be jeopardized. It is bad enough having to accept the risk of being
wrong in estimating population parameters from a sample with 100 per cent
coverage. To then run the risk of distortion due to non-responses or non-contacts
is to compound the problem in a way that probability theory cannot rescue.

Unfortunately, achieving very high response rates is frequently very difficult
in much social research. Two strategies can be adopted to compensate for this,
both of which are compromises. One is to collect as much data as possible on
the non-responses and non-contacts. In interview studies it may be possible to
get some basic information on people who refuse to participate (e.g. age, gen-
der, socio-economic circumstances) and on those who could not be contacted
(perhaps from people who know them). If their profile is similar to that of the
rest of the sample, there is some justification for using inferential analysis. The
second strategy can be used where at least some of the basic characteristics of
the population are known. This may be possible in surveys of residential areas
that correspond to the subdivisions in which census data are collected and pub-
lished. A comparison of the sample and population distributions on critical vari-
ables will give some indication of the extent to which the sample is biased.

You may already be curious about our two samples, neither of which achieved
the high response rate that has been proposed. However, in the Student sample
we were able to make some approximate comparisons with the undergraduate
student body in terms of its gender composition, age distribution and represen-
tation across the various faculties. Only minor variations were evident. Simi-
larly, census data on a number of key variables were available for the urban area
from which the Resident sample was drawn. Again, there were only minor varia-
tions. Hence, the application of inferential analysis can be justified.
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Response rate is also relevant in studies based on populations. However,
lower response rates can be more readily tolerated, as inferential analysis is not
required.4 Response rates of less than 50 per cent with samples are common
and it is rare to find evidence presented to establish the representativeness of
the sample. It is no wonder that some writers have argued that methods of
inferential analysis are given far too much weight in data analysis and that their
use should either be severely restricted or abandoned (see, for example, Selvin,
1957; Labovitz, 1970). While I do not want to go that far, I observe that some
of the methods are used in a ritualistic manner, often inappropriately, and
apparently with little or no understanding of their purpose. In contrast to this,
however, too many opinion polls and surveys of voting intentions fail to use
inferential analysis when it is essential.

Sampling Methods

There are two main methods for selecting probability samples in the social
sciences, with a third method that can be combined with either of them. The
first, simple random sampling, involves a selection process that gives every pos-
sible sample of a particular size the same chance of selection. Each element of
a population must be able to be identified and numbered. Once the sample size
has been decided, numbers are selected using a table of random digits until the
desired total is reached. The size of the sample determines the number of
columns of digits that must be used in the table. Only the combinations of
digits relevant to the size of the sample are used in the selection. The selected
numbers then determine which population elements are to be included in the
sample.

The second method, systematic sampling, avoids having to number the whole
population. If the population elements can be listed, they can be counted and
a sampling ratio determined. For example, if the population has 20,000
elements (say all students enrolled in a particular university) and a sample of 500
is required, the sampling ratio will be 1 : 40. In effect, the list is then divided
into bunches or zones of 40 and one selection is made in each zone. The only
really random aspect of this method is the selection of a number within the first
zone. This can be done by using a table of random numbers, or even less sophis-
ticated methods like drawing numbered objects out of a ‘hat’. Counting down
the list to the number selected then determines the first population element in
the sample. All that is then required to select the rest of the sample is to con-
tinue counting down the list ‘systematically’ in intervals corresponding to the
sampling ratio, for example, 40.

There are potential dangers in this method that could introduce unnecessary
bias. For example, there may be patterns or cycles in the list that correspond to
the sampling interval. This could happen in a residential area designed on a ‘grid
iron’ pattern with the same number of residences in each block. If the number
of residences corresponds to the sampling interval, then residences in exactly
the same position would be selected from each block. This may have some
bearing on the aims of the research. There are two things that can be done to
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avoid this problem and to introduce greater randomness into the selection
process. The first is to change the selection at regular intervals. The second is
to double or treble the size of the zones and then to make two or three random
selections at the outset. These two methods can also be combined.

All probability sampling can be undertaken using one of these methods.
However, there is a third method that can be used in combination with either
of them: stratified sampling. If a researcher wants to ensure that particular
categories in the population (e.g. gender or ethnicity) are represented in the
sample in the same proportions as in the population, and if it is possible to classify
all members of the population into the categories of such a variable, then the
population can be stratified according to these categories. Simple random or
systematic sampling can then be used in each stratum. It is possible to stratify
on more than one characteristic. For example, having established categories of
males and females, strata for ethnicity could be established within each one,
thus ensuring that the sample proportions are the same as those in the popula-
tion on these two variables. On their own, the other two methods cannot
guarantee this.

There is a variation of stratified sampling that is also useful under certain con-
ditions. If there is a big variation in the size of the strata, using the same sampling
ratio in each one may produce very small numbers in some strata. For example,
the variables of ethnicity and religious affiliation can have relatively small cate-
gories in some populations. It is possible to use different sampling ratios in each
stratum to compensate for this, even to the point of producing approximately
equal numbers from all strata. However, if this method is adopted, the strata
must be kept separate throughout the analysis. The reason for this is that they
constitute separate samples each giving its members different chances of being
selected, higher in the small strata and lower in the large ones. Combining them
infringes the key principle of probability sampling.

There are two other choices to be made in sampling. The first is whether to
select only one population element at a time, or whether to select them in clus-
ters (cluster sampling). The second is whether the sample will be drawn in one
stage or in more than one (multi-stage sampling). It is beyond the scope of the
present discussion to go into these variations in detail. Separately, or perhaps
together, they allow for creative sampling designs. Figure 6.2 reviews the com-
binations of these sampling techniques for both probability and non-probability
sampling. What we do need to note is that various methods of sampling, and
their combinations, have implications for the kind of inferential analysis that
is appropriate. This can become very complex; only basic differences will be
discussed here.5

Not only can software packages not distinguish whether data were obtained
from a population, a probability sample or a non-probability sample, in a situa-
tion where a probability sample is used, they cannot possibly know anything
about the method of sampling used. They appear to assume that simple random
procedures were used. This assumption is probably satisfactory if there are mini-
mal risks in being wrong in making estimates of population parameters. How-
ever, if there are serious risks, it would be wise to do the inferential analysis by
hand when other sampling techniques, or combinations of them, have been
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used. Just because the software presents inferential analysis, or can be requested
to do so, makes it very easy to use inferential analysis when it is inappropriate.
The researcher has to know when this should and should not be used; the
software cannot tell you.

Parametric and Non-Parametric Tests

Before we proceed to discuss specific inferential procedures, there is a common
distinction between types of procedure that need to be reviewed. As for all
methods of analysis, the level of measurement used for the variables being
analyzed determines which inferential procedures are appropriate. The classifi-
cation that I have been using, nominal and ordinal (categorical variables) and
interval and ratio (metric variables), is still relevant. However, there is another
classification that has some relationship to these, namely, parametric and non-
parametric. Here we are concerned with the characteristics of the data rather
than the level of measurement, although the two are related.

Some tests of significance can only be used when the distribution on a vari-
able in a population approximates a normal distribution. Other tests, such as
those used to compare samples from different populations, may require that
the variables under consideration have approximately the same variance (the
same spread in their distributions) in both populations. Tests with these require-
ments are referred to as parametric tests. When we cannot assume that the pop-
ulation from which our sample was drawn meets these requirements, other
types of tests have to be used, namely, non-parametric tests or distribution-free
tests.

Whether or not a variable can meet these requirements will depend to some
extent on its level of measurement, that is, on how the observations were trans-
formed into numbers. Metric variables have the possibility of meeting these
requirements, although whether they do will depend on the characteristics of
the population. For example, we know that the population from which the
Resident sample was drawn is approximately normally distributed in terms of Age,
but we know that this is not the case in the Student population. The Age dis-
tribution in the latter population is badly skewed because that is the nature of
this population. When Age is the variable under consideration, a parametric test
could be used with the Resident sample but not with the Student sample. Of
course, if the analysis involves an association with another variable, its distribu-
tion in the population also has to be considered. When variables are categorical,
non-parametric tests must be used. We cannot even think about a distribution
across a set of nominal-level categories, and it would be inappropriate to do
so with ordinal-level categories. Siegel (1956) brought together an array of
non-parametric tests that has made the analysis of distribution-free data both
possible and legitimate. While there are ways of transforming the distributions
of metric variables that do not meet the normality assumption, creating dummy
variables from categorical data also avoids the problem of meeting the
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parametric assumptions and allows for the use of parametric methods, particularly
regression analysis.

A major problem in deciding whether parametric assumptions have been
satisfied is that it is the population characteristics, not those of the sample,
which are relevant. If this information about the population is not available, our
only alternative is to examine the characteristics of the sample and hope that it
is reasonably representative.

Inference in Univariate Descriptive Analysis

When data from a single variable, such as age, are obtained from a probability
sample, and the population value is required, inferential analysis must be used.
This involves estimating the population parameter by determining a range of
possible values around the sample statistic within which it is expected to fall,
and then estimating the likelihood that it falls within that range. For example,
to establish the mean age of a population from a sample mean of, say, 49 years,
we would specify a margin of error, say plus or minus 3 years. The size of this
margin has to be calculated for that particular sample. This means that we
would expect the population mean to lie between 46 and 52 years. However,
we cannot be absolutely certain about this. We also need to specify how likely
this is to be the case. This is normally stated as a 95 per cent level of confi-
dence, although 99 per cent and 99.9 per cent levels are also used. In other
words, we say that we are 95 per cent confident that the population mean lies
between these two values. This is the only way that we can estimate a popula-
tion parameter from a sample statistic.

The only circumstance under which we could say that the sample and
population means are the same would be if we had a perfectly representative
sample. Even using the most appropriate probability procedures, we may have
selected a very biased sample, in which case our sample value may lie outside
the estimated range. Our value may be among the 5 per cent (or 1 per cent or
0.1 per cent) about which we cannot be confident. By saying that we are 95 per
cent confident that is does not lie outside the range, we are still allowing for a
5 per cent possibility that it does.

There are two key concepts in this analysis, confidence level and confidence
interval. Confidence level, or degree of confidence, refers to the level of proba-
bility that we wish to set, say, 95 per cent, also referred to as the 0.05 signifi-
cance level.6 It indicates how confident we are, or need to be, about our population
estimate. Confidence interval refers to the range of values around the sample
value within which we expect the population value to lie. The two extremes of
this range are known as confidence limits.

Now you may be wondering why we do not set the confidence level as high
as possible, thus reducing the chance of being wrong. Well, this is always the
aim, but there is a price to pay. The higher you set the level of confidence, the
wider will be the confidence interval, and vice versa. It is possible to be very
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confident about the population estimate but it may not be very precise. Similarly,
it is possible to make the confidence interval very narrow but this will reduce
the level of confidence. The only way that a confidence level can be high and
the confidence interval narrow is to use big samples. In other words, not only
are the confidence level and confidence interval inversely related, they are both
affected by the size of the sample. In addition, they are affected by the method
of sampling used.

We can now turn to the methods used to calculate confidence intervals for
both categorical and metric data, with either percentages or proportions for the
former and means for the latter.

Categorical Variables

So far, we have been using means and standard deviations of sample data to
illustrate the principles behind inferential analysis. We will come to the methods
for calculating the confidence intervals of means shortly. First, we need to dis-
cuss the calculations that can be used with categorical data. The most common
sample statistic in this case is a percentage, although to do the calculations this
needs to be expressed as a proportion. You will recall from Chapter 3 that moving
between a percentage and a proportion is just a matter of moving the decimal
place; for example, 65 per cent is the same as a proportion of 0.65.

To calculate the confidence interval around a proportion, we need to first
estimate the standard error of the proportion, the equivalent of the standard
error of the mean. This is given by

where p is the sample proportion and n the sample size. The upper and lower
limits of the confidence interval (CI) can then be calculated:

CI = p ± (z × sep) (6.2)

In this equation, z is determined by the confidence level that is selected: 1.96
for 95 per cent, 2.58 for 99 per cent and 3.29 for 99.9 per cent. These figures
can be thought of as the standard deviation that corresponds to a particular area
under the bell-curve (see Figure 3.11). This means that we have to go 1.96 stan-
dard deviations on either side of the proportion in order to include 95 per cent
of the proportions of all possible samples. This leaves 2.5 per cent under each
tail of the curve. Similarly, we have to go 2.58 standard deviations to include
99 per cent and leave 0.5 per cent under each tail, and 3.29 standard deviations
to include 99.9 per cent and leave 0.05 per cent under each tail. These figures
can be checked by consulting the table of z values (see Table 2 in Appendix D).

Take the example of the percentage of respondents who are aged 65 and over
in the Resident sample (19.7 per cent; see Table 3.11). If we want to estimate
their percentage in the population, we need to calculate the confidence interval

Inferential analysis

173

p (1 − p)
estimated standard error of the proportion (sep) =

√
n (6.1)

3055-ch06.qxd  1/10/03 3:37 PM  Page 173



around the sample percentage/proportion. Let us set the confidence level at
95 per cent. Then

and our confidence interval is 

p ± (z × sep) = 0.197 ± (1.96 × 0.020) = 0.197 ± 0.039

Hence, we can be 95 per cent confident that the population proportion lies
between 0.158 and 0.236, or between 15.8 per cent and 23.6 per cent. The
confidence limits are 3.9 per cent on either side of the sample percentage
(19.7), making a confidence interval of 7.8 per cent.

But what about other parameters? Let us try two others, the proportion
of females (0.501; Table 3.10) and the proportion who have children (0.652;
Table 3.7). For the proportion of females, we get

with confidence interval

p ± (z × sep) = 0.501 ± (1.96 × 0.025) = 0.501 ± 0.049

Therefore, the confidence interval is between 0.452 and 0.550, or between
45.2 per cent and 55.0 per cent. Here, the confidence limits are 4.9 per cent
on either side of the sample percentage (50.1), giving a confidence interval of
9.8 per cent.

For the proportion who have children, we get

and confidence interval

p ± (z × sep) = 0.652 ± (1.96 × 0.0238) = 0.652 ± 0.0466

This means that the confidence interval is 9.3 per cent and the confidence
limits are 60.5 per cent and 69.8 per cent.

If we set the confidence level at 99.9 per cent, the confidence interval will
increase. For example, for the proportion who are 65 and over, the value of sep

remains the same but the confidence interval is wider because the z value is
higher: we get
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CI = p ± (z × sep) = 0.197 ± (3.29 × 0.020) = 0.197 ± 0.065

which produces confidence limits of 13.2 per cent and 26.2 per cent. This
confidence interval (13.0 per cent) is nearly twice as wide as for the 95 per cent
confidence level, thus illustrating that setting the confidence level higher leads
to a wider confidence interval. You may like to calculate the confidence inter-
vals for females and those with children with the confidence level set at
99.9 per cent, and all three examples at 99 per cent.

If the sample was smaller, say only half the size, the confidence intervals
would all be wider, and vice versa. The reason for this is that the sample size
changes the divisor in the equation for the standard error. You could try calcu-
lating them. It is obvious that a table could be constructed for this sample
covering the confidence intervals for a full range of percentages, for each con-
fidence level. How about trying this for intervals of 10 per cent.

Metric Variables

The procedure for estimating population means from sample means is very
similar to the one for proportions and percentages. However, estimating the
standard error of the mean (the standard deviation of the mean of all sample
means) is a simpler calculation:

where s is the sample standard deviation. Then the confidence interval is

CI = x– ± (z × sem). (6.4)

When the population is small and the sample is a major fraction of the popula-
tion, an adjustment needs to be made to the estimated standard error of
the mean. It is multiplied by the square root of the population size minus the
sample size, divided by the population size: √(N − n)/N. This is called the
finite population correction factor.

To estimate the mean Age of the population from which the Resident sam-
ple was drawn (x– = 46.06; s = 17.97), at a 95 per cent confidence level, we
would first have to calculate the estimated standard error of the mean:

Then

CI = x– ± (z × sem) = 46.06 ± (1.96 × 0.897) = 46.06 ± 1.76
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Hence, we estimate that the population mean lies between 44.30 and 47.82. If
we set the confidence level at 99.9 per cent, the confidence interval would be
between 43.12 and 49.00. You can check this by substituting 3.29 for 1.96 in
the above equation, and 2.58 if you want the confidence interval at the 99 per
cent level.

To illustrate how the confidence level and sample size affect the size of the
confidence interval, Table 6.2 reports the intervals for the three major levels of
confidence with samples ranging from 100 to 2000. The mean Age (46.06) and
standard deviation (17.97) are assumed to remain the same in all samples.
These figures clearly illustrate that the more confident you want to be in your
estimate of a population mean, the less precise will be the estimate, and the
larger the sample size the more precise the estimate. The major gains from
increasing the sample size occur up to about 400, and beyond 1000 increases
produce very limited gains. Figure 6.3 plots the size of the confidence interval
for each sample size, using all three confidence levels. It must be noted that this
analysis is illustrative only. Different sample characteristics with different
distributions (standard deviations) will produce different patterns.
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Table 6.2 Variations in confidence intervals of mean Age by
confidence level and sample size (Residents)

Sample size 95% (0.05) 99% (0.01) 99.9% (0.001)

100 7.04 9.26 11.82
200 4.98 6.55 8.36
300 4.07 5.34 6.83
400 3.52 4.63 5.91
500 3.15 4.14 5.29
600 2.88 3.78 4.83
700 2.66 3.50 4.47
800 2.49 3.27 4.18
900 2.35 3.09 3.94

1000 2.23 2.93 3.74
1100 2.12 2.79 3.57
1200 2.03 2.67 3.41
1300 1.95 2.57 3.28
1400 1.88 2.47 3.16
1500 1.82 2.39 3.05
1600 1.76 2.31 2.96
1700 1.71 2.24 2.87
1800 1.66 2.18 2.79
1900 1.62 2.12 2.71
2000 1.57 2.07 2.64

If the sample size is 40 or less, it is more appropriate to use values of the t
statistic (see Table 3 in Appendix D) rather than z values for the confidence
level. Because we normally have to use the sample standard deviation as an
estimate of the standard error of the mean, and because this estimate becomes
less reliable with small samples, t values produce more reliable but more con-
servative confidence intervals. For example, whereas the z value for a 95 per
cent confidence level is 1.96, the t value gradually increases as the sample size
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falls below 40. It happens to be 2.04 for samples of size 30, 2.09 for 20, 2.23
for 10 and 2.57 for 5. These larger values lead to wider confidence intervals
and, hence, less precise estimates. Compared with behavioural scientists, social
researchers are unlikely to use samples as small as this. Hence, z values will
normally be used to calculate confidence intervals around sample means.

Establishing confidence intervals is the only inferential procedure that we need
to be concerned with in univariate descriptive analysis. It is interesting to note
that few researchers use this procedure and seem to assume that population data
are the same as sample data. To recapitulate, if you are working with a population,
if the method of sampling is not a probability procedure, or if the response rate
is low, you should not concern yourself with such estimates. In the first situation,
it is not necessary. In the other two, all you can talk about legitimately is your
sample data – it is not possible to generalize statistically beyond it.

Inference in Bivariate Descriptive Analysis

When analysis is concerned with relationships between two variables, different
inferential procedures are required. These are commonly referred to as tests of
significance, a much misunderstood and misused procedure.

A test of significance tells us whether the relationship that we have found
in a sample could also be expected to exist in the population from which the
sample was drawn. Just as in the case of estimating population characteristics
from probability samples, it is necessary to set a confidence level. However, as

Inferential analysis

177

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

0

2

4

6

8

10

12

Sample size

Co
nf

id
en

ce
 in

te
rv

al

95%
99%
99.9%

Figure 6.3 Confidence intervals for mean Age by sample size
(Resident sample)

3055-ch06.qxd  1/10/03 3:37 PM  Page 177



we shall see, setting the level in this case is more complex than for univariate
descriptive analysis.

Testing Statistical Hypotheses

Two types of hypotheses are used in social research, theoretical hypotheses and
statistical hypotheses. Statistical hypotheses deal only with the specific problem
of estimating whether a relationship found in a probability sample also exists in
the population. They are an essential part of testing for significance. However,
as not all social research uses probability samples, and hypotheses are frequently
used in all kinds of research, another type of hypothesis is also used.

The more important form of hypothesis testing is concerned with the impli-
cations of a theory that offers an explanation, that purports to answer a ‘why’
research question (see Blaikie, 2000, Chapter 3). A theoretical hypothesis is a
tentative answer to a ‘why’ question. This type of hypothesis, which should
preferably be derived from some theory, does not have strict statistical rules for
its testing. It is necessary to make a judgement, on the basis of the evidence, as
to how well the data match the form of the proposition in the hypothesis.
Therefore, while such hypotheses may state a relationship between two con-
cepts, which become variables in research, the method for testing theoretical
hypotheses should not be confused with that used for statistical hypotheses. All
that the testing of a statistical hypothesis contributes is to establish whether or
not what was found in a probability sample can also be expected to exist in the
population and, if so, how confident we can be about this.

If we do use a probability sample in our research, and we manage to estab-
lish that an association can be expected to exist in the population, we still have
to decide whether this allows us to reject or corroborate our theoretical
hypothesis. This will be based on a judgement about the patterns and strengths
of associations or influences and not on what the level of significance might be.
Therefore, when we work with probability samples, and we are trying to answer
a ‘why’ research question, we will need to work with both types of hypotheses.

For example, if a reasonably strong association has been established between
Gender and Environmental Worldview, and if we want to explain why such a
relationship exists, we could develop a theory that will propose an answer. The
theory might suggest that in so far as women see themselves as the primary
care-givers in their families and communities, they will be concerned about the
effects of environmental problems on the health of people. Their level of environ-
mental responsibility will be high and will be localized. On the other hand, men,
as well as women who do not see their primary role as care-giver, are likely to
have a lower level of concern and, if their concern is high, it will be directed
towards global or regional rather than local problems. Of course, such a theory
requires much greater elaboration than is possible here. The testing of the
implications of this theory requires a range of data but fairly simple data analy-
sis. If the study is based on a population, the decision as to whether the theory
should be rejected will depend on the strength of the associations between
Gender and the nature and type of environmental concern. Only if the data

Analyzing quantitative data

178

3055-ch06.qxd  1/10/03 3:37 PM  Page 178



come from a probability sample (with a very high response rate) will
inferential analysis be required, in which case its only role will be to estimate
whether these associations are likely to be present in the population. As we
shall see, subject to the consideration of sample size, strong associations are
usually significant, that is, they are likely to be present in the population, while
weak associations may not be significant. The bigger the sample, the more likely
weak associations will be significant.

Null and Alternative Hypotheses

In order to establish whether a relationship found in a sample can also be
expected to exist in the population, two forms of statistical hypotheses are
used, a null hypothesis and alternative hypotheses. A null hypothesis states that
the relationship does not exist in the population. It is usually denoted as H0. As
we are likely to be more interested in establishing whether some form of rela-
tionship exists, we normally try to reject the null hypothesis. An alternative
hypothesis states that a relationship does exist, usually the one that we expect
is most likely to be the case.7 It can be stated in three different ways. First, it
may simply state that a relationship does exist, but without specifying its form,
that is, whether it is positive or negative. This is a non-directional alternative
hypothesis. Second, it may state a positive relationship, that is, as values on one
variable increase the values on the other variable also increase. Third, it may
state a negative or inverse relationship, that is, as the values on one variable
increase the values on the other decrease. Alternative hypotheses are usually
designated as HA if only one alternative is proposed, or as H1, H2, etc. if there
is more than one. For example, one alternative hypothesis might propose a pos-
itive relationship and another a negative relationship.

While a non-directional alternative hypothesis can be used if we are unsure
what form a relationship might take in the population, if we are dealing with
linear relationships it is just as easy to propose two alternative hypotheses, one
for each direction. In practice, however, we would examine the form of the
relationship in the sample and propose that form as our alternative. To repeat
once again, what we want to know in this type of analysis is whether what we
have found in the sample also exists in the population.

Let us examine an example of a null and an alternative hypothesis. If our sample
data shows that there is a positive association between EWV and Willingness to
Act to protect the environment, and if we are working with a probability sam-
ple, we need to establish whether the nature of the association found in the
sample could be expected in the population. To do this, we first establish the
null form of the statistical hypothesis.

H0: There is no association between EWV and Willingness to Act.

If we are uncertain about the form of the relationship in the population, we
could state the alternative hypothesis in a non-directional form. It would read:

HA: There is an association between EWV and Willingness to Act.
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We could also state two alternative hypotheses to cover the two possible
directions of the relationship, positive and negative.

H1: There is a positive association between EWV and Willingness to Act.
(EWV varies directly with Willingness to Act.)

H2: There is a negative association between EWV and Willingness to Act.
(EWV varies inversely with Willingness to Act.)

However, on the basis of what we have found in our sample, we can be confi-
dent in proposing only one alternative hypothesis in a directional form.

HA: There is a positive linear association between EWV and Willingness
to Act.

To state the alternative hypothesis as both positive and linear is being very pre-
cise. If this is the form of the association in the sample, we have good grounds
for doing this. In fact, it makes no sense to do anything else, and there is noth-
ing else we could test.

Having determined what the hypotheses are to be, the task is now to decide
which one is correct. Is there or is there not an association in the population?
And if there is, is it in the form that we have hypothesized? As both hypothe-
ses cannot be true, we have to decide which one will not be rejected; one of
them has to be rejected in favour of the other. The aim is to reject the null
hypothesis in favour of the alternative, to establish whether there is likely to be
an association rather than no association. This is what a test of significance is
designed to help us to do.

Type I and Type II Errors

As with the establishment of confidence intervals, we also have to set a confi-
dence level to make a decision about whether the null hypothesis can be rejected.
We have to decide how confident we want to be in rejecting the null hypothesis.
However, there is a dilemma in setting this level, usually referred to as making
either a type I error or a type II error (see Table 6.3). A type I error involves
rejecting the null hypothesis when it is actually true, which means claiming that
an association exists in the population when it does not; a type II error involves
not rejecting the null hypothesis when it is actually false, which means claiming
that an association does not exist when it does. The latter is more common than
the former. If we set the level of confidence at 95 per cent, we may mistakenly
reject the null hypothesis 5 per cent of the time. If we do not want to make this
mistake, we should set the level as high as possible, say 99.9 per cent, thus run-
ning only a 0.1 per cent risk. The problem is that the higher we set the level, the
greater is the risk of a type II error. Conversely, the lower we set the level, the
greater is the possibility of committing a type I error and the lower the possibil-
ity of committing a type II error. It seems like a no-win situation.

For example, a study conducted with a rather small random sample may have
shown that a new but expensive method of teaching is effective in raising the
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performance of all students, and particularly the weaker ones. It is possible that
this sample does not represent the population and may have produced very
‘deviant’ results. This could mean that if the teaching method were introduced
universally in schools it might produce little or no improvement. Clearly, there
is a need for caution in claiming that it will make big improvements. Rejecting
the null hypothesis when it is true could lead to a great deal of unnecessary
expense in implementing such a teaching method.

The convention in the social sciences is to set the level at 95 per cent, unless
there is an important reason for wanting to avoid rejecting the null hypothesis
when it is true. Again, just a gentle reminder about what we are trying to do
here. We know from probability theory that it is possible that our sample is
highly unrepresentative of the population from which it was drawn. It may be
one of those ‘deviant’ samples that produces results that are out at the tails of
the normal curve produced by the distribution of results from all possible
samples. Therefore, we have to protect ourselves from claiming something on
the basis of our sample that is not the case in the population. We have to strike
a balance between committing a type I error and a type II error. We can only
estimate what exists in the population, and we can only do this by setting a level
of confidence with which we make our statements about the population. There
is no other way.

One-tailed and Two-tailed Tests

The form in which an alternative hypothesis is stated, that is, as either directional
or non-directional, has a bearing on how we deal with confidence levels. When
the alternative hypothesis is non-directional, it has to be rejected in favour of the
alternative on the possibility that its values lie in either extreme of the sampling
distribution. This means that if the confidence level was set at 95 per cent, there
would be a 2.5 per cent possibility that the sample’s values lie under the tail at
the lower end of the distribution of all possible sample values and another 2.5 per
cent possibility that they lie at the higher end of the distribution. In other words,
we are trying to reject the possibility that our sample’s values lie at either
extreme. However, if a direction is specified in the alternative hypothesis, then
we are trying to reject the possibility that our sample’s values lie at only one
extreme of the distribution of all possible sample values. In this case, all 5 per
cent of our lack of confidence is at one extreme of the distribution.
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Table 6.3 Type I and Type II Errors
Decision

The null hypothesis Reject Accept

Is really true Incorrect rejection Correct failure to reject
Type I error

Is really false Correct rejection Incorrect failure to reject
Type II error
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Putting all the eggs of our uncertainty at only one extreme of the sampling
distribution basket makes it easier to reject the null hypothesis. As our area of
uncertainty lies on only one side of the sampling distribution, the 5 per cent
region of uncertainty at one extreme of a one-tailed test is larger than the
2.5 per cent region at the same extreme, as is the case with a non-directional
hypothesis. This is why it is easier to reject the null hypothesis in favour of a
directional rather than a non-directional alternative hypothesis.

The convention is to describe the testing of a non-directional alternative
hypothesis as being two-tailed or two-sided, and a directional alternative as
being one-tailed or one-sided. This simply refers to the fact that the region of
uncertainty is in both tails of the distribution for non-directional alternative
hypotheses and in only one tail for directional hypotheses. As the testing of sta-
tistical hypotheses usually requires us to consult a table of critical values, we
need to be clear in reading such tables as to whether we need a one-tailed or
two-tailed test.

The Process of Testing Statistical Hypotheses

With the discussion of the technical features of hypothesis testing behind us, it
is now possible to examine the five basic steps that are commonly followed in
testing a statistical hypothesis.

1. State the null and alternative hypotheses. The form of the alternative
hypothesis (or hypotheses) will determine whether the test needs to be
one-tailed or two-tailed.

2. Select the level of significance with type I and type II errors in mind: nor-
mally 0.05, but 0.01 or 0.001 are also possible.

3. Identify the appropriate test statistic, according to the level of measurement
and the type of analysis. The choice is usually between the chi-square, z-
score, t statistic or F statistic (more on this soon).

4. Compute the value of the test statistic using the appropriate procedure.
5. Make a decision as to whether to reject or not reject the null hypothesis.

These steps will be elaborated shortly.
Some statisticians have argued that these or similar steps should be followed

rigidly (see, for example, Agresti and Finlay, 1997: 159; Berenson and Levine,
1999: 422, 425, 465; Fielding and Gilbert, 2000: 249–56; Freund and Perles,
1999: 324–39; Lind et al., 2000: 267–71; Salkind, 2000: 185–6). Some even
argue that decisions about the first three steps should be made before the
research is commenced and should determine the size and nature of the sample.

The reason for such advice is to counter a rather common practice of collect-
ing data on many variables and then dredging the data for significant relation-
ships. These are then used to determine what is worth discussing. This mindless
and mechanical approach to research is certainly to be rejected. In my view,
both extremes are undesirable. Setting probability levels and deciding on the
appropriate test before the data are collected, and certainly before the analysis
is conducted, can be regarded as adding a degree of objectivity to the research
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and as avoiding post hoc interpretations. However, if our ultimate aim is to test
theoretical hypotheses, and if we need to use statistical hypotheses as stepping-
stones to this destination, then we should be more interested in how confident
we can be in using our sample data to talk about our population. The ultimate
testing of theoretical hypotheses will follow this. While we need to make allowances
for the possible impact of committing either type I or type II errors, our judge-
ment about theoretical hypotheses can only be assisted by being as confident as
possible about the population parameters of interest. Setting a rigid level of
confidence in advance may not serve this purpose. It is better to examine
the sample characteristics and patterns relevant to our research questions, and
to answer the questions in the light of all available information, including how
confident we can be in making inferences from our sample to the population.

Testing Hypotheses Under Different Conditions

Textbooks on statistics generally use a conventional array of concepts to refer
to the variety of conditions under which tests of significance can be applied
(see, for example, Siegel, 1956; Siegel and Castellan, 1988). They include dis-
tinguishing between ‘one-sample cases’, ‘two-sample cases’ and ‘k-sample cases’
(the latter meaning many samples). When two or more samples are involved,
they are also referred to as ‘dependent’, ‘matched’ or ‘related’ samples’ and
‘independent or ‘unrelated’ samples. I do not intend to follow these conven-
tions. First, most of them apply to experimental designs that are rare in social
research. Second, I have always found them to be extremely confusing, coming
as they do from the discipline of statistics. For example, the concepts of ‘sample’
and ‘population’ are used in highly technical ways, that are different from the
definitions on pages 160–1, and do not relate well to the practice of social
research. However, as they are commonly used, including in software packages
such as SPSS, I shall try to explain them and show how they are related to the
concepts I will be using.

There are two dimensions to the traditional classification. The first refers to
the nature of the samples and the second to the number of samples involved.
Independent samples are drawn from different populations, although this can
also mean from different groups or categories in the same population. An
example of samples from different populations would be our Student and
Resident samples, and of different groups or categories would be males and females
in the Resident sample. Even although these two latter categories come from
one sample drawn from one population, inferential analysis tests to see whether
males and females come from different populations. I translate this to mean
different categories in the same population. Dependent samples can be of two
kinds. They can be separate samples in which the members of one are matched
against the members of the other, perhaps to form an experimental and a con-
trol group. This is usually done in pairs in terms of the characteristics that need
to be controlled in an experiment. The second kind of dependent sample refers
to experimental designs in which data from one sample are collected at two
points in time, usually before and after some treatment or intervention. There-
fore, independence and dependence can relate to either one or more samples,
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or to one or more populations. Don’t be surprised if confusion is beginning
to set in!

The situation is further complicated when the number of samples is intro-
duced. One-sample tests are used to establish whether the value for a particu-
lar variable in a sample is different from some known or assumed population
value. This is sometimes stated in terms of whether or not the sample comes
from a population with a particular mean. Two-sample tests are used to estab-
lish either whether the values for the same variable measured in two samples
are different in the populations from which they were drawn, or whether, in
terms of the same variable, two categories of the same sample could have been
drawn from different ‘populations’. The former can be illustrated in terms of
the mean Age in the Student and Resident samples, and the latter in terms of
the mean Age of males and females, say, in the Resident sample. The latter
seems to assume that in drawing our sample of Residents we were also drawing
a sample of males from males in the population and a sample of females from
females in the population. This usage requires us to think about two ‘popula-
tions’ (males and females) existing within a population (Residents).

To avoid the confusion that this schema can create, my emphasis will be on
‘variables’ and ‘categories’ within a variable. Translated, our concerns will be
with differences between the values of a variable:

• for two categories within the same sample (e.g. the EWV of male and
female Residents);

• in different samples (e.g. EWV of Students and Residents); or
• in the same categories in different samples (e.g. EWV of male Students and

male Residents).

In the first case, the task is to establish whether differences between categories
within a sample can be expected to exist within a population. In the second and
third cases, it is to establish whether differences between two samples also
exist between the two populations. I shall refer to the first as within-sample
comparisons and the second as between-sample comparisons.8

So far I have been referring to comparisons between categories and samples.
This is because much of the testing is for differences between means. It is also
possible to test for associations between two variables, but these are confined
to within-sample situations. When dealing with categorical data, when at least
one variable is dichotomized, such as gender, testing for an association is analo-
gous to comparing the means of two categories (conventionally referred to as
‘two independent samples’). If both variables have more than two categories,
testing for an association is analogous to comparing means across more than two
categories (conventionally referred to as ‘k independent samples’). When the
data are in the form of metric measurement, the analogy with means analysis
disappears. In this case, the focus is on testing the significance of correlation
coefficients in bivariate analysis and, in multivariate analysis, on coefficients
such as beta in methods such as multiple regression.

I have chosen not to discuss two procedures that appear in many textbooks
on statistics. The first is the ‘one-sample’ or ‘single-sample’ convention used to
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establish whether a particular sample characteristic differs significantly from a
known population parameter or reference value. Some writers give the impression
that if the sample is not based on probability procedures, we can still establish
whether the sample value for some variable is different from ‘the general popu-
lation’ (see, for example, Cramer, 1994: 10–11; Balnaves and Caputi, 2001:
180–1). Others express this as finding out whether a particular random sample
could have come from some specified population with a particular distribution
(Siegel, 1956: 35; Siegel and Castellan, 1988: Chapter 4). This is sometimes
expressed as a test for ‘goodness of fit’. For example, the mean age of a popu-
lation may be 37 years and you want to know whether the mean age of your
sample, which is 34 years, is significantly different from the population mean.
However, there seems to be little point in trying to establish whether the null
or an alternative hypothesis is correct with a single variable, or to predict what
a population value will be on some variable. If the sample was drawn by prob-
ability procedures, then calculating a confidence interval will answer the ques-
tion. If you know the population mean, and it falls outside the sample
confidence limits, then it is likely to be different from the sample mean (at
whatever confidence level you have set). All this means is that you do not have
a representative sample. Of course, if you do not know the population mean,
you can only estimate what it might be, given a certain confidence level.

What seems to be common about the examples used to illustrate ‘one-
sample’ testing is that the sample was not drawn by probability procedures.
Sometimes the researcher wants to know whether a non-probability sample is
representative, although the problem is not usually stated this way. Alterna-
tively, it may be the accuracy of the population value that is being challenged;
perhaps a claim by some manufacturer about how long a product can last. In
either case, if a non-probability sample is used, neither of these procedures is
legitimate.

The second procedure that I will not be discussing concerns the basic ele-
ment in experimental designs, or before and after studies, in which one variable
is measured with one sample at different times or under two different condi-
tions. In this situation, it is possible to compare the two scores for each indi-
vidual and the mean scores of all members of the sample. The testing procedure
is usually referred to as a ‘one-sample’ test of means, as a ‘dependent-sample’
test or as a ‘paired-sample’ test. A variation on this is where different samples
are used at different times or under different conditions. The latter testing
procedure is referred to as a ‘two-sample’ test, ‘independent-samples’ test
or ‘unpaired-samples’ test. These tests are also used when two groups within
a sample are compared on some variable, such as men and women, and when
two different samples are compared. It is on these latter uses that I shall
concentrate.9

Some Critical Issues

Before we proceed to discuss the methods that are used to make a decision
between a null and an alternative hypothesis, there are a number of points that
need to be noted. First, it is sometimes argued that significant relationships
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based on large samples should be treated with suspicion or at least some
caution. The impression is given that there is something wrong with being able
to achieve a desired level of significance simply by increasing the size of the
sample. To me this seems to be muddle-headed. Of course there is a connec-
tion between sample size and the ability to estimate population parameters, or
to be confident about a particular relationship in a probability sample. We can
be more confident about our results from large samples and we have to be less
confident, and therefore more cautious, when small samples are used. Working
with large samples does not mean that you may unfairly ‘prove’ your hypothe-
sis. They just give you more confidence in estimating the population para-
meters. What we need to focus on in the analysis of association and influence is
the strength of the associations, provided they are significant, because these will
be relevant to the testing of our theoretical hypotheses. Significant but weak
relationships produced by large samples may not be very useful and may mean
that the theoretical hypotheses must be rejected.

Second, the language used in many textbooks on statistics to refer to the test-
ing for significance is couched around the notion of ‘chance’. No doubt this is
derived from the way statisticians talk about probability theory, particularly
when they use examples about the likelihood (or chance) of tossed coins coming
down heads. A perfectly balanced coin, tossed many times, is likely to come
down heads 50 per cent of the time. This is sometimes described as a law of
probability or chance. Hence, what we want to know is whether a characteris-
tic of our sample (e.g. mean age), or a relationship between two variables, could
just have occurred by chance. Now, the correct interpretation of such a state-
ment is whether these results could have come from a probability sample which
is very unrepresentative, that is, the values the sample produces lie at the
extremes of the distribution of values for all possible samples. Chance is related
to the way random selection procedures operate.

Somehow this principle gets lost in rather confusing language. I will cite just
two examples from textbooks that I happen to have at hand. The first comes
from Andrew Siegel (1994: 337).10 He states:

Hypothesis testing uses data to decide between two possibilities (called hypothe-
ses). It can tell you whether the results you’re witnessing are just coincidence (and
could reasonably be due to chance) or are likely to be real.

The first sentence confuses statistical and theoretical hypotheses; we use data to
test theoretical hypotheses, not to choose between the null and alternative hypo-
theses. The latter is decided by tests of significance. Then the statement goes on
to contrast what is ‘real’ with what might be just a ‘coincidence’, a chance happen-
ing. This conveys the impression that some things happen because they are sup-
posed to happen that way and other things happen for no good reason, that is, by
chance. This is not what we are concerned with when we are testing statistical
hypotheses. We are concerned with whether we might have drawn a ‘dud’ sample
and what the consequences might be if we place too much reliance on it.

A more satisfactory statement comes from Siegel and Castellan (1998: 2),
although even here what is meant by ‘chance’ is very vague.
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A common problem for statistical inference is to determine, in terms of a probability,
whether observed differences between two samples signify that the populations
sampled are themselves really different. Now, even if we collect two groups of
scores by taking random samples from the same population, we are likely to find
that the scores differ to some extent. Differences may occur simply because of the
operation of chance. How can we determine in any given case whether the observed
differences between two samples are due merely to chance or are caused by other
factors? The procedures of statistical inference enable us to determine whether the
observed differences are within the range which easily could have occurred by
chance or not.

Unfortunately, it is not clear how ‘chance’ is operating here. It is the fickleness
of random sampling procedures that is the bogey. At the same time, the impres-
sion is given that ‘other factors’ are the problem when it is these factors that
should be the focus of our attention. In other words, the fixation on ‘chance’
deflects attention from the factors that do produce the difference. Perhaps this
is why tests of significance generally receive more attention than, say, measures
of association.

Another example goes in a different direction, and comes from Salkind
(2000). While Salkind’s book purports to help people who are afraid of statis-
tics, it warns the reader that no concept creates ‘more confusion for the begin-
ning statistics student than the concept of statistical significance’ (2000: 171).
The discussion of significance uses the argument that as ‘our world is not a per-
fect one, we must allow for some leeway in how confident we are that only
those factors we identify could cause any difference between groups’. While we
may be pretty sure we know what the factors are, we ‘cannot be absolutely,
100%, positively, unequivocally, indisputably (get the picture?) sure. There’s
always a chance, no matter how small, that you are wrong’ (2000: 172). Other
factors may be at work.

So what do you do? In most scientific endeavours that involve testing hypotheses …
there is bound to be a certain amount of error that cannot be controlled – this is the
chance factor. … The level of chance or risk that you are willing to take is expressed
as a significance level, a term that unnecessarily strikes fear in the hearts of even
strong men and women. (Salkind, 2000: 173)

Unfortunately, the presence of other factors that may have an influence, or
errors that cannot be controlled, have nothing to do with tests of significance.
Only sampling error does. However, ‘other factors’ and ‘errors’ are relevant
when we are trying to establish strength of association or level of influence, that
is, when we are trying to explain or predict an outcome variable, and when we
are testing a theoretical hypothesis. But tests of significance cannot tell you if
you have overlooked ‘other factors’ or if there are errors in your measurements.
They can only help you to generalize from your (probability) sample to the
population, and they cannot help you to test a theoretical hypothesis.

The third issue is an extension of the previous two, particularly the confusion
over the use of ‘sample’ and ‘population’. One of the procedures we shall dis-
cuss shortly concerns establishing whether difference in the means on the same
variable in two different samples could be expected to exist in the populations.
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Sometimes this idea is completely distorted and is used to establish whether the
difference in the means for two categories in a population could have occurred
by chance. Let me illustrate from Siegel (1994: 372–5). An example is used
in which the mean salaries of 15 women and 22 men in a department within a
company are compared to see if the difference in the means ‘is within the usual
random variation or not’ (1994: 373). Apparently the company is being sued for
gender discrimination. It turns out that the mean annual salary for women in the
department is $24,467 and for men is $33,095, a difference of $8,628. The
author then asks ‘whether such a large difference as found here could reasonably
be the result of a random allocation of salaries to men and women, or if there is
a need for some other explanation for the apparent inequity’ (1994: 373). The
analysis conducted suggests that this difference is significant at the 0.001 level.
Therefore, as the allocation of salaries between men and women is not random,
the author concludes that there must be some other explanation.

So what might cause the salary difference? One explanation is that management, in
out-dated, selfish, and illegal ways, has deliberately decided to pay people less if
they are women than if they are men, looking only at the person’s gender. However,
it is not the only plausible explanation. The salary difference might be due to some
other factor that (1) determines salary and (2) is linked to gender. In its defence,
the firm might argue that it pays solely on the basis of education and experience, and
it is not to be blamed for the fact that its pool of applicants consisted of better-
educated and more experienced men as compared to the women. This argument
basically shifts the blame from the firm to society in general. (Siegel, 1994: 374–5)

There are a number of points to be made here.

• First, the data come from a population, the staff in a particular department
of a firm. However, the discussion (not reported above) suggests that both
the men and women in this department come from two ‘idealized’ popula-
tions of people in similar circumstances. If there are such populations, then
the two samples were not drawn randomly. How could we draw such samples
randomly? Therefore, it is not possible to generalize the data back to those
populations; they come from a population, defined as the employees in this
department in this firm.

• Second, what is ‘usual random variation’ or ‘random allocation’? These notions
make no sense except, perhaps, in the context of some abstract statistical
theory. Salaries are not usually allocated randomly (although we may some-
times be surprised at the salaries some people receive). How could we possi-
bly know what random variation is usual? Inferential analysis cannot tell us.

• Third, to say that this difference is statistically significant is meaningless.
The samples were not randomly selected from any population. The difference
between the two means is the difference. Deciding whether the difference
is too big, or whether there should be a difference at all, cannot be settled
or even assisted by this kind of analysis. Applying inferential analysis to
population data not only is wrong, but also cannot provide an explanation for
the difference in mean salaries. As the author clearly illustrates, you have to
look somewhere else.
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Many other such examples could be cited from textbooks on statistics,
particularly in discussions relevant to behavioural research with small samples.
Remember, anything over 30, or sometimes 40, is regarded as a large sample in
this kind of research. Frequently, these are just ‘convenience’ samples or small
populations. At best, they consist of matched pairs or random selection into
experimental groups. Convenience samples must be ruled out of court because
the selection is not based on probability procedures. Also, matched pairs are
usually not randomly selected from a population. Any results from such studies
cannot be generalized statistically to any wider population. Selection to experi-
mental groups could be made randomly from a designated population, but I sus-
pect this rarely happens. Behavioural researchers are no doubt desperate to
have their research regarded as important, even though their samples might be
very small and without probability selection methods. By applying tests of
significance, usually illegitimately, they try to create the impression that their
results can be generalized. Perhaps they can, but by judgement rather than
statistically.

To recapitulate, tests of significance are only relevant when we are trying
to estimate whether the results we have obtained in a probability sample (or
samples) are also present in the population (or populations) from which the
sample (or samples) was (were) drawn. Such tests have nothing to do with the
importance of the findings, with the degree of completeness of an explanation
or with handling errors that may have inadvertently crept into our research.
Following this idea should help to avoid much of the confusion and angst asso-
ciated with the concept of significance and its role in testing statistical hypothe-
ses and, perhaps, help to avoid the misuse of these procedures.

Categorical Variables

Because different measures of association are appropriate for nominal-level
variables (e.g. Cs and Cramér’s V) and ordinal-level variables (e.g. gamma),
different tests of significance have been devised to go with them. While it is
usually best to use the appropriate test, it is also possible to use the chi-square
test, which is appropriate for nominal-level data, with ordinal-level data as well,
but this involves regarding the ordinal-level variable as nominal.11

Nominal-level Data

In Chapter 4, we discussed chi-square in some detail when we were concerned
with establishing the level of association between two nominal-level variables.
It was derived by comparing the observed (O) and expected (E) frequencies in
every cell of a contingency table and was calculated using equation (4.1),
repeated here for convenience:
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We then used the total chi-square value to calculate the contingency coefficient,
in both its raw (C) and standardized (Cs) versions, and Cramér’s V.

What we want to know is whether the level of association indicated by such
coefficients in a probability sample could be expected to be present in the pop-
ulation from which the sample was drawn. We already know that the level of
association is dependent on the differences between the observed and expected
frequencies, as expressed in the total chi-square value for any contingency
table. This total chi-square value can also be used to test the significance of the
association – that is, whether, at a particular level of confidence, the association
is also present in the population.

There are two steps involved in this; first, to determine the number of
degrees of freedom; and, second, to compare the chi-square value with those in
a table of critical values. The notion of degrees of freedom (df ) refers to the
number of values that are free to vary when certain restrictions are placed on
the data. In a contingency table, the number of degrees of freedom is related
to the number of cells in the table. Take the example of a 2 by 2 table, such as
Table 4.4. Given that we know the sample total, the marginal totals, that is, the
numbers with ‘Some religion’ and ‘No religion’, and the number of ‘Males’ and
‘Females’, once we know how many ‘Males’ have ‘Some religion’ the numbers
in all the other cells of the table can be calculated. Hence, only one cell in the
table is free to vary and, once its value is fixed, the other three values have been
determined. Therefore, a 2 by 2 table has only one degree of freedom.

As larger tables have more cells that can vary, they have more degrees of free-
dom. This is calculated by subtracting 1 from the number of categories on each
side of the table and multiplying the two numbers. If c represents the number
of columns and r the number of rows, then the number of degrees of freedom
is (c − 1) × (r − 1). In a 3 by 4 table the number of degrees of freedom is
2 × 3 = 6.

We need to know the number of degrees of freedom in order to be able to
establish whether the total chi-square for a table exceeds the critical value for
the confidence level we have set (see Table 1 in Appendix D). We already know
that the total chi-square value for Table 4.4 is 16.114 (see p. 98) and we know
that this table has only 1 degree of freedom. If we set the confidence level at
95 per cent (the 0.05 level of significance), we find that the critical chi-square
value is 5.02 for a two-tailed test. To be significant, our value would need to be
equal to or higher than this critical value for a non-directional alternative
hypothesis (two-tailed). As our value exceeds this critical value, we can say that
the association between Religion and Gender is significant. In fact, our chi-
square value would make it significant at the 0.001 level as it exceeds the crit-
ical value of 12.12. The phi coefficient tells us that the strength of the
association is 0.20. Hence, there is a 99.9 per cent probability that an associa-
tion of this strength exists in the population. What it does not tell us is whether
an association of this strength is important.

We can do a similar analysis on this association using the data in Table 4.1. In
this case, the total chi-square value is 16.8150 (see p. 97) and there are 4
degrees of freedom. From the table of critical values we find that the level of
significance certainly exceeds the 0.05 level (critical value is 11.14) and also
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exceeds the 0.01 level (14.86). Hence, we can be 99 per cent confident that an
association of this strength (C = 0.20; Cs = 0.25; see pp. 99 and 100) can be
found in the population. Note that as the number of degrees of freedom
increases, a higher chi-square value is required to achieve a given level of signifi-
cance. That is why the larger table for this association has only achieved a 0.01
level of significance.

If our alternative hypothesis was directional, such as ‘women are more likely
than men to profess a religious affiliation’, a one-tailed test would be appropri-
ate. In the 2 by 2 table, the total chi-square would have to equal or exceed a
critical value of 3.84 for the association to be significant at the 0.05 level and
10.83 at the 0.001 level. In the 2 by 5 version of the table, the critical values
for a one-tailed test would be 9.49 at the 0.05 level and 13.28 at the 0.01 level.
Therefore, this directional alternative hypothesis is significant at the 0.01 level.
It should be clear that having a directional or a non-directional alternative
hypothesis can make a difference as to whether an association turns out to be
significant or not.12

Ordinal-level Data

While it is possible to use the chi-square to test the level of significance of all
tables with categorical data, given that gamma is now a popular and appropri-
ate coefficient for measuring the association between two ordinal-level vari-
ables, it is worth reviewing an approximate test of significance that has been
developed specifically for it (see Siegel and Castellan, 1988: 296–8). As this
procedure produces a conservative estimate of the ‘true’ level of significance,
we may end up claiming a lower level of significance than is the case, thus not
rejecting the null hypothesis when it is false (type II error). We have already
calculated the value for gamma for the data reported in Table 4.2 for the asso-
ciation between Age and EWV. It was −0.328, a moderate, negative association
(see p. 104). The following equation is used to test the null hypothesis by pro-
ducing a value for z.13

(6.5)

where C is the number of concordant pairs and D is the number of discordant
pairs. We can arrive at the value for z by substituting the known values in this
equation (see Table 4.5):

As the same level of significance will apply to both positive and negative asso-
ciations, we can ignore the negative sign here. This z-score produces a level of
significance beyond the 0.001 level (both one-tailed and two-tailed) (see Table 2
in Appendix D).
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In the same table, if we calculate the level of significance using chi-square,
with a total value of 49.706 and 6 degrees of freedom (df = (c − 1) (r − 1) = 3 × 2),
the level of significance is also well beyond the 0.001 level for both a one-tailed
and a two-tailed test (see Table 1 in Appendix D). Therefore, for linear
relationships, the two methods produce the same results. If a relationship is
non-linear, gamma might be non-significant while a test based on chi-square
may be significant. This is because gamma can only detect linear relationships
while measures based on chi-square can detect any form of relationship. Taking
this into consideration, the only time a choice of test might be critical is when
the results are close to the 0.05 level.

Apart from the chi-square test, a range of other tests is available for use with
nominal-level and ordinal-level data. Still the most complete discussion of these
tests is to be found in Siegel and Castellan (1988). However, many are designed
for small samples (usually less than 40) under experimental conditions.14 A
number of these tests require individuals to be rank-ordered according to their
score or position on a particular variable. As ordinal-level data in most social
research involve grouping respondents into a set of ordered categories, such as
level of education by qualifications, these tests may not be very useful. Such
data are in ordered categories rather than being ordered individuals. The latter
is only feasible with small samples. While I strongly recommend the use of
Siegel and Castellan (1998) if what is discussed here does not meet your require-
ments, it is important to recognize that much of it is written for psychologists
rather than for social researchers.15 It is worth noting that only a few of these
tests are available in software packages such as SPSS.

Metric Variables

Different tests of significance are required when data are either at the interval
or ratio level of measurement. These tests receive much greater attention than
those just discussed, no doubt because of the assumption that metric variables
are superior to categorical variables. Given that Pearson’s r is the most com-
monly used measure of association for metric variables, what we need is a test
of significance for this coefficient. However, as different tests are required
when means are compared, we shall discuss these first.

Comparing Means

The type of means analysis to be discussed here constitutes a form of associa-
tional analysis. Like associational analysis, means analysis is an elaborate form of
description involving comparison. Comparisons can be made in various ways: 

• between the means of two variables within a sample; 
• between the means of one variable for two categories of another variable

within a sample; and 
• between the means of one variable across two samples.
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The first two are within-sample comparisons, while the third involves a
between-sample comparison. For the second, where the difference between
means for one variable is produced for categories of another variable, we are
really looking to see whether there is an association between the two categories
and this variable, for example, between Gender and EWV.

In testing the significance of a difference between two means within the
same sample, we are trying to establish whether the difference found between
the categories is the result of our sample not being representative, or whether
it is due to a real difference between the categories in the population. This
analysis requires the setting up of a null and an alternative hypothesis. The task
of the analysis is to try to reject the null hypothesis in favour of the alternative
form that is supported by the data.

Whether the analysis concerns within-sample or between-sample compar-
isons, the same procedure can be used when only two means are involved. The
appropriate test is the group t test.16 If the parametric requirements of this test
are not met, an alternative is the Mann–Whitney U test or its equivalent, the
Wilcoxon test. When more than two means are compared, analysis of variance
can be used. Reviews of these three tests follow.

Group t test

The group t test is sometimes known as ‘Student’s t test’ due to the pseudonym
used by its creator, William Gossett, when he first published it. The t test is
based on a similar set of critical values to the z-scores. What we are trying to
establish is whether the value (for t or z) that we arrive at by the relevant pro-
cedure indicates that our sample characteristic or pattern lies in the extreme
tails of the normal curve of all possible samples – that is, that this value indi-
cates that the particular sample characteristic or pattern is not significant. The
distribution of values of z corresponds to the shape of a theoretical normal
curve with a mean of 0 and a standard deviation of 1. Similarly, the distribution
of values of t represents a theoretical symmetrical distribution with a mean of
0 but, in this case, a standard deviation that decreases towards 1 as the degrees
of freedom increase. When the degrees of freedom exceed 100, the t distribu-
tion approximates the z distribution. When there are fever degrees of freedom
(i.e. the samples are smaller), the tails of the distribution spread out further.
Hence, for smaller degrees of freedom, the proportion of the area beyond a spe-
cific value of t is greater than that beyond the corresponding value of z. The t
test is more commonly used than the z test because the former uses the sample
standard deviation while the latter requires either knowledge of the population
standard deviation or some way of estimating it. The table of t values (see Table
3 in Appendix D) is used in the same way as that for chi-square values.

In order to use the group t test, two requirements have to be met:

• The variable must have a normal distribution in both categories.
• The standard deviations of both categories should be approximately the

same.
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When the size of both categories is large, and there is approximately the same
number in each one, the requirement for normal distributions is less important.
If these requirements cannot be met, there are three alternatives. The first is
to just use the group t test regardless. This is likely to produce a conservative
result, which means that the null hypothesis may not be rejected when it is
false (type II error). The second alternative is to do some normalizing transfor-
mation of the variable or variables. The third is to use a non-parametric test,
such as the Mann–Whitney U test. The latter will be discussed shortly.

Earlier in the chapter we encountered two notions, the standard error of the
proportion and the standard error of the mean. The latter refers to the standard
deviation of the mean of all possible sample means. We need to use a similar
idea here, the standard error of the difference. Using the central limit theorem
(see p. 165), we know that if we draw enough samples of the same size from a
population, the distribution of the differences between the means of a variable,
for two subsamples, will approach the normal curve, and that the mean of all
these differences will be the same as the difference between the means of the
two categories of a variable in the population. As we may not know the vari-
ances of the two means in the population, we again have to use the sample vari-
ances as our best guess. Because there are two variances in this case, the
equation for the standard error of the difference is different from those used
for the standard error of the mean or the proportion.

In contrast to its use in contingency tables, the notion of degrees of freedom
works differently with metric variables. Now the sample size determines the
number of degrees of freedom, which is equal to n − 1. The logic in both cases
is similar. To recapitulate, in the case of a contingency table with a certain sample
size, the values in all but one of the categories of each variable can vary in order
that both rows and columns will add up to the marginals, and the sum of both
sets of marginals will add up to the sample size. Once all category values apart
from this last one are decided, the value of the last category is automatically
determined. It has no freedom to vary, while all the other categories do. In the
case of metric variables, if the mean of a set of values in a sample is known, then
all but one of the values is free to vary. The value of the last one will be deter-
mined because it, together with all the other values, must produce the mean.
Hence, the number of degrees of freedom is one less than the sample size.
When categories of a variable are being compared within a sample, each cate-
gory’s degrees of freedom will need to be calculated, being one less than the
total n in the category.

The equation for the group t test is:

To calculate the estimated standard error of the difference when the standard
deviations of the two groups are approximately equal, the two standard deviations
are pooled together. This produces a pooled estimate of the standard deviation
of the difference between the means.
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where s1 and s2 are the standard deviation of the first and second categories
respectively, and n1 and n2 are numbers of values in the first and second cate-
gories respectively. When the sizes of the two categories are roughly equal, sp is
simply the square-root of the mean of the two standard deviations:

The pooled estimate can now be entered in the equation

and t can be calculated by inserting this value in equation (6.6).
When the standard deviations of the two groups are not approximately the

same, the following equation can be used to arrive at the estimated standard
error of the difference:

Once the estimated standard error of the difference is known, its value can be
inserted in equation (6.6).

Note that when the size of the two categories is large, moderate departures
from normal distributions on the variable can be tolerated by the pooled pro-
cedure for arriving at the t value.17 In other words, this procedure is robust in
that it is less sensitive than some to deviations from the normality requirement.

To arrive at the critical value for t, we must calculate the number of degrees
of freedom. Two different procedures are used depending on whether or not the
sizes of the categories are equal. If they are equal, there are n1 + n2 − 2 degrees
of freedom. Because the standard deviations have been pooled, the normal
n − 1 degrees of freedom have also been pooled for the two categories, that is,
added together. When the two ns are different, the number of degrees of free-
dom is the smaller of n1 − 1 and n2 − 1. The reason for this is that the smaller the
degrees of freedom, the more difficult it is to reject the null hypothesis, thus
producing a more conservative outcome. Using the larger n, or even averaging
the two, will make it more likely that the test will be significant.18

Now to try some examples from the data sets. A within-sample difference
will be calculated using the mean EWV scores for male and female Students. A
between-sample difference will compare the mean EWV scores of Students
and Residents.
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The mean EWV scores are 87.27 for males and 93.94 for females (Students).
Clearly, the difference is not large (6.67) but the question is whether it could
also be expected to be present in the population of students from this particu-
lar university. The standard deviations for male and female students will be con-
sidered to be approximately equal, 11.50 for males and 10.94 for females.19

Given that the two categories have different ns, we need to use the following
equation to calculate the pooled estimates of the standard deviation.

We can check this figure by observing that it lies between the standard devia-
tions for males and females, and even though the sizes of these two groups are
not the same, it should be somewhere near the mean of the two values (which
is 11.22). Now we can calculate the estimated standard error of the difference:

With this value, it is possible to calculate t:

The negative sign can be ignored as the order of the means is arbitrary. With 462
degrees of freedom (n1 + n2 − 2) and a one-tailed significance level of 0.05
(because we expect the difference to be in the same direction in the popula-
tion), the critical value of t is 1.97 (see Table 3 in Appendix D). As our value
exceeds this value we can be 95 per cent confident that this difference exists
in the population. In fact, we could be 99.9 per cent confident with either a
one-tailed or a two-tailed test. Therefore, we can conclude that the difference
between the mean EWV scores for male and female Students, with females
having a higher mean score than males, can be expected in the population at an
extremely high level of confidence.

It is also possible to calculate a confidence interval around this difference in
the means. It is ± 2.05 at the 95 per cent level of confidence and ± 3.46 at the
99.9 per cent level. Note that the latter interval takes in slightly over half of the
difference between the means, and it indicates that the difference is expected
to be between 3.21 and 10.13. The difference is between 4.61 and 8.72 at the
95 per cent level.

We can also test the difference in the EWV means for males and females in
the Resident sample. The means are 86.44 for males (s = 11.52; n = 200) and
89.52 for females (s = 9.75; n = 199), a difference of 3.08. In this case the ns
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can be regarded as being equal but the standard deviations are not. This requires
the use of different equations to calculate the pooled estimate of the standard
deviation and the estimate of the standard error of the difference. You may
wish to try this as an exercise. The value of t is 2.89 and, with 397 degrees of
freedom, the difference is significant at the 99 per cent level of confidence for
either a one-tailed or a two-tailed test.

In the second example, we wish to know whether the difference in mean
EWV scores between the Student and Resident samples can be expected to
exist in the populations from which they were randomly drawn. The mean for
the Students is 90.91 (s = 11.65; n = 465) and for the Residents is 87.97
(s = 10.76; n = 402), a difference of 2.94. We could regard the standard devia-
tions as being approximately equal (the difference is only 0.89) but the sample
sizes are different. The procedure is as follows:

Using a one-tailed test, the value for t exceeds the critical value at the 0.001
level of significance (3.30) and therefore allows us to reject the null hypothe-
sis, that there is no difference in the population means, and to say that we are
99.9 per cent confident that there is such a difference. However, in this par-
ticular case, this does not say very much as the sample difference is only 2.94.
We could calculate a confidence interval for this difference to help clarify the
situation. In the end, we need to focus on the difference rather than the level
of significance or confidence level. The latter is only a step along the way to
interpreting such a result, not an end in itself. The same applies when it is mea-
sures of association with which we are concerned.

Mann–Whitney U test

The Mann–Whitney U test is a distribution-free test that is appropriate either
when the parametric requirements of the t test cannot be met (in particular,
when the distribution of the population on the variable being considered is not
normal) or with ordinal-level variables. This test is used when members of two
categories can be ranked in terms of their scores on the same variable. Hence,
the data may be metric but the procedure is non-parametric. It is regarded as
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the most powerful of the non-parametric tests because it makes use of most of
the information in the data. The Mann–Whitney U test is associated with the
Wilcoxon test. They are identified by the name of their originator and involve
slightly different procedures for their calculation.

Let us begin with a simple example to illustrate the procedure for the
Mann–Whitney version of the test, with a small sample (defined as 20 or less).
This sample has 12 members in two categories, ‘A’ (n = 5) and ‘B’ (n = 7), with
scores on a hypothetical variable. The members of both categories can be
ranged together in terms of their scores as follows.

The value of U is determined by the number of times a score from one cate-
gory precedes a score from the other category, using the following equation.

where R1 is the sum of the ranks assigned to category A. Here

R1 = 4 + 7 + 9 + 10 + 12 = 42

Therefore, 

Tables provided in Siegel (1956) indicate that a two-tailed test for this value of U,
with categories of this size, is not significant (p = 0.15, a confidence level of
only 85 per cent).20

I have not appended a table for such small samples as they are unlikely to
occur in social research. As the sample size increases, the distribution of U
approaches the normal curve. Hence, as long as ns for both categories are
approximately equal and one exceeds 20, the z statistic can be used to establish
the significance of the difference between two categories of ranked data.

With larger samples, it is likely that ties will occur, that is, that some respon-
dents will have the same score. This is not a problem if the ties occur within a
category, but they can be when the ties occur across the categories. Although
the effect of ties may be negligible, it is possible to include a correction for this
in the calculations. Consideration should be given to including the correction
when there are many ties, or when the uncorrected value for U is on the
borderline of the desired level of significance. If the correction is not done, the
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Score 7 8 10 12 14 16 17 19 20 21 22 25
Rank 1 2 3 4 5 6 7 8 9 10 11 12
Category B B B A B B A B A A B A

n1(n1 + 1)
U = n1n2 + − R12

(6.11)

5(5 + 1)
U = 5 × 7 + − 42 = 35 + 15 − 42 = 8

2
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test will be conservative, that is, it will decrease the probability of committing a
type I error and increase the probability of committing a type II error. As SPSS
provides both the uncorrected and the corrected values for U, it is easy to see
what effect ties have in any situation.

To calculate the value of z for large samples, the equation is

where R1 is the sum of the ranks for the first category (say, males), RE is the
expected sum of ranks if there is no difference (the null hypothesis),

and seU is the standard error of the ranks,

To correct for ties, a different equation is used to calculate seU:

where n = n1 + n2 and T = (t3 − t)/12 (where t is the number of scores tied for
any rank).

Let us now illustrate the Mann–Whitney U test with data from the Student
sample on the assumption that the EWV scores are not normally distributed.
We immediately encounter a problem. Establishing the rank order of scores can
be very tedious to do manually with large samples such as ours. Therefore, I will
select a 1 : 10 probability sample of the sample. This still preserves its random-
ness but may make it more difficult to reject the null hypothesis. Table 6.4
shows the ranked EWV scores for males and females. We know that n1 = 21,
n2 = 25, n = 46 and R1 = 457. Therefore, 

The equation for standard error of the difference without the correction for ties is:
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R1 − REz = seU
(6.12)

(6.13)

(6.14)

(6.15)

n1(n1 + n2 + 1)
RE =

2

n1n2(n1 + n2 + 1)
seU = 

√
12

n1n2
(

n3 − n − ∑
T
)

seU = 
√

n(n − 1) 12

n1(n1 + n2 + 1) 21(21 + 25 + 1)
RE = = = 493.50

2 2

n1n2 (n1 + n2 +1) 21 × 25(21+ 25 + 1) 
= √2056.25 = 45.35seU =

√
=

√
12 12

3055-ch06.qxd  1/10/03 3:37 PM  Page 199



In order to include the correction, we have to first calculate 
∑

T. The following
scores are tied: 76 (3), 83 (3), 85 (2), 86 (3), 90 (3), 92 (2), 93 (3), 94 (3),
95 (4), 96 (2), 106 (2) and 111 (2). This makes 12 values for T, the first of
which is (t3 − t)/12 = (33 − 3)/12 = 2.0. When two scores are tied, T = 0.5, and
when there are four tied scores, T = 5.0. Therefore, 

∑
T = 2.0 + 2.0 + 0.5 + 2.0 + 2.0 + 0.5 + 2.0 + 2.0 + 5.0 + 0.5 + 0.5 + 0.5 = 19.5.

Hence,

Now we can calculate z, firstly without the correction for ties.

R1 − RE 457.00 − 493.50
z = = = −0.805seU 45.35
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Table 6.4 Ranked Environmental Worldview scores by Gender 
(subsample of Students)

Males (A) Females (B)

Scores Rank Scores Rank

72 1 74 2
76 4 76 4
76 4 83 9
79 6 83 9
80 7 85 11.5
83 9 86 14
85 11.5 89 18
86 14 90 20
86 14 90 20
87 16 90 20
88 17 92 23.5
91 22 92 23.5
94 29 93 26
95 32.5 93 26
95 32.5 93 26
96 35.5 94 29
97 37 94 29

100 38 95 32.5
106 40.5 95 32.5
106 40.5 96 35.5
115 46 103 39

107 42
111 43.5
111 43.5
113 45

n1 = 21 R1 = 457 n1 = 25 R2 = 624

21 × 25
(
463 × 46

19.5
)

=

√
−

46 × 45 12

n1n2
(

n3 − n −
∑

T
)

seU = 

√
n(n − 1) 12

= √0.253623 × 8088.00 = √ 2051.30 = 45.29
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And then including the correction.

457.00 − 493.50
z = = −0.806

45.29

Clearly, the correction for ties makes a negligible difference in this example.
Both values for z are not significant for both two-tailed and one-tailed tests.
Therefore, we cannot reject the null hypothesis that there is no difference in
EWV scores for this subsample of males and females. This is not surprising,
as the difference between the means is only 2.98 (males = 90.14; females = 93.12).
In the whole sample, the difference is 6.67 (males = 87.27; females = 93.94). An
inspection of the data shows that the subsample did not include males with low
scores. Hence, our subsample is not representative of the original sample. In addi-
tion, the fact that the subsample is much smaller makes it more difficult to estab-
lish a significant difference. For an exercise, you could do a group t test on the
sub-sample, on the assumption that EWV is normally distributed in the population,
and compare the results with that obtained by using the Mann–Whitney U test. You
will need to calculate the two standard deviations by hand.

When the Mann–Whitney U test is done on the whole of the Student sample
(using SPSS of course) the z value is −6.05, and this is significant at the 0.001
level for both one-tailed and two-tailed tests. This result is consistent with that
for the group t test discussed above.

Analysis of variance

Analysis of variance (ANOVA) tests the significance of the differences between
more than two means. This can be between the means of an outcome variable for
different categories of a predictor variable, such as mean EWV scores for three
or more Age categories or Religion categories (within-sample comparisons). It can
also be used to compare the means of one outcome variable between two or more
different samples (between-sample comparisons). The former test is known as
one-way analysis of variance because the categories across which the means are
compared come from only one predictor variable, such as Age.

It would be possible to do a series of group t tests with each pair of categories
or samples when more than two are involved. However, this is not recom-
mended for a number of reasons. While it might work for only three categories
or samples, as the number increases the pairs multiply very rapidly. For exam-
ple, 10 categories or samples produce 45 pairs.

The one-way ANOVA requires certain assumptions to be met in order to be
able to use the F statistic to establish whether or not differences between the
means are significant.

• The populations, or the categories within a population, must have normal
distributions on the variable in question.

• The standard deviations for this variable in the population, or the categories
within a population, must be equal.

• The selection into the samples or categories must have been independent,
that is, no pairing or similar procedures must have been used.

Inferential analysis
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Unfortunately, we rarely know these parameters in the populations we have
sampled. We can only rely on the characteristics in our samples and, as we
know, samples may not be representative. Hence, it is necessary to be pragmatic
and use this procedure when the samples have reasonably normal distributions
and reasonable equivalence between standard deviations.

It is also possible to do two-way analysis of variance, or even more than two-
way. This usually involves a combination of categories for which the means on
a variable are compared. For example, it would be possible to do an analysis of
variance with Gender (two categories) and Age (three categories). We would
end up comparing the means, say of EWV scores, across six categories: ‘young
females’, ‘middle-aged females’, ‘older females’, ‘young males’, ‘middle-aged
males’ and ‘older males’. This analysis would allow us to sort out the interaction
between Gender and Age in terms of their association with EWV.

When two categories in one sample or two samples are compared on a num-
ber of variables, a different procedure is required, known as multivariate analy-
sis of variance (MANOVA). For example, males and females could be
compared in terms of their mean EWV scores, their mean Willingness to Act
scores and their mean Recycling scores. To put this differently, Gender could
be regarded as the predictor variable and the others as a set of outcome variables.
These two more advanced forms of ANOVA procedures are beyond the scope
and purpose of this book. See the discussion of ‘Other methods’ of multivari-
ate analysis near the end of Chapter 5 for further reading.

Now back to one-way analysis of variance. One-way ANOVA is used to
establish whether differences between three or more sample means could be
expected in the population. The test is based on a comparison between two
kinds of variance. One is within-category or within-sample variance. This is the
dispersion around the mean for each category or sample, for example, the vari-
ance of the mean for each of three Age categories. The second is the variation
between the categories or samples, that is, how different the means are from
each other, known as between-sample variance. Comparison is achieved
by establishing the ratio between these two types of variance. This produces an
F value that can be compared with a table of Fisher’s F statistics (Table 4,
Appendix D):

between-sample variability
F = (6.16)

within-sample variability

A table of F statistics lists the critical values, for a range of significance levels
and degrees of freedom, when the null hypothesis is true. As with other test
statistics, if the value calculated for F exceeds the critical value, the null
hypothesis (that there is no difference between the population means) can be
rejected.

Three points need to be noted. First, the variances are estimates of the vari-
ances in the population or populations. Second, while ‘sample’ is used to iden-
tify the type of variability, this is intended to include ‘category’ in the case
where the means are calculated for the categories of a variable. Third, ‘variabil-
ity’, as in between-sample variability, has a different meaning than ‘comparison’,
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as in between-sample comparisons. The latter identifies the categories or
samples that are to be compared, while the former refers to the characteristics
of the variable being compared.

A few steps are involved in obtaining an F value. First, we have to calculate
the size of the ‘total sample’, which is the sum of the sizes of the individual cat-
egories or samples. For within-sample comparisons, if the categories include all
the sample, this will be the same as the actual sample size; for between-sample
comparisons, it will be the sum of the sizes of all the samples. Second, we also
need a grand mean, or a weighted mean. Each mean is multiplied by its cate-
gory or sample size, these products are summed and then divided by the total
sample size (n t). The weighted mean can be found from the following equation:

n1x
–

1 + n2x
–

2 + n3x
–

3 + …
Weighted mean (x–w) = (6.17)

nt

Now we can calculate the between-sample variability. For each sample, the
difference between the sample mean and the weighted mean is squared and
multiplied by the sample/category size. These products are summed and then
divided by the degrees of freedom, which is one less than the number of cate-
gories or samples.

n1(x
–

1 − x–w)2 + n2(x
–

2 − x–w)2 + n3(x
–

3 − x–w)2 + …
Between-sample variability = (6.18)

c − 1

where n1, n2, n3, etc. are the sizes of the respective categories or samples, x–1, x
–

2,
x–3, etc. are their means, and c is the number of categories or samples.

The within-sample variability is based on the variance or standard deviation
of the mean for each category or sample. Using standard deviation rather than
variance, each standard deviation is squared and then multiplied by one less
than its sample/category size. These products are then summed and this is
divided by the number of degrees of freedom. The equation is:

(n1 − 1) s1
2 + (n2 − 1) s2

2 + (n3 − 1) s3
3 + …

Within-sample variability = (6.19)nt − c

where s1, s2, s3 are the standard deviations of the respective categories or sam-
ples and their squares are the respective variances.

Now it is possible to calculate a value for F using equation (6.16). We can
illustrate this procedure by using the mean EWV scores for the three Age
categories, ‘18–34’, ‘35–54’ and ‘55 +’ (Resident sample). The required
information for the three Age categories is: x–1 = 90.11, x–2 = 90.54, x–3 = 83.34,
s1 = 11.91, s2 = 9.28, s3 = 9.55, n1 = 128, n2 = 138 and n3 = 135. We know that
the distribution of EWV scores approaches the normal curve, and their distrib-
utions in the three Age categories, as indicated by the standard deviations, are
reasonably similar. Substituting the values from our example in the above equa-
tions, we can calculate the value for F:
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(128 × 90.11) + (138 × 90.54) + (135 × 83.34)
Weighted mean (x–w) =

401

11,534.08 + 12,494.52 + 11,250.90 35,279.50
= = = 87.98

401 401

128(90.11 − 87.98)2 + 138(90.54 − 87.98)2 + 135(83.34 − 87.98)2

Between-sample variability =
2

581.38 + 905.24 + 2905.00 4391.62
= = = 2195.81

2 2

(128 − 1) 11.912 + (138 − 1) 9.282 + (135 − 1) 9.552

Within-sample variability =
401 − 3

18,014.71 + 11,798.22+ 12,221.14 42,034.06
= = = 105.61

398 398

between-sample variability 2,195.81
F = = = 20.791

within-sample variability 105.61

Let us set the significance level at 0.05. In order to read the table of critical
values for F, we must make use of the two degrees of freedom calculated above,
one for the between-sample variability (c − 1 = 2) and the other for the within-
sample variability (nt − c = 398). Reading from Table 4 in Appendix D, we find
that the critical F value is approximately 3.00. As our value clearly exceeds this,
we can reject the null hypothesis that there is no difference between the
means. In fact, we can also reject the null hypothesis at the 0.01 level, where
the critical value is approximately 4.60.

Test of Significance for Pearson’s r

Whenever we use a measure of association between metric variables, such as
Pearson’s r, with data from a probability sample, we need to apply inferential
analysis in the form of a test of significance. Again, the t test is appropriate,
using the equation

where r is a particular correlation coefficient. This is obviously a simpler pro-
cedure than the one we have just been through to test the difference between
means.

We can illustrate this test by returning to the association between Age and
EWV, but this time with the metric versions of these variables and with the
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n − 2t = r
√

1 − r2
(6.20)
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Resident sample. With Pearson’s r = −0.308 and n = 401, we have

With 399 degrees of freedom (n − 2), a two-tailed test is significant well
beyond the 0.001 level (Table 3, Appendix D). Ignore the negative sign. There-
fore, the null hypothesis, that there is no association, can be rejected and the
conclusion drawn that there is an association in the population, usually repre-
sented by ρ (rho). In other words, there is a 99.9 per cent probability that the
correlation coefficient is greater than zero in the population (p < 0.001). While
we do not know precisely what ρ is, it is possible to calculate confidence limits
around r at some level of probability, perhaps 0.001 in this case. The procedure
for this is the same as for calculating a confidence interval around a sample
mean (see Edwards, 1954: 307).

Inference in Explanatory Analysis

It is also necessary to test the significance of asymmetrical coefficients that are
designed to indicate an influence between predictor and outcome variables,
that is, when they are based on probability samples.

Nominal-level Data

In Chapter 5, we reviewed the use of Goodman and Kruskal’s lambda (λ) for
establishing influence between two nominal-level variables. Because of some
complexities in the procedure, it is necessary to test the hypothesis that the
reduction of error is a particular value rather than zero. In other words, the null
hypothesis is not strictly null; it has to specify a value. With relatively large sam-
ples, λ approaches a normal distribution for all samples of a particular size. The
estimated standard error of λ can be calculated as follows:21

With this value, we can then calculate a value for z:

λ − predicted value of λ
z = (6.22)

seλ

(
sum of within-category

) (
sum of within-category modal f of modal f in the row with the

)
n −modes of the predictor modes of the predictor +  the outcome − 2 × modal f of the outcome

seλ = 

√
(n − modal f of the outcome)3
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n − 2 = −0.308t = r
√

1 − r2

401 − 2    
= −0.308

√
1 − 0.3082

399   = −6.467
√
0.9051

(6.21)

3055-ch06.qxd  1/10/03 3:37 PM  Page 205



We can go back to Table 5.1 and its discussion in Chapter 5 to illustrate this
procedure. The value of λ was calculated as 0.027, which represents very little
influence. It would not be surprising if it were not significant. The ‘sum of
within-category modes of the predictor’ is the sum of the modes in each col-
umn of Table 5.1 (24 + 33 + 29 + 21 + 38 = 145). The ‘modal f of the outcome’
is the highest frequency in the Total column at the right of the Table (138, for
‘Professional/managerial’). The ‘modal f in the row with the modal f of the out-
come’ is the highest frequency of the first row because that is the row of the
‘modal f of the outcome’ (38, for ‘No religion’). Now we have all the ingredi-
ents for the equation for the standard error of λ:

If we were to predict the value of λ to be 0.10,

z =
λ − predicted value of λ 

=
0.027 − 0.10  

=
−0.073   

= −1.24
seλ 0.059 0.059

Using Table 2 in Appendix D, with the 0.05 level of significance and a one-
tailed test (because we predicted a value for λ), we find a p-value of 0.1075.
This means that we must reject the hypothesis that Religion has an influence of
0.10 on Occupation, in the population.

Ordinal-level Data

In Chapter 5 we discussed the use of Somer’s d for establishing influence
between two ordinal-level variables. As with the test for lambda, this test is also
not straightforward. However, it is possible to arrive at an approximation.22

To calculate z, we require the value for Somer’s d that is being tested, and its
variance. The equation is:

dz = (6.23)
√vard

To calculate Somer’s d, we had to establish the number of concordant pairs
(C), the number of discordant pairs (D) and the number of tied pairs (Td) (see
pp. 102–4). The calculation of vard follows a similar but more detailed proce-
dure. Taking each cell in the table in turn, the values in all the cells outside its
own column and row are taken together and multiplied by that cell’s value.
However, some cells are given a positive value and some a negative value. Posi-
tive values are given to the values in the cells that are below and to the right
and that are above and to the left, while negative values are given to the cells
that are below and to the left and that are above and to the right. To simplify,
this, I shall refer to each cell’s relationship to its ‘diagonal’ cells, those off its
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(401 − 145)(145 + 138 − 38) 62,720    
= √0.0034 = 0.059seλ =

√
=

√
(401 − 138)3 18,191,447
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own row and column. Of course, not all cells have all four combinations. For
example, the top, left-hand cell can only be related to cells below and to its
right. Similarly, each of the cells in the other three corners of the table can only
relate to cells in one direction from it. Other cells on the margins of the table
will only relate to cells in two directions, while all others will relate in four
directions. Put in words, the equation for the estimate of the variance of d is:

4 ×
∑

(each cell multiplied by the sum of its diagonal cells squared)
vard = (6.24)

[total squared −
∑

(each column marginal squared)]2

Using the data presented in Table 4.2, Table 6.5 shows each cell multiplied
by the sum of its ‘diagonal’ cells. Hence,

4 × 7,181,228 28,724,912vard = = = 0.0025
[4012 − (1282 + 1382 + 1352)]2 [160,801 − 53,653]2

and

d 0.223z = = = 4.460
√vard √0.0025

where d is based on equations (5.3) or (5.4) (pp. 124–5), calculated to three
decimal places. With a one-tailed test, this value for z is significant at the 0.001
level (see Table 2 in Appendix D).23

This is a very tedious procedure to do by hand, particularly with large tables,
and there is plenty of scope for making errors. However, if it can be assumed
that the distribution of the population across the categories of both variables is
uniform, a much simpler equation can be used (see Siegel and Castellan, 1988:
308). Even when the distribution is not exactly uniform, the following equation
provides a reasonable estimate of the variance of d:

4(r2 − 1)(c + 1)
vard = (6.25)

9nr2(c − 1)

where r is the number of rows, c is the number of columns and n is the table
total.

In our example, the distribution across the Age categories is close to uniform,
but the EWV categories are much less so. Unless we need to be extremely pre-
cise, it would be appropriate to use this simpler equation in this situation. We
can compare the two procedures by substituting the relevant information from
the same example in equation (6.25).

4(42 − 1)(3 + 1) 240
vard = = = 0.00208

9 × 401 × 42(3 − 1) 115,488
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and

d 0.223z = = = 4.884
√vard √0.00208

This value for z is close to the previous value, and the difference has no bearing
on the test. Again, when the value of z is close to the critical value for the
boundary between two levels of significance, particularly the 0.05 level, small
differences may be important and the more tedious calculation would be more
appropriate (assuming it cannot be done by computer software).

Metric Variables

The only tests to be discussed for influence between metric variables are those
required for bivariate and multiple regression. I will not attempt to illustrate
any of these procedures, as multiple regression in particular, like factor analy-
sis, is not something that you are likely to do by hand, including the various
tests of significance.

Bivariate Regression

A test of the significance of a regression coefficient is a test for the slope of the
regression line b. In bivariate regression, testing the significance of b is similar
to testing the significance of Pearson’s r. As we have seen, when b is standardi-
zed in bivariate regression, it has the same value as Pearson’s r.

In testing the significance of a correlation coefficient we are usually trying to
reject the null hypothesis that it is equal to zero. When we are testing the sig-
nificance of the slope of a regression line, we are trying to reject the null
hypothesis that the slope is flat. A flat slope has a value of zero, whether it is
standardized or not. The t test is appropriate.

It is also possible to calculate a confidence interval around the value of b. As
with previous calculations of confidence limits, we must first have an estimate
of the standard error of the slope. Then
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Table 6.5 Cells and their ‘diagonals’ in Table 4.2
Cell Cell value Sum of ‘diagonals’ Total

a 21 (e 46 + f 65 + h 52 + i 22 + k 24 + l 6)2 = 970,725
b 16 (f 65 + i 22 + l 6 − d 45 − g 30 − j 32)2 = 3,136
c 42 (− d 45 − e 46 − g 30 − h 52 − j 32 − k 24)2 = 2,202,522
d 45 (h 52 + i 22 + k 24 + l 6 − b 16 − c 42)2 = 95,220
e 46 (i 22 + l 6 + a 21 − g 30 − j 32 − c 42)2 = 139,150
f 65 (a 21 + b 16 − g 30 − h 52 − j 32 − k 24)2 = 663,065
g 30 (k 24 + l 6 − b 16 − c 42 − e 46 − f 65)2 = 579,630
h 52 (l 6 + a 21 + d 45 − j 32 − c 42 − f 65)2 = 233,428
i 22 (a 21 + b 16 + d 45 + e 46 − j 32 − k 24)2 = 114,048
j 32 (− b 16 − c 42 − e 46 − f 65 − h 52 − i 22)2 = 1,889,568
k 24 (a 21 + d 45 + g 30 − c 42 − f 65 − i 22)2 = 26,136
l 6 (a 21 + b 16 + d 45 + e 46 + g 30 + h 52)2 = 264,600

Total 7,181,228
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CI = b ± (z × ses) (6.26)

where ses is the standard error of the slope. The value of z will be determined
by the confidence level set, being 1.96 for the 0.05 level.

Multiple Regression

Testing for significance in multiple regression is rather more complex. First, in
the same way as we would test the significance of r in a bivariate relationship,
we can test the significance of R, the total or multiple correlation coefficient
between a set of predictor variables and the outcome variable. In this case, the
F test is appropriate. A special table can be used to determine whether the F
value produced exceeds the relevant critical value for the size of sample and the
number of predictor variables (see, for example, Siegel, 1994: 490–5). This will
establish whether an R of this size can be expected to exist in the population.
Second, perhaps a more valuable figure is the adjusted R2 (see Miles and Shevlin,
2001: 32–3). As we already know, by squaring R we can determine the propor-
tion or percentage of the variance that is explained by a set of predictor vari-
ables. The adjusted R2 estimates what this percentage is likely to be in the
population. Third, if R turns out to be significant, it is then possible to exam-
ine the significance of each beta coefficient. This allows us to estimate for each
predictor variable, after the influence of all the other variables is taken into
account, whether it makes a contribution to the explained variance in the
population, that is, whether it is sufficiently different from zero to be able to
reject the null hypothesis. The t test is appropriate here. Note, however, that if
R turns out not to be significant, an examination of the significance of the pre-
dictor variables would not be legitimate. Therefore, for multiple regression, we
have three different but related ways of estimating whether what we found in
a sample can be expected to be present in the population from which it was
drawn. To summarize:

• Test the significance of R, the multiple correlation coefficient, using the F
statistic.

• Use the adjusted R2 as an estimate of proportion of the variance explained
in the population.

• If R is significant, examine the significance of each predictor variable, using
a t test.

Summary

• Inferential analysis is a collection of methods for generalizing the character-
istics, relationships and differences discovered in data from a probability
sample to the population from which the sample was drawn.

• This analysis is not appropriate with non-probability samples, with proba-
bility samples with poor response rates, or with populations.
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• In a probability sample, every population element must have a known and
non-zero chance of being selected.

• In selecting a probability sample, the aim is to produce a smaller version of
the population in all respects. However, random selection procedures can-
not guarantee this. Probability samples can be biased and this can produce
errors in the estimation of population parameters.

• However, there is a solution to this problem, which is based on the central
limit theorem. This theorem states that the distribution of all possible sample
means approaches the normal curve and the overall mean of these sample
means approaches the population mean. The larger the samples used, the
more likely this will happen and the narrower will be the dispersion (stan-
dard error) of the sample means. This occurs regardless of the shape of the
distribution of the population values.

• Therefore, the accuracy of estimates of population parameters depends
largely on the sample size and not on the ratio of the sample size to the
population size.

• The level of measurement of the variables, and the characteristics of their
distributions, together determine what methods of inferential analysis are
appropriate. Parametric tests can only be used when population distribu-
tions are approximately normal, but non-parametric or distribution-free
tests can be used when they are not normally distributed.

• In all inferential analysis it is necessary to set a level of confidence (a per-
centage) or a level of probability (a proportion) as part of the estimation
process. These state how confident we wish to be about our estimate of a
population’s parameter. The usual level of confidence is 95 per cent (0.05
level of probability or significance), although 99 per cent (0.01 level) and
99.9 per cent (0.001) are also used. These levels allow for a small probabil-
ity that the sample has produced values that lie at the extremes of the
distribution of all possible sample values.

• In univariate descriptive analysis, inferential statistics determine the confi-
dence interval around a sample value (proportion or percentage with cate-
gorical variables and mean with metric variables) within which the
population value is expected to lie, at the level of confidence set.

• In bivariate descriptive (associational) and explanatory analyses, tests of sig-
nificance are used to estimate whether the relationships found in a sample
can also be expected to exist in the population from which the sample was
randomly drawn.

• Statistical hypotheses, in both the null and alternative forms, specify the
possible forms of a relationship in a population. Tests of significance are used
to establish whether it is possible to reject the null form of the hypothesis
in favour of either a directional or a non-directional alternative.

• This decision requires the setting of a level of confidence, and this entails
the possibility of committing either of two types of errors. A type I error
occurs when the null hypothesis is rejected when it is true, and a type II
error occurs when the null hypothesis is not rejected when it is false. The
latter error is more common than the former.
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• When a non-directional alternative hypothesis is entertained, a two-tailed
test of significance should be used. When the alternative hypothesis is direc-
tional, the test must be one-tailed.

• The testing for differences (say, between means) can occur for the values of
one variable; for the categories of another variable, within the same sample;
between samples; and between the same category in different samples.

• The following tests are appropriate for associational analysis.

1. Nominal-level variable with nominal-level variable;
chi-square test (4.1) for Cs or V.

2. Nominal-level variable with ordinal-level variable;
as for 1.

3. Ordinal-level variable with ordinal-level variable;
z test for G (6.5).

4. Metric-level variable with metric-level variable;
t test for r (6.20).

5. Nominal-level variable with metric-level variable:

(a) recode metric-level variable into ordinal-level categories-use 1
above;

(b) If nominal-level variable is a dichotomy, or can be dichotomized
sensibly-t test for r (6.20);

(c) conduct means analysis:
comparison of two means-group t test if parametric require-
ments are met, or Mann-Whiney U test or Wilcoxon test (equa-
tion (6.11) or (6.12)) if not;
comparison of more than two means-F test with one-way ANOVA
(6.16).

6. Ordinal-level variable with metric-level variable;

(a) recode metric-level variable into ordinal categories-z test for
G (6.5).

(b) conduct means analysis as for 5(c).

• The following tests are appropriate for explanatory analysis.

7. Nominal-level predictor and nominal-level outcome;
z test for lambda (6.22).

8. Nominal-level predictor and ordinal-level outcome;
as for 7.

9. Ordinal-level predictor and ordinal-level outcome;
z test for Somer’s d (6.23).

10. Interval-level predictor and interval-level outcome;

(a) bivariate regression-t test for R (6.20);
(b) multiple regression-F test for R.
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11. Nominal-level or ordinal-level predictors and interval-level outcome;
use dummy variables with 10(b), and use F test for R.

12. Nominal-level, ordinal-level and metric-level predictors and interval-
level outcome;
combine 10(b) and 11.

• Tests of significance must be treated with caution as the ability to reach a
desired level of significance depends on the sample size; with large samples,
small differences can be highly significant. Therefore, instead of just relying
on tests of significance, it is preferable to construct confidence intervals
around sample values. This makes it possible to see the range of possible
population values in both descriptive and associational analysis. In bivariate
descriptive analysis, this procedure makes it easier to understand the extent
to which differences within or between populations are likely and also if
they are meaningful.

Notes

1For a detailed and readable discussion of probability and statistics, see Siegel (1994: Chapter 6).
2This is a case where it is legitimate to calculate the mean of means as the sample sizes are

all the same.
3It is the restrictions on the calculation of chi-square that determine the need for larger

sample sizes. Ordinal-level data that involve the use of other methods of analysis can use some-
what smaller samples, although still much larger than is required for the higher levels of
measurement.

4I once managed an 86 per cent response rate from a population, using a mailed question-
naire, a method prone to low response rates. However, this was only possible because of the
nature of the population (members of a professional occupation), the timeliness of the study for
the participants and a great deal of follow-up work. I have never managed such a high response
in studies involving the use of samples. As a general rule, neither do most social researchers.

5See Kish (1965) for a detailed treatment of this.
6Percentages are used to state the confidence level while probabilities are used to state the

level of significance. The present discussion will use percentages, as I believe they convey a
clearer meaning. However, in later analysis I will use the 0.05 level of significance, and 0.01 for
the 99 per cent confidence level and 0.001 for the 99.9 level.

7The alternative hypothesis is sometimes called the research hypothesis because it is what we
expect to be the outcome. However, this is to inflate a statistical hypothesis to the status of a
theoretical hypothesis.

8This follows closely Wright’s (1997) practice. He also avoids the use of these confusing con-
ventions and refers to ‘variables’ and ‘groups’, such as two variables within one group, or one vari-
able with two groups. As a sociologist, I prefer to use ‘category’ rather than ‘group’ as the former
avoids inappropriate connotations associated with social groups, that is, groups in which social
processes occur. Categories are simply collectivities – collections of people, cases, objects, etc.,
that have been created for the purpose of the research and which do not necessarily occur natu-
rally. For example, males and females are categories rather than social groups. In any survey, few
if any will have interacted with each other, either casually or over time. However, this is a minor
difference from Wright’s usage compared to the complexities of the usual conventions.

9You should now be thoroughly confused by these different types of tests and the conditions
to which they apply. While it is partly for this reason that I am going to limit the discussion of

Analyzing quantitative data

212

3055-ch06.qxd  1/10/03 3:37 PM  Page 212



the testing of means, I also believe that much of the confusion must be attributed to way these
issues are dealt with, not to your deficiency in understanding.

10Not to be confused with the author of the classic text on non-parametric statistics, Sidney
Siegel (1956).

11Most textbooks on statistics give very little attention to tests of significance for categorical
variables. They concentrate mainly on tests that should be used with metric variables. The major
exception is Siegel and Castellan (1988) and Siegel (1956) before that.

12It is frustrating to find that the tables at the back of many textbooks on statistics do not
specify whether the values are for one-tailed or two-tailed tests. This serious oversight can lead
to errors of interpretation.

13The component of the equation in front of the square root sign, shown here as only G, is
normally shown as (G − γ), where γ is the population parameter of the variable in question (see
Siegel and Castellan, 1988: 296–7; Elifson et al., 1998: 351–2). In testing the null hypothesis
here, the population parameter is assumed to be 0, making this component of the equation
(G − 0). There seems to be no point in showing that zero is to be subtracted from G, except to
make it clear that the focus is on the null hypothesis. I have chosen to leave it out.

14Note that they use the concept ‘categorical’ to refer to only nominal-level data while I use
it to refer to both nominal-level and ordinal-level data. The reason for the different usage is that
I define ordinal-level data as ordered categories, whereas they use ‘ordinal’ to refer to the rank
ordering of individuals.

15Elifson et al. (1998) has a chapter on statistical inference for ordinal-level variables, and it
also focuses on tests for experiments.

16Other versions of the t test are also used. For example, the paired t test is used in experi-
mental designs.

17Statisticians usually define large as being beyond 30 or 40. This would mean that each
category would need to exceed this.

18Statistical software packages have more complex procedures and better ways of arriving at
the degrees of freedom in this situation. This method is suitable for hand calculation.

19SPSS provides a test for the equality of variances (the square of the standard deviation) and
it shows the difference not to be significant (it is well below the 0.05 level). Therefore the
assumption of approximate equality is justified.

20Different tables can be found in Siegel and Castellan (1988) and in Elifson et al. (1998) for
small samples.

21This may seem complex but I can assure you that in statistical notation it would be
unintelligible to most people. If you doubt me, try reading the equation at the foot of p. 300 in
Siegel and Castellan (1988).

22Because of the obsession with the analysis of metric variables, few statistical textbooks deal
with either lambda or Somer’s d. The outstanding exception is Siegel and Castellan (1988).
However, their discussion of them is not very accessible to the statistical novice.

23Note that the Table does not include z values of this size. In fact, z values beyond 3.11
simply indicate that a one-tailed test exceeds the 0.001 level.
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7

Data Reduction: Preparing to Answer
Research Questions

Introduction

Before proceeding to apply the methods of data analysis discussed in Chapters 3–6
to answering the six research questions set out in Chapter 2, some preliminary
analysis is required. This includes:

• creating scales and indexes;
• recoding variables; and
• describing the characteristics of the samples.

Data reduction reduces responses to a number of questions to a single score
or number. This is done by using scaling techniques and by constructing indexes.
The result is that instead of having to analyze the responses to each question
separately, answers to related questions can be dealt with as a single variable.

Variables are recoded for a number of reasons, but mainly to tidy up or
reorder distributions, or to transform variables from one level of measurement
to another. In the latter case, it is mainly a matter of grouping a range of numbers
(such as Age in years) or scores (such as Environmental Worldview) into a set
of categories, that is, transposing metric measurement into categorical.

As a preliminary step in most empirical research, a description is prepared of
the basic socio-demographic characteristics of the population or sample from
which the data were obtained. This will provide a background to the subse-
quent analysis. Some or all of the following might be included when the data
are obtained from individuals: gender, age, marital status, education, income,
religion and ethnicity. In preparation for what follows in Chapter 8, this
preliminary analysis will be presented at the end of this chapter.

Scales and Indexes

Two scales and three indexes have been constructed to reduce the data in the
two samples. They are:
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• Environmental Worldview scales and subscales;
• Willingness to Act Responsibly towards the environment scale;
• Avoiding Environmentally Damaging Products index;
• Recycling waste products index; and
• Support for Environmental Groups index.

Scales and indexes are used to combine a number of separate measures into
a combined measure, normally resulting in at least interval-level measurement.
While the two terms are frequently used interchangeably, I am using them to
identify combined measures that have been tested for unidimensionality (scales)
and those that have not (indexes). A scale is unidimensional when all its com-
ponents contribute to the measurement of the particular variable, and only to
that variable. The fact that statements appear to be concerned with the same
topic does not mean that people will have interpreted and responded to them
in a manner consistent with the meaning behind the variable that is being
measured. It is this consistency in the responses that has to be demonstrated.
I will discuss some of the methods used for this shortly.

Indexes, on the other hand, have not had this analysis applied to them. The
numbers that have been assigned to the response categories of each component
of the index are simply summed. The researcher must have some reason for
believing that the components are all measuring the same thing, usually based
on their manifest content. The three indexes to be used in this analysis will be
elaborated in the next section.

While scales should be constructed from metric-level variables, it is a common
practice to use ordinal-level measures and regard them as being interval. For
example, many scales are created from responses to a number of statements or
items in which the response categories form only ordinal-level measurement.
Commonly used categories are ‘Strongly agree’, ‘Agree’, ‘Neither agree nor
disagree’, ‘Disagree’ and ‘Strongly disagree’. If these categories are assigned
numbers, say from 1 to 5, it is only possible to sum the responses to a set of
statements if the intervals between these categories are assumed to be equal,
that is, as constituting interval-level measurement. While this assumption is not
strictly correct, its adoption is quite general and few attitude scales have been
constructed without it.

Creating Scales

In both the Student and Resident samples, scales were used to measure EWV
and Willingness to Act. We will begin by creating a scale and three subscales for
the former and then a scale for the latter.

Environmental Worldview Scales and Subscales

These scales have been developed from responses to 24 statements that express
views on environmental issues. The same set of statements was used in two
earlier studies (see Blaikie, 1992, 1993b; Blaikie and Ward, 1992) and is listed
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in Chapter 2. Such attitude statements are usually referred to as items, and this
convention will be followed here.

Responses to these items were made in the five Likert categories that have
already been discussed (‘Strongly agree’, ‘Agree’, ‘Neither agree nor disagree’,
‘Disagree’ and ‘Strongly disagree’). Weights or scores were assigned to the cate-
gories giving a pro-environment response 5 and an anti-environment response 1.
The wording of the items varied between pro- and anti-environment positions,
an important requirement for avoiding unthinking responses.

Based on the assumption that the response categories constitute interval-
level measurement, it is possible to produce a total score for the responses to
the 24 statements. These scores were used in the earlier analysis. However,
before a set of such scores is summed, it is necessary to demonstrate that the
items are all measuring the same thing. A total score will have no meaning if it
is made up of responses that relate to different dimensions or factors. There are
a number of ways in which this can be done. In spite of the fact that these
24 statements were drawn from a number of existing scales, and have been
used in earlier studies, it is necessary to demonstrate unidimensionality with
these particular samples.

Pre-testing the Items

Some work was done on this task before the items were administered to the
previous student sample in 1989. They were pre-tested on a diverse sample of
30 and then subjected to item analysis to establish the degree to which
responses to each item are consistent with the total score based on them. This
was done by dividing the sample into four quartiles or equal-sized categories,
based on each respondent’s total score. The response pattern of the top 25 per
cent of respondents was compared with the responses of the bottom 25 per
cent. The assumption behind the analysis is that if the responses to these items
are consistent, that is, if respondents with pro-environmental total scores
responded in a pro-environmental way to all the items, and vice versa, then a
case could be made for including all the items in the scale. To do this, the mean
score1 for each item was calculated separately for respondents in each of the
two extreme quartiles. If an item’s mean was inconsistent with the position of
these respondents with extreme mean scores, for example, if the respondents
in the quartile with the highest overall mean scores had a low mean score on an
item, and vice versa, then that item would need to be examined. It could be
that the item had been weighted in the wrong direction, or that it is measuring
some other variable. Fortunately, no such items were identified among the 24.
In practice, a decision on marginal cases would be better deferred until the
scale has been used with larger samples, particularly if removing them would
create a shortage of items.2

Once the items had been administered to the two samples (along with the
rest of the questionnaire in which they were located), and before any analysis
was done, four further procedures were applied: item-to-item correlations;
item-to-total correlations; the alpha test for reliability; and factor analysis. To
do this, the data from the two samples were combined (n = 867).
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Item-to-item Correlations

The first clues that we can get about possible patterns of relationships between
the items come from a correlation matrix for all the items (see Table 7.1). It is
worth looking for both the lowest and highest coefficients. The following items
have coefficients of 0.10 or less:

‘b’ with ‘f ’ (0.00), ‘i’ (0.08), ‘n’ (0.09), ‘s’ (0.07) and ‘x’ (0.07);
‘f ’ with ‘b’ (0.00), ‘e’ (0.10), ‘g’ (0.10), ‘p’ (0.09) and ‘w’ (0.07);
‘s’ with ‘b’ (0.07), ‘r’ (0.08) and ‘w’ (0.04);
‘x’ with ‘b’ (0.07), ‘k’ (0.09), ‘l’ (0.10) and ‘v’ (0.10).

Some combinations have been repeated to show how four items, ‘b’, ‘f ’, ‘s’ and
‘x’, stand out from the rest. The strongest associations are for:

‘c’ with ‘m’ (0.43);
‘d’ with ‘a’ (0.45) and ‘v’ (0.52);
‘q’ with ‘j’ (0.41), ‘m’ (0.41), ‘p’ (0.42) and ‘r’ (0.41);
‘s’ with ‘f ’ (0.43) and ‘n’ (0.41);
‘t’ with ‘p’ (0.47) and ‘r’ (0.41).

We shall find that the first two and the last two of these combinations appear
again later.

It should be obvious that it is very difficult to interpret all these figures. In
fact, factor analysis was developed to do this mathematically for us, and we
shall wait to see what it can produce. In the meantime, some other types of
exploratory analysis can be done.

Item-to-total Correlations

In the second procedure, the distribution of responses to each item is corre-
lated with the distribution of the total scores of the responses to all 24 items.
This is known as item-to-total correlation and is a simple way to test for uni-
dimensionality. As with item analysis, summing each respondent’s scores on all
the items is done on the assumption that the items all measure the same thing.
The method then explores whether this is the case.

A low correlation coefficient between responses to any item and the total
score can suggest two things: that the item is measuring some other variable; or
that the item itself is unreliable, that is, there is something peculiar about its
wording that could have led to different interpretations and, hence, inconsis-
tent responses.

In the analysis of the items designed to measure EWV, I have adopted the
criterion that a correlation coefficient of less than 0.50 between any item and
the total score needs to be examined3 (see Table 7.2). If this was the only
method available for establishing the scale, we could consider excluding any
items with lower coefficients. However, other procedures can also be used.
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Table 7.1 Correlation matrix of 24 items (both samples)
Item a b c d e f g h i j k

a 1.00
b 0.13 1.00
c 0.20 0.17 1.00
d 0.45 0.18 0.20 1.00
e 0.25 0.21 0.20 0.18 1.00
f 0.27 0.00 0.26 0.18 0.10 1.00
g 0.22 0.24 0.20 0.27 0.27 0.10 1.00
h 0.28 0.20 0.27 0.25 0.19 0.23 0.19 1.00
i 0.20 0.08 0.33 0.20 0.18 0.31 0.17 0.19 1.00
j 0.24 0.23 0.32 0.22 0.26 0.20 0.26 0.28 0.26 1.00
k 0.35 0.21 0.22 0.34 0.20 0.19 0.30 0.27 0.16 0.28 1.00
l 0.17 0.12 0.16 0.14 0.28 0.11 0.24 0.14 0.17 0.30 0.15
m 0.28 0.29 0.43 0.31 0.25 0.25 0.26 0.36 0.28 0.32 0.31
n 0.19 0.09 0.24 0.19 0.11 0.32 0.21 0.18 0.32 0.28 0.20
o 0.16 0.27 0.29 0.16 0.23 0.21 0.26 0.20 0.26 0.34 0.21
p 0.22 0.32 0.27 0.24 0.28 0.09 0.32 0.29 0.17 0.35 0.25
q 0.30 0.26 0.29 0.28 0.30 0.19 0.32 0.34 0.22 0.41 0.32
r 0.24 0.18 0.22 0.24 0.30 0.13 0.26 0.28 0.22 0.29 0.20
s 0.26 0.07 0.27 0.26 0.11 0.43 0.14 0.23 0.27 0.29 0.24
t 0.21 0.23 0.24 0.17 0.27 0.13 0.29 0.23 0.22 0.31 0.16
u 0.30 0.11 0.28 0.13 0.34 0.16 0.25 0.20 0.33 0.22 0.20
v 0.35 0.24 0.21 0.52 0.21 0.11 0.31 0.23 0.14 0.22 0.39
w 0.18 0.30 0.18 0.17 0.22 0.07 0.30 0.22 0.13 0.27 0.19
x 0.18 0.07 0.27 0.11 0.15 0.25 0.12 0.27 0.20 0.22 0.09

l m n o p q r s t u v w x

1.00
0.20 1.00
0.17 0.26 1.00
0.21 0.38 0.30 1.00
0.27 0.33 0.21 0.31 1.00
0.26 0.41 0.25 0.36 0.42 1.00
0.26 0.29 0.16 0.24 0.34 0.41 1.00
0.11 0.28 0.41 0.20 0.14 0.23 0.08 1.00
0.30 0.26 0.22 0.31 0.47 0.38 0.41 0.11 1.00
0.21 0.26 0.24 0.21 0.23 0.23 0.25 0.17 0.27 1.00
0.14 0.29 0.20 0.24 0.29 0.31 0.25 0.21 0.24 0.16 1.00
0.21 0.27 0.12 0.27 0.31 0.29 0.27 0.04 0.31 0.19 0.19 1.00
0.10 0.19 0.20 0.18 0.22 0.24 0.23 0.22 0.28 0.17 0.10 0.15 1.00
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Cronbach’s Alpha

The third procedure, the use of Cronbach’s alpha, is probably the most commonly
used test for scale reliability. Reliability refers to the capacity of a measure to
produce consistent results. A measure will be unreliable if all or at least some
of its items are unreliable. The classical way to test for reliability is to apply a
measure to the same individuals on two different occasions, the test–retest
method. However, unless the interval between the two applications is long
enough for the respondents to have forgotten how they responded on the first
occasion, the estimate of reliability might be inflated. Another method is to
select two sets of items that are as alike as possible, known as the parallel or
split-half method. Both parts are administered at the same time and the mean
scores for each half compared. However, it is challenging enough to construct
one good scale without having to create another that does exactly the same
thing. These disadvantages have led to the use of other methods that use inter-
nal statistical procedures, particularly Cronbach’s alpha.4

This coefficient ranges between 0 and 1, with a high value indicating a high
level of consistency among the items. However, it is important to note that the
value of alpha is influenced by the number of items in a scale; it increases as the
number of items increases.

Apart from being able to calculate alpha with software packages such as
SPSS, it is also possible to see whether removing any of the items individually
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Table 7.2 Unidimensionality, reliability and commonalities of 
24 items (combined samples)

Item Item-to-total correlation Alpha if item delated

a 0.55 0.873
b 0.40 0.876
c 0.54 0.873
d 0.53 0.873
e 0.48 0.874
f 0.44 0.876
g 0.50 0.874
h 0.54 0.873
i 0.50 0.874
j 0.59 0.871
k 0.52 0.873
l 0.43 0.876
m 0.63 0.870
n 0.50 0.874
o 0.53 0.873
p 0.57 0.872
q 0.65 0.869
r 0.54 0.873
s 0.49 0.875
t 0.55 0.872
u 0.49 0.874
v 0.54 0.873
w 0.45 0.875
x 0.42 0.876

Alpha for all items = 0.878.
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will improve its value, thus indicating which of the items are unreliable, if any.
Table 7.2 shows the item-to-total correlation coefficients, the alpha coefficient
and the alpha coefficient if any particular item was deleted.

According to the criteria being adopted here, the item-to-total coefficients
suggest that items ‘b’, ‘e’, ‘f ’, ‘l’, ‘s’, ‘u’, ‘w’ and ‘x’ are candidates for exclusion.
However, the reliability test indicates that the alpha coefficient would not be
increased by the removal of any of the items, that is, the total alpha of 0.878
would be lowered if any item were deleted. Therefore, it is not clear what
decisions should be made. Further analysis is required.

Factor Analysis

We can now turn to the fourth procedure, factor analysis, for further assistance
in deciding whether to exclude any items from the scale. Factor analysis is
designed to identify underlying factors or latent variables present in the patterns
of correlations among a set of measures, in this case, responses to a set of attitude
statements. It is possible that in a matrix of correlation coefficients between a set
of measures there are clusters of high correlation coefficients between subsets of
the measures. Factor analysis identifies these clusters; it establishes how much
variance they have in common and the extent to which each measure contributes
to this common variance. Hence, a large set of measures can be reduced to a small
set of factors, or even just one factor, that can explain the maximum amount of
common variance in the bivariate correlations between them.

In the context of a set of related attitude statements, factor analysis can
establish whether a common factor is present, that is, whether all the items are
highly correlated and can be regarded as making up a common factor or a single
scale. It also establishes the extent to which each item contributes to such a
common factor. Alternatively, and perhaps more commonly in a large set of
items, factor analysis can establish whether there is more than one factor or
scale present in the responses to the items, that is, whether subsets of items
form separate scales, or whether there are subscales within a general scale.

Correlation Matrix

Before applying factor analysis, it is a good idea to inspect the matrix of
correlation coefficients. The first thing to do is to see if any item has very low
coefficients with all or most of the other items. Such items are not going to find
their way into any factor and would be best excluded. The second thing is to
look for items that correlate very highly (0.90 or above) with any of the others.
While common sense would suggest that scales should consist of highly corre-
lated items, high correlation coefficients can also upset the analysis. We need
not go into the mathematics of this here. However, the researcher is faced with
the choice of eliminating all but one of such items. The correlation coefficients
in the matrix of the 24 items have a range from 0.52 (‘d’ with ‘v’) to 0.00 (‘b’
with ‘f ’); the majority are between 0.20 and 0.35 (see Table 7.1). Hence, the
second problem is absent and no item has consistently low coefficients with the
other items.
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Sampling Adequacy

The first step in factor analysis is to establish whether the set of items is a suitable
selection. The commonly used statistic for this is the Kaiser–Meyer–Olkin
(KMO) measure of sampling adequacy of the items. Its values range from 0 to 1.
A value of 0.70 or more is generally considered sufficiently high, while a value
below 0.50 is unsatisfactory and one over 0.90 is outstanding. The KMO for this
set of items, with the two samples combined, is 0.92!

A related consideration is whether the sample of respondents is sufficiently
large to run factor analysis reliably. A general rule of thumb is that a sample of
at least 300 will usually provide reliable results.5 Our sample of 867 is more
than adequate.

Commonality

The total variance present in the responses to any item is made up of three com-
ponents: some variance is specific and consistently related to the item (unique
variance); some may be shared with other variables or items (common variance);
and there may be some variance that is specific to but not consistently related
to the item (error or random variance). The proportion of common variance is
known as an item’s commonality. Factor analysis begins by establishing the com-
monality for each item, that is, the proportion of its variance that is explained
by the factors that are present. It is produced by squaring each item’s contribu-
tion to or loading on the number of factors present, and then summing the
products. However, these values are dependent on the number of factors that
are included in the analysis. The greater the number of factors being considered,
the higher the commonalities are likely to be. Methods for determining how
many factors should be considered will be discussed shortly.

Table 7.3 includes a list of the commonalities. The highest values are for
items ‘d’ (0.63), ‘a’ (0.60), ‘v’ (0.60), ‘s’ (0.60) and ‘x’ (0.58), while the low-
est values are for items ‘k’ (0.47), ‘j’ (0.43), ‘g’ (0.43), and ‘w’ (0.38). This
means that the items in the first set make a high level of total contribution to
the variance of the factors to which they contribute, and the items in the
second set make the lowest level of total contribution. However, for the
moment, all values can be regarded as satisfactory, although we will return to
them to assist with later decisions.

Factor Loadings

The relationship of any item to a factor is indicated by its factor loading. This
is a measure of the contribution an item makes to a particular factor. Ideally, an
item should have a ‘high’ loading on only one factor. As in other aspects of factor
analysis, experts differ on what constitutes a ‘high’ loading. However, when a
sample is being used, its size is important in determining whether a loading is
statistically significant, that is, whether it can also be expected to exist in the
population from which the sample was drawn. For a level of significance of 0.01
(two-tailed), the minimum loading for a sample of 50 is 0.72, for 100 is 0.51,
for 200 is 0.36, for 300 is 0.30, for 600 is 0.21 and for 1000 is 0.16 (Stevens,
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1992). However, Stevens also recommends that only loadings of 0.40 and above
should be taken seriously, although another common recommendation is 0.30
and above. In effect, a loading of 0.40 means that 16 per cent of the item’s vari-
ance contributes to the factor (arrived at by squaring the loading and multiplying
by 100). A loading of 0.30 only accounts for 9 per cent of an item’s variance. To
include such an item in a scale is to take on board 91 per cent of unrelated vari-
ance, thus producing very ‘muddy’ and imprecise scales. I will be using a num-
ber of criteria, all of which are higher than these.

Unidimensionality

We can now go through the steps involved in establishing whether or not this
set of 24 items is unidimensional, that is, whether they all measure the same
thing. However, in doing so, it is not possible to provide a detailed review of
factor analysis itself. I recommend de Vaus (1995) for a very readable outline,
Hair et al. (1998) and Field (2000) for more detailed reviews and Lewis-Beck
(1994) for a collection of more technical discussions.6

As we have seen, the aim in establishing a scale is to reduce a number of
measures, such as these 24 attitude items, to a single variable. Factor analysis
establishes unidimensionality by showing which measures or items have a high
loading on only one factor. If one common factor is not possible, then perhaps
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Table 7.3 Commonalities and unrotated factors with 24 items (combined samples)
Item Commonalities Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

a 0.60 0.53 −0.38 0.33
b 0.57 0.41 −0.38 −0.42 −0.21
c 0.54 0.54 0.21 −0.38
d 0.63 0.51 −0.59
e 0.51 0.49 −0.23 0.39 −0.22
f 0.54 0.41 0.59
g 0.43 0.53 −0.23 0.25
h 0.52 0.53 −0.43
i 0.50 0.47 0.34 0.25 -0.20
j 0.43 0.60
k 0.47 0.52 −0.43
l 0.52 0.43 0.21 0.31 0.23 0.33
m 0.58 0.64 −0.25 −0.32
n 0.58 0.48 0.40 0.29 0.29
o 0.51 0.55 −0.29 0.29
p 0.52 0.61 −0.32
q 0.50 0.66
r 0.50 0.55 −0.25 −0.28
s 0.60 0.45 0.58
t 0.58 0.57 −0.28 0.28 0.25
u 0.66 0.49 0.48 −0.36
v 0.60 0.53 −0.55
w 0.38 0.47 −0.36
x 0.58 0.40 0.31 −0.53

Eigenvalue 6.49 1.77 1.47 1.12 1.04 0.94
Variance (%) 27.1 7.4 6.1 4.7 4.3 3.9
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more than one factor can be located, each of which would need to be shown to
be unidimensional.

Unrotated Solution

When an exploratory7 factor analysis8 is run on a set on attitude items, it produces
an initial solution on the number of factors that might be present in the
responses to the items. This is usually referred to as the unrotated solution. It
is the first attempt to identify factors. Subsequent solutions involve some
method of rotation, in our case varimax. This rotation attempts to find a small
number of items that have high loadings on any factor. It is a useful approach
that makes for a relatively easy interpretation of factors.

If a number of factors emerge from a large set of items, a decision has to be made
about how many should be considered. The normal procedure is to use a statistic
called the eigenvalue. It measures the amount of the total variance for which each
factor accounts. The higher the eigenvalue, the greater the variance explained by
that factor. A common rule of thumb is to consider only factors with eigenvalues
greater than 1.0, although values as low as 0.7 are also recommended. However,
another method can also be used, known as a scree plot.9 It involves creating a graph
in which the eigenvalues (Y axis) are plotted against each factor (X axis). A scree
plot makes it possible to quickly discover a change of gradient in the magnitude of
the eigenvalues. Normally the first factor or two have relatively high eigenvalues,
then the magnitude decreases and later factors usually show little change.

Figure 7.1 shows the plot of eigenvalues for the 24 items in the combined
sample. It is a typical plot in which the first factor (component) is high (6.49)
and there is the same number of factors as there are items. Five factors have
an eigenvalue of 1.0 or more, and there are 11 with values of 0.7 or more. A
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Figure 7.1 Scree plot of eigenvalues for 24 items (combined samples)
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carefully inspection of the plot shows three critical changes in the gradient of the
line, although they are rather subtle in the second and third cases. The first is at
the second factor where there is a major change; the second is at the fourth
factor; and the third at the seventh. In view of the first big change in gradient, we
could decide to use only two factors, but this would only account for 34.4 per
cent of the total variance. Alternatively, we could use the first four factors (45.2
per cent of the total variance), or we could go as far as the seventh factor (56.9
per cent). As already noted, using a minimum eigenvalue of 1.0, five factors
would be included. Hence, our choice would seem to lie somewhere between
four and six factors. Initially, six will be requested in the factor analysis.

Table 7.3 shows the factor loadings of at least 0.20 on these six factors. A
major aim in this analysis is to explain as much of the variance as possible in the
responses to a set of items. While this can be done by including more factors,
as we shall see, this is not a good strategy as the value of the analysis seems to
decline with each additional factor. Some of the weaker factors may have only
one item contributing to them to any degree; hence they hardly constitute a
useful scale. In other words, factor analysis extracts the ‘strong’ factors first and
then proceeds to extract further factors of declining strength. It is better to
eliminate items that do not contribute to a limited set of factors, or which con-
tribute to more than one factor. The latter tend to pull the analysis in two or
more different directions. By eliminating such items, we sharpen up the factors
so that they account for more of the variance.

From Table 7.3 we can also see that the unrotated solution has all the items
with substantial loadings on factor 1, thus suggesting the presence of a common
factor. The loadings range from 0.40 to 0.66. If the criterion for inclusion in a
factor were set as at least 0.40, factor 1 would include all 24 items. Four other
factors have eigenvalues of at least 1.0 and item loadings of at least 0.40:

factor 2 ‘f ’ (0.59), ‘n’ (0.40), ‘s’ (0.58);
factor 3 ‘d’ (−0.59), ‘k’ (−0.43),’v’ (−0.55);
factor 4 ‘b’ (−0.42),’u’ (0.48);
factor 5 ‘h’ (−0.43),’x’ (−0.53).

As factor 6 has no loadings of at least 0.40, it will be excluded from the subse-
quent analysis. (It has four of at least 0.30; ‘c’ (−0.38), ‘u’ (−0.36), ‘l’ (0.33)
and ‘m’ (−0.32).) This decision is supported by the criterion of including only
those factors with an eigenvalue of at least 1.0.

We need to note that some items, namely, ‘a’, ‘b’ and ‘x’, have loadings of at least
0.30 on two factors, apart from the general one, and ‘e’, ‘g’, ‘i’, ‘l’, ‘n’, ‘o’, ‘r’ and
‘t’ also have multiple but weaker loadings. Such items are contenders for exclusion
as the dual loadings suggest that they are contributing to more than one factor.

Rotated Solution

In order to try to sort this out, it is necessary to try a rotated solution. The
method used here is principal components with varimax rotation.10 Table 7.4
records all loadings of at least 0.30, given that five factors with eigenvalues of
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at least 1.0 are extracted. The general factor does not appear this time as the
method of rotation tries to produce higher loadings on a smaller number of
items on each factor. It is worth noting that a number of items have loadings on
more than one factor, in particular, ‘g’, ‘i’, ‘j’, ‘m’, ‘o’, ‘p’, ‘q’, ‘r’ and ‘t’. This list
has considerable overlap with the multiple loaded items in the unrotated solu-
tion. This time, the criterion for inclusion in a factor is set at 0.50, although a
stricter criterion could also be considered and will be used as the analysis is
refined. The following five factors account for 49.5 per cent of the variance:

factor 1 ‘b’ (0.70), ‘o’ (0.58), ‘p’ (0.54), ‘w’ (0.53);
factor 2 ‘f ’ (0.67), ‘i’ (0.57), ‘n’ (0.66), ‘s’ (0.70);
factor 3 ‘a’ (0.64), ‘d’ (0.77), ‘k’ (0.60), ‘v’ (0.71);
factor 4 ‘e’ (0.62), ‘l’ (0.59), ‘u’ (0.66);
factor 5 ‘h’ (0.58), ‘x’ (0.71).

There is some similarity with the unrotated factors. The first factor (‘bopw’)
appears to be about the need for intervention, mostly by governments, in order
to conserve resources, although ‘p’ is about pollution. The second factor (‘fins’)
is about the role of science and technology in solving environmental problems.
The third factor (‘adkv’) is concerned with the relationship between humans
and nature. The other two factors are rather mixed bags. In the fourth factor
(elu), ‘e’ and ‘u’ are about humans upsetting the balance of nature, while ‘l’ is
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Table 7.4 Rotated solution for five factors with 24 items (combined samples)
Item Commonalities Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

a 0.59 0.64
b 0.52 0.70
c 0.39 0.47
d 0.63 0.77
e 0.46 0.62
f 0.53 0.67
g 0.42 0.39 0.33 0.39
h 0.49 0.57
i 0.46 0.57 0.36
j 0.41 0.43 0.34
k 0.47 0.60
l 0.41 0.59
m 0.47 0.46 0.38
n 0.49 0.66
o 0.51 0.58 0.38
p 0.50 0.54 0.34
q 0.48 0.45 0.36
r 0.50 0.42 0.48
s 0.57 0.70
t 0.51 0.38 0.43 0.43
u 0.52 0.66
v 0.59 0.71
w 0.38 0.53
x 0.58 0.71

Eigenvalue 2.74 2.62 2.44 2.21 1.86
Variance (%) 11.4 10.9 10.2 9.2 7.8
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about conservation of resources, and the fifth factor (‘hx’) combines the need
to control pollution with controls on economic growth.11

In order to illustrate that great care must be taken in drawing conclusions
from factor analysis, I have also produced a rotated solution with six factors.
This is suggested by the scree plot presented in Figure 7.1. The loadings of at
least 0.30 are shown in Table 7.5. Again, using 0.50 as the criterion for inclusion,
some of the factors are the same or very similar to the five-factor solution; ‘adkv’
and ‘hx’ appear again, and ‘fins’ becomes ‘fns’, although ‘i’ almost makes it in. In
addition, ‘elu’ becomes ‘eiu’, ‘bopw’ now becomes ‘bmo’, although ‘w’ is not far
away. What is surprising is that a new factor is extracted first consisting of ‘lprt’,
with a number of other items having quite high loadings on it. Hence, an appar-
ently innocent decision to add another factor can change the results.

Analysis with Some Items Excluded

We can conclude from the analysis thus far that, while a common factor may
be present among all 24 items, a number of subscales also appear to exist within
it. We could leave the analysis at this point, making a decision to go with either
the five-factor or six-factor solution and perhaps strengthening the criterion for
inclusion in the subscales to 0.55 or even 0.60. However, the mix of items in
some of these factors, and the fact that a few of the items have multiple load-
ings, suggest that further investigation is necessary. In addition, the existence of
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Table 7.5 Rotated solution for six factors with 24 items (combined samples)
Item Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

a 0.64 0.30
b 0.71
c 0.31 0.43 0.39 0.32
d 0.77
e 0.36 0.57
f 0.65
g 0.43 0.34
h 0.60
i 0.46 0.51
j 0.42 0.35 0.31
k 0.60
l 0.65
m 0.56
n 0.71
o 0.30 0.35 0.54
p 0.54 0.37
q 0.45 0.33
r 0.52 0.38
s 0.72
t 0.67 0.30
u 0.77
v 0.72
w 0.37 0.45
x 0.69

Eigenvalue 2.60 2.48 2.28 2.17 1.67 1.62
Variance (%) 10.8 10.3 9.5 9.0 7.0 6.8
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the common factor is dependent on using quite a low criterion, that is, 0.40.
Therefore, we also have to decide whether to accept this criterion and go with
the common factor, or to exclude some items with lower loadings on it. I am
going to adopt the criterion that to be in the common factor an item must have
a loading of at least 0.50. This is a rather strict requirement, but I hope it will
become clear why its use is justified.

We now end up with only 14 items, having removed ‘b’, ‘e’, ‘f ’, ‘i’, ‘l’, ‘n’, ‘s’,
‘u’, ‘w’ and ‘x’. This list is very similar to the one produced by the criteria set
for the item-to-total correlation coefficients, ‘i’ and ‘n’ having been added here.
It includes only 8 of the 17 items in the five-factor subscales, suggesting that
there may be independent scales rather than just subscales here. Factor analy-
sis can now be run on these 14 items. This time the KMO is 0.90, still very
high. On the unrotated analysis, only three factors have eigenvalues of at least
1.0. However, the scree plot suggests that up to five factors could be consi-
dered, although the fourth has an eigenvalue of only 0.87 and the fifth, only 0.75
(see Figure 7.2). All three of these possibilities were run, but I came to the
conclusion that three factors provided the best solution.

Table 7.6 shows the loadings of at least 0.30 on the unrotated factors. Again,
factor 1 is a common factor on which all items load between 0.53 and 0.69,
considerably higher than for all 24 items. Again, setting a loading of at least 0.40
as the criterion, factor 2 includes ‘a’ (0.45), ‘d’ (0.57) and ‘v’ (0.45), and factor
3 ‘c’ (0.53), ‘m’ (0.42) and ‘t’ (−0.40).

We can now try a rotated solution on these 14 items. Table 7.6 shows the
loadings of at least 0.40 on the three factors. As these factors will be regarded
as subscales within the general factor, I am setting a very strict criterion of at
least 0.60 for inclusion. They are:
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Figure 7.2 Scree plot of eigenvalues for 14 items (combined samples)
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factor 1 ‘p’ (0.67), ‘r’ (0.65) and ‘t’ (0.78);
factor 2 ‘a’ (0.67), ‘d’ (0.79), ‘k’ (0.61) and ‘v’ (0.72);
factor 3 ‘c’ (0.76) and ‘m’ (0.71).

While ‘adkv’ appeared in the earlier rotated solutions, ‘cm’ rather than ‘hm’ has
turned up here. Factor 1, ‘prt’, was signalled in the previous six-factor rotated
solution. The items in this factor refer to the need for controls on industry and
the need to conserve forests. The third factor (‘cm’) is concerned with the
benefits and problems of economic growth, and makes more sense than ‘hm’.

Analysis of Excluded Items

It is also possible to run factor analysis on the excluded items. Before doing this,
however, we need to do some preliminary analysis. First, the alpha coefficient
is 0.698, just below the minimum criterion of 0.70. Second, the item-to-total
correlation coefficients, and the alpha coefficients if items are removed, are shown
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Table 7.6 Unrotated and rotated solutions with 14 retained items (combined samples)
Unrotated solution Rotated solution

Item Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

a 0.54 0.45 0.67
c 0.53 0.53 0.76
d 0.56 0.57 0.79
g 0.54 0.49
h 0.54 0.50
j 0.60 0.51
k 0.56 0.37 0.61
m 0.65 0.42 0.71
o 0.55 −0.31 0.53
p 0.64 0.67
q 0.69 0.53 0.41
r 0.57 −0.32 0.65
t 0.58 −0.38 −0.40 0.78
v 0.59 0.45 0.72

Eigenvalue 4.76 1.34 1.01 2.45 2.38 2.28
Variance (%) 34.0 9.6 7.2 17.5 17.0 16.3

Table 7.7 Unidimensionality and reliability of 10 rejected
items (combined samples)

Item Item-to-total correlation Alpha if item delated

b 0.36 0.700
e 0.50 0.677
f 0.56 0.668
i 0.61 0.660
l 0.47 0.684
n 0.61 0.659
s 0.58 0.665
u 0.56 0.667
w 0.43 0.686
x 0.48 0.682
Alpha for all items = 0.698.
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in Table 7.7. Four items, ‘b’, ‘l’, ‘w’ and ‘x’, have correlation coefficients of less
than 0.50, the minimal criterion. In addition, the removal of ‘b’ would raise the
value of alpha. All this suggests that this set of items is not unidimensional.

Factor analysis was run on these excluded items to see if more than one factor
is present. If there are multiple factors, they can be regarded as independent of
the scale and subscales already established. In this case, the KMO is lower (0.77),
but still satisfactory. The scree plot (Figure 7.3) suggests that three factors should
be extracted, with the third having an eigenvalue of 0.98, and all three including
51.6 per cent of the variance. The commonalities range from 0.29 to 0.67, the
former (‘x’) being much lower than the others. Rotated solutions have been tried
with and without ‘x’ and a decision made to exclude this item.

Table 7.8 shows all loadings of at least 0.30 on the unrotated solution, with-
out ‘x’, and of at least 0.40 on the rotated solution. Again, using the loading
criterion of 0.60, the following factors were extracted:

factor 1 ‘f ’ (0.75), ‘n’ (0.70), ‘s’ (0.79);
factor 2 ‘e’ (0.72), ‘l’ (0.60), ‘u’ (0.73);
factor 3 ‘b’ (0.81), ‘w’ (0.72).

Factor 1 appeared in both the earlier solutions on the 24 items. Factor 2
appeared earlier in the five-factor solution on the 24 items (see Table 7.4), but
‘bw’ is new. The latter two items deal with alternative sources of energy.

Incidentally, if the minimum eigenvalue had been set at 1.0, two factors
would have been extracted with loadings as follows:

factor 1 ‘f ’ (0.74), ‘n’, (0.68) and ‘s’ (0.74);
factor 2 ‘b’ (0.61), ‘e’ (0.67) and ‘w’ (0.66).
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Figure 7.3 Scree plot of eigenvalues for nine items (combined samples)
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Four items, ‘i’, ‘l’, ‘w’ and ‘x’, would have been left out, although ‘i’ (0.59)
could have been considered for inclusion in factor 1.

It is important to note that while factor analysis seeks to identify items on
which responses either do or do not follow a consistent pattern, the presence
of inconsistent items can ‘upset’ the analysis. This is why it is important to iden-
tify and exclude such items, and then try the analysis without them. Clearly,
the inclusion or exclusion of items is a matter of judgement based mainly on
recognized rules of thumb and this trial-and-error process. For example, I have
considered including ‘l’ in the second independent factor, even though it does
not meet the very strict criterion, mainly because its content is consistent with
items ‘b’ and ‘w’. At the same time, ‘e’ could have been excluded, even with its
high loading, because its content is different.

Orthogonal and Oblique Rotations

The extraction of factors thus far has used varimax rotation. This is described
technically as an orthogonal rotation and has the effect of keeping the factors
independent as they are rotated. An alternative is oblique rotation, which
allows the factors to correlate. This can be done using the direct oblimin rota-
tion, but other methods are also available. The choice of method has to be made
on theoretical grounds.12 I have opted for the varimax rotation in order to see
whether independent factors exist. The oblimin rotation was also run, using the
same steps (initially with the 24 items, then with 14, and finally with the
rejected 10), and the same criteria, to see how robust the factors are. The fol-
lowing factors and loadings were produced. For ease of comparison, the varimax
loadings are shown second and in italics.

sub-factor 1 ‘p’ (0.67/0.67), ‘r’ (0.66/0.65), ‘t’ (0.84/0.78);
sub-factor 2 ‘a’ (0.68/0.67), ‘d’ (0.82/0.79), ‘k’ (0.60/0.61), ‘v’ (0.73/0.72);
sub-factor 3 ‘c’ (0.82/0.76), ‘m’ (0.72/0.71);

factor 2 ‘f ’ (0.76/0.75) ‘n’ (0.70/0.70), ‘s’ (0.81/0.79);
factor 3 ‘e’ (0.74/0.72), ‘l’ (0.60/0.60), ‘u’ (0.75/0.73);
factor 4 ‘b’ (0.86/0.81), ‘w’ (0.71/0.72).
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Table 7.8 Unrotated and rotated solutions with nine rejected items (combined samples)
Unrotated solution Rotated solution

Item Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

b 0.32 0.52 0.58 0.84
e 0.51 0.45 −0.32 0.72
f 0.56 −0.48 0.75
i 0.63 0.52
l 0.47 0.31 0.59
n 0.63 −0.33 0.70
s 0.59 −0.47 0.79
u 0.60 −0.44 0.73
w 0.41 0.52 0.38 0.72

Eigenvalue 2.56 1.46 0.97 1.99 1.68 1.32
Variance (%) 28.4 16.2 10.8 22.1 18.7 14.6
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The factors are identical and the loadings are almost the same. The decision not
to include item ‘i’ in ‘fns’ is also confirmed as its loading is now only 0.46.

Using Ordinal-level Data

Before leaving this analysis, I want to return to the issue of whether it is legiti-
mate to do factor analysis on data that are, strictly speaking, only ordinal. Factor
analysis uses correlation coefficients (in this case Pearson’s r) as its foundation,
and such coefficients are only appropriate for interval-level and ratio-level data.
Further, the distributions on variables used in such analysis should be approxi-
mately normal. In short, the data should meet the requirements of parametric
measurement. On the first point, I have already indicated that it has become
common practice to assume that Likert-type categories constitute interval-level
rather than ordinal-level measurement. As soon as the responses to a set of
items are summed, this assumption applies. However, on the second point, the
distributions on the 24 items from the two samples are, in many cases, badly
skewed, mostly negatively, and have varying dispersions (see Table 7.9).

It is always a good idea to examine such distributions before proceeding to
undertake correlations and factor analysis. One solution to this problem of
skewed distributions is to transform skewed distributions into normal distribu-
tions. A further refinement to the analysis could have included such transfor-
mations. Without it, some of the correlation coefficients will be more
conservative (lower) than if the transformations had been done (see p. 87).
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Table 7.9 Distributions on the 24 items (combined samples)
Item Minimum Maximum Mean Standard deviation Skewness

a 1 5 3.13 1.11 0.131
b 1 5 4.27 0.82 −1.311
c 1 5 3.79 0.89 −0.659
d 1 5 3.87 1.11 −0.820
e 1 5 4.22 0.83 −1.286
f 1 5 2.28 0.94 0.995
g 1 5 4.41 0.66 −1.079
h 1 5 3.39 1.08 −0.211
i 1 5 3.24 1.04 −0.191
j 1 5 3.99 0.93 −0.914
k 1 5 3.97 0.89 −0.860
l 1 5 3.91 0.89 −0.983
m 1 5 3.56 0.97 −0.399
n 1 5 3.52 1.05 −0.582
o 1 5 4.21 0.74 −1.217
p 1 5 4.19 0.74 −1.033
q 1 5 3.87 0.99 −0.903
r 1 5 4.12 0.93 −0.939
s 1 5 2.95 1.03 0.193
t 1 5 3.99 0.81 −0.846
u 1 5 3.90 0.88 −0.675
v 1 5 4.04 0.96 −0.989
w 1 5 4.17 0.73 −0.840
x 1 5 2.56 0.89 0.410
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Scales and Subscales

I have gone through the process of establishing these scales and subscales in con-
siderable detail to illustrate that arriving at a final set of factors, and hence a set
of new variables, involves experimenting with different possibilities and making
defendable decisions. We could have gone through this process in other ways,
such as discovering which are the ‘troublesome’ items early on and eliminating
them. However, to discover troublesome items requires considerable experimen-
tation with different combinations of items. It is an interesting process if num-
bers fascinate you. Fortunately, the calculations are done almost instantaneously.

Having established one general scale, which includes three subscales, and
three independent scales, the next step is to name each one. This entails finding
a short title that captures the content of that particular set of items. What we
hope to find is consistency in the content of the items in each of the scales. The
following titles and abbreviations will be used:

1 Environmental Worldview general scale (acdghjkmopqrtv) – EWVGSC
1a Human use of the environment (adkv) – HUSENV
1b Government controls (prt) – GOVCONT
1c Economic growth (cm) – ECGROW
2 Faith in science and technology (fns) – SCITEK
3 Human impact on the environment (elu) – IMPACT
4 Alternative energy (bw) – ALTENGY

The scale based on the original set of 24 items will be referred to as:

Environmental Worldview total scale – EWVTSC.

While the 24-item scale was used in the examples in Chapters 3–6, it will not
be used in the analysis related to the research questions in the next chapter.

Finding consistency in the content of the items in the various scales confirms
that they are not just artefacts of the method of analysis. However, it is possi-
ble to find items that have not been included having similar content to those in
a particular scale (e.g. ‘i’ in SCITEK and ‘x’ in ECGROW), and to find items
with manifestly different content included in a scale (e.g. ‘l’ in IMPACT).13

To test whether the decisions made about the scales and subscales were
appropriate, we can now go back and run item-to-total correlations, and the
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Table 7.10 Distributions on scales and subscales
(combined samples)

Scale Mean Standard deviation Skewness

EWVGSC 3.89 0.53 −0.294
HUSENV 3.75 0.76 −0.385
GOVCONT 4.10 0.64 −0.757
ECGROW 3.67 0.79 −0.485

SCITEK 2.92 0.77 0.237
IMPACT 4.01 0.62 −0.747
ALTENGY 4.22 0.62 −0.721
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Figure 7.4 EWVGSC mean scores (combined samples)
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Figure 7.5 HUSENV mean scores (combined samples)
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Figure 7.6 GOVCONT mean scores (combined samples)
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Figure 7.7 ECGROW mean scores (combined samples)
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Figure 7.8 SCITEK mean scores (combined samples)
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Figure 7.9 IMPACT mean scores (combined samples)

3055-ch07.qxd  1/10/03 10:28 AM  Page 234



reliability test (Cronbach’s alpha). However, before doing this, we should
examine their distributions (see Table 7.10 and Figures 7.4–7.10). With the
exception of SCITEK, which is almost normally distributed with only a slight
positive skewness (0.237), all scales and subscales are negatively skewed. How-
ever, the only really ‘deviant’ distributions are for GOVCONT (−0.757),
IMPACT (−0.747) and ALTENGY (−0.721).

Table 7.11 indicates that EWVGSC has a high alpha but that the item-
to-total correlation coefficients are generally weaker than for all the other scales
and subscales. The others have consistently good item-to-total correlations
coefficients and weaker alpha coefficients. However, we must expect that the
correlations coefficients will be higher for scales with few items as each item
plays a more significant role in the scale itself. In other words, each item is
being correlated with itself as well as the other items. This is very evident in
two-item scales, such as ECGROW and ALTENGY. Allowance must be made
for this in assessing these coefficients. Hence, they can only be used as a guide
rather than a precise measurement of unidimensionality. They simply confirm
what has already been established by factor analysis.

It might even be argued that factor analysis and these tests are not appropriate
for two-item scales, and that all that is needed is to examine the correlation co-
efficients to see if the items are sufficiently related. For the two items in ECGROW
the coefficient is 0.43, and for ALTENGY 0.30. Hence, the former would appear
to be more reliable than the latter. However, given that factor analysis has thrown
up these two scales, they need to be given serious consideration.

If we were to apply the reliability test very strictly (see Table 7.11), we might
conclude that EWVGSC is the only scale or subscale that can be used as it is
the only one with an alpha value of at least 0.80, and only HUSENV passes the
lower criterion of 0.70. Should we discard the rest? I think not. For a start, we
have used very strict criteria for the factor loadings; secondly, HUSENV and
SCITEK keep falling out of the analysis at every turn; and, thirdly, we can
expect the alpha coefficient to be lower in scales with a limited number of
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Figure 7.10 ALTENGY mean scores (combined samples)
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items. However, we may want to give less importance to ECGROW and
IMPACT and, particularly, to ALTENGY. An interesting issue here is whether
it would be better to rely on single-item measurement, rather than scales of two
or three items that have relatively low alpha values. I would opt for scales with
a few items as long as they have been established by rigorous procedures and
the inter-item correlation (as against item-to-total) coefficients are within the
same range of those for scales with higher alpha coefficients.

It is important to reiterate that these tests for unidimensionality and reliability
can only be interpreted in relation to the sample or population from which the
data were collected. It is the pattern of responses to these items with a particu-
lar sample or population that is being examined. If a scale is used in other con-
texts, this same analysis must be repeated on each occasion, and adjustments
may have to be made to the scales. This is particularly relevant when an estab-
lished scale is borrowed for use in a different context. The fact that I have used
this same set of items with four different samples, and over a five-year period,
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Table 7.11 Reliability of scales and subscales (combined samples)
Scale Item Item-to-total correlation Alpha if item delated Alpha

EWVGSC a 0.58 0.838
c 0.53 0.839
d 0.60 0.837
g 0.52 0.839
h 0.57 0.839
j 0.59 0.835
k 0.57 0.837 0.846
m 0.65 0.831
o 0.52 0.839
p 0.60 0.834
q 0.68 0.829
r 0.57 0.837
t 0.55 0.837
v 0.61 0.835

HUSENV a 0.74 0.678
d 0.79 0.622 0.723
k 0.67 0.696
v 0.75 0.643

GOVCONT p 0.75 0.575
r 0.79 0.638 0.666
t 0.80 0.501

ECGROW c 0.83 – 0.603
m 0.86 –

SCITEK f 0.74 0.579
n 0.76 0.599 0.653
s 0.80 0.487

IMPACT e 0.74 0.344
l 0.70 0.506 0.531
u 0.72 0.437

ALTENGY b 0.83 – 0.464
w 0.78 –
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provides an illustration of this. The tests have produced some differences
between the two 1994 samples and the two earlier ones. There is no item
that really had to be excluded from the total scale in all four samples. Hence,
we are confronted with a dilemma. On the one hand, leaving the weaker items
in with each application of a scale creates some lack of precision in the
measurement of the variable. On the other hand, leaving different items out on
different applications means that the results are not strictly comparable across
different studies. In spite of having used the total scale in the 1989/90 studies,
I am going to concentrate on the general scale (EWVGSC) and the other five
scales here.

One final piece of analysis is appropriate before leaving these scales. Having
separated the items into different scales and subscales, we can now examine the
relationships between them by creating a correlation matrix. This involves calcu-
lating correlation coefficients for all combination of pairs of scales (see Table 7.12).

First, while not shown in the table, the total scale (EWVTSC) and the gen-
eral scale (EWVGSC) are very highly correlated (0.96). This is not surprising
as the latter is made up of a large part of the former. It does suggest, however,
that the scales could be used interchangeably. Second, EWVGSC is more
closely related to the three subscales (HUSENV, 0.79; GOVCONT, 0.74;
ECGROW, 0.70) than it is to the other three scales (SCITEK, 0.46; IMPACT,
0.53; ALTENGY, 0.48). Again, this is not surprising as the subscales are all
components of the general scale. However, it also confirms that the three inde-
pendent scales should be treated as such. Third, among the subscales and the
independent scales, the highest coefficient is between SCITEK and ECGROW
(0.40) and the lowest between SCITEK and ALTENGY (0.11); most of the
others are between 0.30 and 0.40. Hence, perhaps with one main exception
(SCITEK with ALTENGY), these scales and subscales are related. However,
the fact that they have been separated by factor analysis, allows for more
detailed analysis.

It is clear that faith in the ability of science and technology to solve problems
is not really related to the other components of environmental attitudes, par-
ticularly ALTENGY. This would suggest that environmentalists are divided
about the role of science and technology, some having faith and others not, the
former marginally outnumbering the latter. Likewise, it would appear that
those with more negative environmental attitudes are also divided. We will
explore this in the next chapter.
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Table 7.12 Correlation matrix of EWV scales and subscales (combined samples)
EWVGSC HUSENV GOVCONT ECGROW SCITEK IMPACT ALTENGY

EWVGSC 1.00
HUSENV 0.79 1.00
GOVCONT 0.74 0.39 1.00
ECGROW 0.70 0.40 0.41 1.00

SCITEK 0.46 0.37 0.24 0.40 1.00
IMPACT 0.53 0.35 0.48 0.37 0.26 1.00
ALTENGY 0.48 0.30 0.42 0.34 0.11 0.30 1.00
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Willingness to Act Scale

In addition to the 24 EWV items, six additional attitude statements were used
with the two samples to measure Willingness to Act. The items are listed in
Chapter 2. When factor analysis was run on these six items, one factor was
extracted. Because of the manifest content of the items, the preliminary analysis
has been omitted. The rotated factor loadings are as follows:

‘1’ (0.77), ‘2’ (0.71), ‘3’ (0.72), ‘4’ (0.73), ‘5’ (0.65), ‘6’ (0.73).

Table 7.13 shows the loadings on both the unrotated (at least 0.30) and the
rotated (at least 0.40) solutions. All of the latter are above the 0.60 minimum
criterion. The resulting scale is labelled ACTION.

Before leaving this analysis, we need to apply the two additional tests,
Cronbach’s alpha and item-to-total correlations (see Table 7.14). The alpha
coefficient for the ACTION scale is very satisfactory (0.821). The item-to-total
correlations coefficients are also all adequate, although it is clear that item ‘5’
is the weakest. This is confirmed by the fact that eliminating it would reduce
the alpha coefficient by very little, to 0.816. This is not surprising as the content
of the item is different from the others, not only in expressing a negative action
towards the environment, but it is also a rather different kind of action. Hence,
consideration needs to be given to excluding it from the scale.

The analysis of the first factor with item ‘5’ deleted is also shown in Table 7.14
as WILLACT. There are minor improvements in the item-to-total correlation
coefficients and, as anticipated, a slight reduction in the alpha coefficient. Elimi-
nating any further items would reduce the alpha coefficient more than previ-
ously. However, the elimination of ‘5’ can also be justified on the grounds that
it had the lowest loading on the factor, although still above the minimum crite-
rion of 0.60. What this example is intended to illustrate is that there can be marginal
items about which a choice has to be made as to whether they should be
included in the scale. A number of indicators can be used and, in the end, it is
a matter of judgement. In this case, I am erring on the side of producing a
robust scale, even if it means sacrificing one item. Hopefully, the subsequent
analysis will be more useful because of this decision. Hence, only WILLACT
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Table 7.13 Unrotated and rotated solutions with Willingness 
to Act itmes (combined samples)

Item Unrotated solution Rotated solution

1 0.76 0.77
2 0.72 0.71
3 0.78 0.72
4 0.69 0.73
5 0.61 0.65
6 0.78 0.73

Eigenvalue 3.30 3.14
Variance (%) 41.2 39.2
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will be used to answer the research questions in Chapter 8. The distribution on
the WILLACT scale is shown in Figure 7.11.

Indexes

An index represents a particular phenomenon or concept by measuring some-
thing that is related to it. For example, an index of social class position might
be a person’s occupational status.14 Many measures in the social sciences can be
regarded as indexes; a measure of one thing (e.g. occupational status) is used to
represent another thing (e.g. social class). For example, an index of ‘social class’
could consist of the combination of measures of occupational status, level of
income and educational attainment; these three measures can be justified
theoretically. A second kind of index is created to estimate the level of intensity
of some activity by counting the number of instances of it. For example, it
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Table 7.14 Reliability of behavioural scales (combined samples)
Scale Item Item-to-total correlation Alpha if item delated Alpha

ACTION 1 0.76 0.784
2 0.75 0.794
3 0.76 0.782 0.821
4 0.71 0.800
5 0.64 0.816
6 0.76 0.782

WILLACT 1 0.78 0.771
2 0.76 0.794
3 0.77 0.772 0.816
4 0.73 0.796
6 0.78 0.768
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Figure 7.11 WILLACT mean scores (combined samples)
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would be possible to construct an index of how much a student reads by counting
the number of books they borrow from the library.

Clearly in this last example there is room for error in that students may not
read all that they borrow, they may read books in the library without borrow-
ing them, they may read books from other sources and they may read other
things as well. It is a characteristic of most indexes that they only estimate the
phenomenon under investigation by counting readily available information. The
challenge is to find a reliable estimator or index.

In contrast to a scale, in this research I am using the notion of an index as a
combination of measures that has not been subjected to a test for unidimen-
sionality. The justification for any particular combination of measures will
normally be based simply on the face validity of the components. The rationale
for constructing an index is that it should result in a more robust measure of
the phenomenon.

Avoiding Environmentally Damaging Products

A number of indexes have been constructed to measure key variables in this
research, namely, three measures of Environmentally Responsible Behaviour. For
the first, respondents were asked to indicate the extent to which they avoided
purchasing or using environmentally damaging products, in three response cate-
gories, ‘Regularly’, ‘Occasionally’ and ‘Never’. In addition to asking about the
extent to which they did this, respondents were also asked to list the products
that they avoid. An index of the level of avoidance was constructed from the
number of relevant products mentioned. The score is assumed to indicate the
level of Environmentally Responsible Behaviour. Further, it was assumed that all
products were of equal importance, and that the number of products listed indi-
cates both knowledge of what products are damaging to the environment and
the level of commitment to this form of behaviour.

Support for Environmental Groups

A second index of Environmentally Responsible Behaviour was concerned with
support given to environmental groups. It was measured by two questions: the
degree of support given (‘Regularly’, ‘Occasionally’ and ‘Never’); and, for those
who responded in the first two categories, the types of support. For the latter,
seven response categories were offered (‘Financial’, ‘Voluntary work’, ‘Attend
meetings’, ‘On committees’, ‘Participate in demonstrations’, ‘Moral support
only’ and ‘Other’). An index of support was created by scoring ‘1’ for every
category to which a response was made. It was assumed that each of these
activities is of equal value. However they could have been weighted differently
in terms of a scoring system arrived at by, say, a set of independent judges.

Recycling Behaviour

The third index of the practice of Environmentally Responsible Behaviour was
concerned with recycling. Respondents were asked to indicate how regularly
they recycled four types of waste products: glass containers, plastic containers,
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aluminium cans and paper. The response categories were: ‘Regularly’,
‘Occasionally’ and ‘Never’. They were also given the opportunity to indicate
whether they avoided using any of these products (‘Do not use’). These four
categories were then weighted: ‘Regularly’, 2; ‘Occasionally’, 1; ‘Never’, 0; and
‘Do not use’, 3. In the case of this latter category, it was assumed that deliber-
ately avoiding the use of these products indicates a greater commitment to con-
serving resources than using and then recycling. Each respondent received a total
score based on the sum of their responses to the four types of products. This
was used as an index of recycling behaviour. A number of other assumptions are
involved in this procedure: that these activities are motivated by environmen-
tal concerns; and, if they are, that they are all of equal importance from the
respondent’s point of view. As we shall see in the next chapter, the former
assumption was probably incorrect.

Out of these processes of data reduction, three indexes have been produced:

• Avoiding Environmentally Damaging Products;
• Support for Environmental Groups;
• Recycling of waste products.

However, the Recycling index will not be used in the analysis in Chapter 8, and
the other two types of behaviour will be measured by answers to single ques-
tions, the first in terms of regularity of avoidance (the three categories above),
and the third in terms of level of support (also the three categories shown
above). Some analysis (not presented here) indicates that, in both cases, the
single question and the index are highly correlated. They have been presented
here as examples of alternative ways of measuring this type of behaviour.

The purpose in creating such indexes is to produce simple measures based on
what can sometimes be a complex phenomenon. It may just be impossible or
impractical to try do deal with all the available information on a particular issue.
Such procedures make the analysis more manageable. However, a great deal of
information can be lost in the process, and many assumptions may need to be
made. This is a common practice in quantitative research. In the end, it is a
matter of judgement as to whether an index is meaningful, reliable and useful.

Recoding to Different Levels of Measurement

For the most part, recoding is undertaken to facilitate data analysis and data pre-
sentation. This includes the transformation of metric variables into categorical
variables. It is this type of recoding that will be the focus of attention here.
However, before proceeding to demonstrate how this is done, let us discuss
briefly another three uses of recoding.

Before serious analysis commences, it is useful to examine the distributions
on categorical variables. When response categories are established to facilitate
the answering of a question in a questionnaire or interview schedule, it may not
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be possible to anticipate the distribution of responses. Some categories may end
up with very few responses, or the distribution may be badly skewed. Some
forms of analysis, such as cross-tabulations, require a minimum number in the
cells to satisfy chi-square requirements. Combining categories is one way of
achieving this, and this requires recoding.

A second use of recoding is to change the order of nominal categories. For
example, categories of religious affiliation may have been listed in alphabetical
order in a questionnaire or interview schedule. At the analysis stage, it may be
useful to reorder the categories, say, from the one with the most responses to
the one with the fewest responses. An example of combining and reordering
categories occurred in the case of Political Party Preference. The original cate-
gories, in order, were: ‘Labor’, ‘Liberal’, ‘National’, ‘Democrats’, ‘Undecided’ and
‘Other’. These were recoded into ‘Liberal’, ‘Undecided’ and ‘Conservative’.

Recoding can also be used to deal with non-responses. Again, in analysis such
as cross-tabulation, non-responses on either variable drop out of the analysis
completely. When a set of categories forms an ordinal-level measurement, such
as the five Likert-type response categories (ranging from ‘Strongly agree’ to
Strongly disagree’), a conservative way of including non-responses in the analy-
sis is to code them either in the middle category, or as near the middle as pos-
sible, or in the category in which the median falls. The non-response could be
coded in the ‘Neither agree nor disagree’ category, or in the category on either
side of this if the median is off-centre. It is a conservative method because in
this position the assumed response has the minimum influence on measures of
central tendency and dispersion, and also on measures of association.

The major use of recoding to be discussed here is to transform metric data
into a set of categories. For example, in addition to calculating the mean Age of
a sample of respondents, we might also want both to see their distribution in,
say, ten-year intervals, and to be able to cross-tabulate such Age categories with
the categories of another variable, such as Gender.

Three examples of recoding that are required for subsequent analysis will
serve to illustrate common procedures. The first is the recoding of the EWV
scales and subscales (assumed to be interval-level measurement) into four
approximately equal categories (ordinal-level measurement). The second is the
recoding of the Recycling index into four categories, and the third is the recod-
ing of Age in years into a set of six categories.

Environmental Worldview Scales and Subscales

Having used factor analysis to determine which items are to be included in the
seven scales and subscales, it is possible to calculate mean scores for each
respondent on each one. This was done by summing each person’s responses to
each set of items and dividing by the number of items in the set. The distribu-
tion of the means has been used to establish the four categories for each scale
and subscale. The aim was to have approximately the same number of respon-
dents in each category, thus creating a rectangular distribution. The advantage
of a rectangular distribution, compared with a normal distribution, is that
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cross-tabulations based on the recoded variables are less likely to have low
frequencies in some cells, thus avoiding one of the major problems in using
chi-square analysis.

In order to establish four ordinal categories for each scale and subscale, the
data from both samples were combined. Once established, the categories were
then applied to the distributions in each sample. The scales and subscales were
recoded as follows. The range of mean scores is shown for each category and
the percentage in each category is shown in brackets. This is as close as it is
possible to achieve rectangular distributions across the four categories, given the
range of possible mean scores.

ENVGSC 1.86−3.50 (24.0); 3.57−3.86 (25.5); 3.93−4.21 (24.6); 4.29–5.00
(26.0)

HUSENV 1.00–3.00 (21.2); 3.25–3.75 (30.9); 4.00–4.25 (26.0); 4.50–5.00 
(21.9)

ECGROW 1.00–2.50 (11.9); 3.00–3.50 (34.6); 4.00 (31.6); 4.50–5.00 (21.9)
GOVCONT 1.00–3.33 (15.8); 3.67–4.00 (37.7); 4.33 (18.7); 4.67–5.00 

(27.8)
SCITEK 1.00–2.00 (19.1); 2.33–2.67 (28.5); 3.00–3.33 (31.3);  3.67–5.00

(21.1)
IMPACT 1.00–3.33 (19.1); 3.67–4.00 (37.8); 4.33 (21.9); 4.67 (21.1)
ALTENGY 1.50–3.50 (18.0); 4.00 (31.7); 4.50 (27.6); 5.00 (22.7)
WILLACT 1.00–3.00 (25.4); 3.20–3.60 (31.6); 3.80–4.00 (25.4);  4.20–5.00

(17.6)

The four categories have been given the labels ‘Low’, ‘Moderate’, ‘High’ and
‘Very high’.15

Recycling Index

The second example of recoding is to take the Recycling index scores and
create four categories. While the scores range from 0 to 12, the distribution is
rather uneven. Slightly more than half of the combined sample received a score
of 8, and 84 per cent have score of 6–9. Hence, it is not possible to create a
rectangular distribution. Instead, it is more like a slightly skewed normal distri-
bution. The categories are as follows: 0–5 (15.1 per cent), 6 and 7 (25.6 per
cent), 8 (50.9 per cent) and 9–12 (8.4 per cent).

Age

The third recoding example comes from the Age distributions of both samples.
While it is possible to use the same coding categories for both samples, because
of their very different Age distributions, for some types of analysis different
categories are more useful. This recoding has already been done in Chapter 3
(see Table 3.9).
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The examples discussed in this section of the chapter indicate that recoding can
be used to:

• change the order of a set of response categories, such as Religion, perhaps
from an alphabetical listing to a decreasing order of size;

• combine categories, such as putting those with very low responses into an
‘other’ category, or consolidating adjoining categories with low responses;

• eliminate non-responses, such as locating them in the median category of a
distribution, or in or as near as possible to the middle category; and

• transform a distribution of numbers or scores (discrete or continuous vari-
ables) into a set of categories, such as Age or scores from an attitude scale.

There are no fixed rules about how and when recoding should be done; it
depends on the nature of the variables and their distributions, and the require-
ments of the analysis. Judicious recoding can enhance and clarify data analysis.

Characteristics of the Samples

Before we proceed to undertake the analysis required to answer the six research
questions, it will be helpful to prepare a description of the basic characteristics
of the two samples. This is fairly standard practice as it provides a background
for the analysis that follows. Only a limited set of characteristics will be dis-
cussed here. They include: 

• Gender;
• Age;
• Education;
• Religion;
• Religiosity;
• Environmental Worldview (ENVGSC); and
• Willingness to Act (WILLACT).

These characteristics will be described briefly by comparing the two samples
(see Table 7.15).

The Student sample has an overrepresentation of females (55 per cent),
reflecting a trend in university education in many countries. There is a Gender
balance in the Resident sample, confirming that the sampling procedure used to
achieve this was successful (see Table 3.10). As expected, the Age distribution
of the two samples is very different. A majority of Students are under 25 years
of age (87 per cent), while the distribution of Residents covers the full range.
For more details of the Age distributions, see particularly Table 3.9 and also
Tables 3.4, 3.5, 3.6, 3.11 and 3.13.

As with Age, the level of Education achieved in the two samples is very
different. Clearly, all Students are university educated, although they have still
to complete their degrees. The Age distribution of Residents reflects the changing
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patterns of education over at least three generations. This is illustrated in Table 4.8
and the accompanying discussion in Chapter 4. What is somewhat surprising is
the high percentage of university-educated people in this sample (42 per cent).

The distributions of Religion on the two samples provide some interesting
differences, as does Religiosity. The Student sample is nearly one-third ‘Catholic’
(31 per cent) compared with about a fifth (21 per cent) of the Resident sample.
The figures are reversed for the major Protestant denominations; 20 per cent of
the Students are either ‘Anglican’ or ‘Uniting’ church, compared with 37 per cent
of the Residents. While 25 per cent of the Residents profess to have ‘No religion’,
this is the case for 33 per cent of Students. The percentage of ‘Catholics’ in the
student sample is closer to that of the Melbourne metropolitan area (MMA) than
is the Resident sample. The underrepresentation of ‘Catholics’ in the latter
reflects the history of the dominance of a Protestant middle class in this part of
the MMA. It is clear that the Resident sample has a higher level of Religiosity
than does the Student sample. Nearly a quarter (24 per cent) of the former say
they are ‘Very religious’, compared with 15 per cent of the latter. The reverse is
the case for ‘Not at all religious’: 13 per cent compared with 25 per cent.

The Student sample has a higher mean score on the Environmental World-
view scale (EWVGSC) than the sample of Residents. The same difference is
evident in the mean scores on the Willingness to Act scale (WILLACT). This
comparison, and those on related scales and subscales, will be dealt with in
more detail in the next chapter.
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Table 7.15 Characteristics of both samples
Students (n = 465) Residents (n = 402)

Gender: Females 55% 50%
Age: Mean (std. dev.) 21.2 (4.0) 46.1 (18.0)

Under 25 87% 12%
25–44 12% 40%
45–64 a% 29%
65 and over 0% 20%

Education Primary/some secondary 0% 19%
Technical certificate 0% 15%
Completed secondary 0% 24%
University education 100% 42%

Religion: Catholic 31% 21%
Anglican 13% 23%
Uniting 7% 14%
Other 17% 18%
No religion 33% 25%

Religiosity: Very religions 15% 24%
Not at all religions 25% 13%

ENVGSC: Mean (std. dev.) 3.97 (0.54) 3.81 (0.52)
Low 19% 30%
Very high 31% 20%

WILLACT: Mean (std. dev.) 3.59 (0.75) 3.38 (0.73)
Low 22% 30%
Very high 24% 10%

aThe percentage is less than 0.5.
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When samples are being described in a ‘real’ research project, if possible, it
would be appropriate to compare the distributions (such as Gender, Age, Educa-
tion and Religion)16 with that from a relevant census or other data on the
population from which the sample was drawn, or with related populations. The
distributions in the Resident sample could be compared with those produced in
the chronologically closest census for the city from which the sample was
drawn. This would provide a check on the representativeness of the sample.
Comparisons could also be made with census data from the MMA, and even
state and national data. The comparisons are more limited between the Student
sample and the census, although comparing the distribution on Religion with
the MMA etc. would be useful. It may also be possible to get data about
students from the university itself (for example, on Gender, Age and Religion),
or from state and national sources. The point is that such comparisons are use-
ful when interpreting the results or making judgements about their generality.

Summary

• Data reduction procedures prepare data for analysis by reorganizing or
combining response categories, by transforming metric variables (both dis-
crete and continuous) into ordinal categories and, more particularly, by
reducing a number of items of data, or responses to a number of questions,
to one or more new variables.

• Data in categories are reordered, or the number of categories are reduced,
to meet the requirements of appropriate analysis, and to simplify the analy-
sis and the presentation of results.

• Metric variables are transformed into ordinal categories to allow for alter-
native methods of analysis and to provide different ways of understanding
the forms of association.

• Responses to a set of questions are reduced to scales and indexes to discover
latent variables, to measure variables more reliably and to simplify analysis.

• Typically, a scale is produced from responses to a set of attitude items by
demonstrating that the items all measure the same thing, that is, that they
are unidimensional. These procedures can also establish subscales within a
general scale, or separate scales within a set of items.

• An index measures a concept indirectly by assuming that what is measured
is related to that concept. For example, income, occupation and education,
either separately or together, have been used as an index of social class
position. However, as the indirect character of an index is typical of a great
deal of social scientific measurement, in this book the notion of an index
is confined to the measurement of a concept by a combination of
responses or items of information, the unidimensionality of which has not
been demonstrated.

• The construction of attitude or similar scales, such as Environmental World-
view, can include the following procedures.

Analyzing quantitative data
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1. Create or borrow a set of items (say, at least 10 and possibly more than 
20) whose content is related to the phenomenon to be measured.

2. Pre-test the items on a sample (say, about 50) that is similar to the one 
that is to be investigated, and then apply item analysis to the responses. 
Discard items for which the pattern of responses is seriously inconsistent.

3. Administer the remaining items in the study. Examine the item-to-item 
and item-to-total correlation coefficients. Look for low coefficients on 
both methods of analysis and consider discarding any weak items.

4. Apply Cronbach’s alpha as a further test of the reliability of the set of 
items. If the value of alpha is below 0.70, the set of items may be an 
unreliable measure of the concept. It may be possible to improve the 
value of alpha by eliminating one or more items.

5. Conduct an exploratory factor analysis on the remaining items.

(a) Run a check on the sampling adequacy of the items; a KMO of at 
least 0.70 is satisfactory.

(b) Examine the commonality for each item to see what proportion of 
its variance contributes to all the factors extracted.

(c) Try an unrotated solution to see if a common factor is present or 
whether there may be more than one factor. Factor loadings of at 
least 0.40 are desirable for an item to be included in a possible 
scale.

(d) Use the eigenvalues to establish the number of factors to be 
extracted. The number is normally determined by those with a 
value of at least 1.0. A scree plot of the values can assist this decision.

(e) Rerun the unrotated solution with this number of factors specified 
and examine the results.

(f) Try a rotated solution to see if there are subscales within a general 
scale that may be present, and to confirm the existence of other 
scales that may be suggested by the unrotated solution. Use loadings 
of at least 0.40, and possibly higher, to determine whether an item 
should be included in a scale or subscale.

(g) Items that do not have at least a 0.40 loading on any factor, or 
which load on more than one factor, should be considered for 
exclusion.

(h) If items are excluded at this stage, the analysis should be rerun to 
confirm any scales and/or subscales, and to see if the loadings have 
been improved.

(i) If there are sufficient of them, consider running a factor analysis on 
the excluded items. This may not be worthwhile if there are less 
than four or five items.

(j) Apply Cronbach’s alpha to all scales and subscales to confirm their 
reliability.

(k) Create and label the scales and subscales that have survived.
(l) If multiple scales and/or subscales have been produced, prepare a 

correlation matrix and examine the values of the coefficients.
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Notes

1The more correct procedure would be to calculate median scores as the response categories
only form ordinal-level measurement. However, to do this precisely enough is very cumbersome
(see pp. 69–71 for the procedure). The mean is a useful approximation for this purpose.

2While this method is rather crude, it is useful for small samples in which the analysis can be
done manually. The basis of the procedure can be readily understood, and the outcome may be
as effective as more complex and less readily grasped procedures.

3A common rule of thumb is to reject any item with a coefficient of less than 0.30, but I wish
to set a stricter criterion.

4Two other methods are also available, theta and omega, but they will not be considered here.
See Maxim (1999) for a brief discussion.

5See Field (2000: 443) for a brief review of more detailed considerations.
6Factor analysis is a useful tool. However, it has many features that cannot be understood

intuitively. It requires careful study to understand how to use it sensibly. As the mathematics
on which it is based is beyond many social researchers, it may be wise to seek the advice of a
sympathetic expert if what follows is unclear or is of insufficient mathematical sophistication
for you.

7Factor analysis has two main uses: to explore the underlying factors present in responses to
a set of measures, and to confirm whether a set of measures are related in the form specified in
a model of their relationships. Exploratory factor analysis sets out with the assumption that
everything is related to everything, while a confirmatory factory analysis specifies how the vari-
ables might be related and then sets out to show whether this is the case. We are using only the
former here.

8There are in fact a number of versions of factor analysis. The version used here is ‘principle
component analysis’, which appears to be the most commonly used. An explanation of the
differences between the versions is beyond the scope of this discussion. For technical details,
see the two contributions by Kim and Mueller (1978a, 1978b) that are also included in Lewis-
Beck (1994).

9This concept comes from geomorphology and refers to a steep slope of rubble that is formed
as the result of natural erosion of a large rock formation. When such a slope meets a plain or
valley below, there is a sudden change in the gradient from steep to flat.

10This is a bit of a mouthful, and just happens to be a very common method.
11It is worth noting that ‘fins’ and ‘adkv’ also appeared as strong factors in the analysis of the

1989/90 samples.
12See Hair et al. (1998) and Field (2000: 438–40) for discussions of the methods of rotation,

and various sections in Lewis-Beck (1994) for greater detail.
13In fact, in the 1989/90 studies, ‘fins’ rather than ‘fns’, ‘adv’ rather than ‘adkv’, ‘cx’ rather

than ‘cm’, and some other combinations, formed subscales (see Blaikie, 1992). This illustrates
how scales can change with different samples.

14As the literature on the meaning and measurement of social class is vast, this is not the
place to engage in a debate about the merits of such an index.

15This procedure is easily achieved with the facilities in programs such as SPSS.
16Other variables, such as income and country of birth, could also be used if they were available.
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8

Real Data Analysis: Answering Research Questions

Introduction

The time has come to apply the methods of data analysis discussed in Chapters
3–6 to answering the six research questions that were stated in Chapter 2. After
all, it is by answering research questions that we advance knowledge of social
phenomena and, to get our answers, we need to use appropriate methods of
data analysis. It is important to note that what follows in this chapter is not
intended to be a model of how analysis should be presented in a research
report. Rather, the aim is to explore various ways in which the data from the
two samples could be analyzed to answer the research questions. In the process,
some comparisons are made between alternative methods associated with dif-
ferent levels of measurement. This is achieved by working with a set of vari-
ables in both their categorical and metric forms, where this is possible. In real
research, the aim would be to work at the highest level of measurement in
order to obtain the benefits of more sophisticated procedures. However, by
making these comparisons, I hope to show that the procedures appropriate
for lower levels of measurement can frequently add to our understanding of
the data.

The approach taken in the analysis is pragmatic rather than following statis-
tical theory slavishly. It should also be noted that only limited interpretations
are made of the results. Serious theoretical discussion is beyond the scope of
this book.

Some of the research questions to be examined require univariate descriptive
analysis, some bivariate descriptive analysis and others explanatory analysis.
They will all involve the use of inferential analysis as the two samples were
selected by probability methods. Hence, this chapter is structured around the
first three methods of analysis, with inferential analysis being undertaken where
appropriate.

Univariate Descriptive Analysis

In addition to the examples used in Chapter 3, at the end of the previous
chapter some preliminary descriptive analysis was undertaken in order to establish
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the characteristics of the samples. However, in this section of the chapter, we
will attempt to answer the first two research questions, both of which are
‘what’ questions. While they are not the only ‘what’ questions in the list, they
are the only two that require univariate analysis. They are:

1. To what extent do students and urban residents hold different environmental
worldviews?

2. To what extent do they practise environmentally responsible behaviour?

It would be possible to ask these questions with reference to only one sample
at a time: ‘What environmental worldviews are held by students?’, and the same
for residents. The fact that these research questions require comparative analy-
sis between the characteristics of students and residents just means that a more
elaborate form of description is necessary.

Environmental Worldview

To answer research question 1, all the Environmental Worldview scales and sub-
scales are used, with both the metric and categorical forms of the variables.
While this makes the analysis more complex, it provides a comprehensive
picture and may raise some further questions for consideration. Table 8.1 presents
the relevant data.

The answer to research question 1 is, of course, dependent on how EWV is
measured. In Chapter 7, factor analysis was used to demonstrate that the set of
24 items can be regarded as consisting of four scales, with one scale (the
general scale) having three subscales. Hence, there are various aspects of EWV
that can be examined and used to compare the Student and Resident samples.
The first thing to note is that in both samples the mean scores on all except one
of the seven scales and subscales are above the midpoint (3.0) of the distribu-
tions, that is, they are skewed in a pro-environmental direction. The variable
with the highest mean scores is ALTENGY, which indicates that respondents
have more positive views on this issue than on any of the others. The exception
to the positive trend in the pattern is for SCITEK. The items in this scale were
coded to indicate that being in favour of scientific or technological solutions
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Table 8.1 Sample comparisons of Environmental Worldview metric variables
Students (n = 465) Residents (n = 402)

Metric variables x–1 s x–2 s x–1 – x–2 p
EWVGSC 3.97 0.54 3.81 0.52 +0.16 <0.001

HUSENV 3.83 0.75 3.66 0.75 +0.17 <0.001
ECGROW 3.70 0.79 3.64 0.78 +0.06 n.s.
GOVCONT 4.17 0.68 4.02 0.59 +0.15 <0.001

SCITEK 2.97 0.84 2.86 0.69 +0.11 <0.05
IMPACT 4.01 0.64 4.00 0.60 +0.01 n.s.
ALTENGY 4.30 0.61 4.13 0.63 +0.17 <0.001
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indicated a negative attitude to the environment. This is based on the assumption
that it is not necessary to conserve forests or fossil fuels because science will
find alternatives to forest products and existing sources of energy. Clearly, this
coding assumption is debatable, as finding economically viable alternatives to,
say, fossil fuels in wind, wave and solar power requires technological innova-
tions. However, even if the coding had been reversed, the mean score would be
3.03 (Students) and 3.14 (Residents), both of which are still considerably lower
than any of the other means. Therefore, there appears to be something differ-
ent about the responses to the SCITEK items, perhaps because it is not really
an environmental worldview variable. This scale is measuring something differ-
ent. Just how we make sense of the differences in responses to these EWV
scales and subscales requires an explanatory account that is beyond the scope
of the present discussion. Perhaps you can find or develop a theory that could
be tested to explain these patterns.

An examination of the differences in EWV between Students and Residents
shows that, in every case, Student mean scores are higher than those of Resi-
dents (see Table 8.1). The largest differences are for EWVGSC (0.16),
HUSENV (0.17), GOVCONT (0.15) and ALTENGY (0.17), while the small-
est differences are for ECGROW (0.06), SCITEK (0.11) and IMPACT (0.01).
However, all of these are rather small.

Now the question arises as to whether the differences that have been found
between the samples could also be expected to exist between the populations
from which the samples were drawn. To establish this, we have to apply an
appropriate method of inferential analysis. To test the difference between the
Student and Resident means, we need to use the group t test (see pp. 193–7).
First, the pooled estimate of the standard deviation must be calculated using
equation (6.7), which applies to the situation where the two standard devia-
tions are similar but the sample sizes are different. Then this value is entered
into equation (6.9) to calculate the standard error of the difference, for samples
of different sizes. Finally, this value is entered into equation (6.6) to arrive at a
value for t. Knowing the degrees of freedom, this is then checked against the t
distribution to see if it exceeds that required for the test as defined in terms of
level of confidence and whether it is one-tailed or two-tailed (see Table 3 in
Appendix D). The levels of significance for the EWV variables are shown in
Table 8.1 for a two-tailed test and for the highest level of significance.1

All except three of the differences between the means are very significant
(being beyond the 0.001 level), SCITEK being 0.05 and ECGROW and
IMPACT both not significant. The level of significance for the latter two is not
surprising because the differences are very small, 0.06 and 0.01. What is sur-
prising is that the others are highly significant even though their differences are
also quite small. However, the test of significance does not tell us how we
should interpret such differences or what we should do with them, only that
we can be very confident that they also exist between the two populations.

A major disadvantage in comparing means is that the means themselves tell
us very little about the distributions; the mean is only a measure of central
tendency. To get a better idea about the distributions, we can examine the
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percentage differences across the categorical versions of the variables (see
Table 8.2). What we find is that the percentages in the ‘Very high’ categories,
and sometimes in the ‘High’ category, are consistently higher for Students than for
Residents. For example, on the EWVGSC scale, the difference is 10.9 per cent in
the ‘Very high’ category. Similarly, the percentages for Students are generally
lower in the ‘Moderate’ and ‘Low’ categories, and certainly when these two
categories are combined. Again, on the EWVGSC scale, the difference in the
‘Low’ category is 11.0 per cent. In order to make these differences clearer, we
can create some pictorial representation of the distributions, such as bar charts.
This can be illustrated with the EWVSGC scale (see Figure 8.1). There are
clearly differences in the distributions that the mean scores do not reveal. The
patterns are similar for the other scales and subscales.

Environmentally Responsible Behaviour

To answer research question 2, the WILLACT scale and the three metric
measures of Environmentally Responsible Behaviour (ERB) are used: Support
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Table 8.2 Sample comparisons of Environmental Worldview categorical variables
(percentages)

Categorical variables Students Residents Difference

EWVGSC Low 18.9 29.9 −11.0
Moderate 23.4 27.9 −4.5
High 26.7 22.1 +4.6
Very high 31.0 20.1 +10.9

HUSENV Low 18.1 24.9 −6.8
Moderate 30.8 31.1 −0.3
High 25.4 26.6 −1.2
Very high 25.8 17.4 +8.4

ECGROW Low 5.6 13.7 −8.1
Moderate 41.9 31.6 +10.3
High 28.6 35.1 −6.5
Very high 23.9 19.7 +4.2

GOVCONT Low 14.2 17.7 −3.5
Moderate 33.1 43.0 −9.9
High 17.4 20.1 −2.7
Very high 35.3 19.2 +16.1

SCITEK Low 18.9 19.4 −0.5
Moderate 23.9 33.8 −9.9
High 32.9 29.4 +3.5
Very high 24.3 17.4 +6.9

IMPACT Low 19.4 18.9 +0.5
Moderate 37.0 38.8 −1.8
High 20.2 23.9 −3.7
Very high 23.4 18.4 +5.0

ALTENGY Low 17.6 18.4 −0.8
Moderate 23.7 41.0 −17.3
High 32.0 22.4 +9.6
Very high 26.7 18.2 +8.5
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for Environmental Groups (Support Groups), Avoiding Environmentally
Damaging Products index (Avoid Products) and the Recycling index. Support
Groups is an ordinal-level variable with three response categories, ‘Regularly’,
‘Occasionally’ and ‘Never’. If this is recoded into two categories, ‘Yes’ (1) and ‘No’
(0), it becomes a dummy variable. The relevant data are presented in Table 8.3.

While the means produced for the WILLACT scale can be interpreted in a
similar way to the EWV scales and subscales, the other three metric variables
have to be interpreted differently. The mean for Support Groups must lie
somewhere between 0 and 1, the means for the Avoid Products index summa-
rize the number of products mentioned and, in the case of the Recycling index,
the magnitude of the means is determined by weights used for the four
response categories of the four types of materials recycled.

In terms of respondents’ willingness to take some positive actions on environ-
mental issues (WILLACT scale), we find similar mean scores to those for the
EWV variables, and a relatively small difference between the samples. The
mean for Students is 0.21 higher than for Residents (see Table 8.3). A similar
pattern can be found for Support Groups; the Student mean on the
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Figure 8.1 EWVGSC categories (both samples)

Table 8.3 Sample comparison of Environmentally Responsible Behaviour metric variables
Students (n = 465) Residents (n = 402)

Metric variables x–1 s x–2 s x–1 – x–2 p

WILLACT 3.59 0.75 3.38 0.73 + 0.21 <0.001
Support Groups 0.56 0.50 0.39 0.49 + 0.17 <0.001
Avoid Products 1.38 1.05 1.41 1.05 − 0.03 n. s.
Recycling 6.51 2.08 7.62 1.26 − 1.11 <0.001
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dichotomized variable is 0.17 higher than for the Residents. When the results
are examined for the Avoid Products index we find only a minor and negative
difference (−0.03) between the two samples, meaning Residents have higher
means. In the case of Recycling, the difference is also negative (−1.11).

Again, we need to know whether these differences exist between the two
populations. The group t test is the appropriate statistic, using the same proce-
dure as just outlined for testing the significance of the difference between the
means on the EWV scales and subscales (see Table 8.3). All but one of the ERB
variables is significant at beyond the 0.001 level, the exception being Avoid
Products, which is not significant (how could it be when the difference is only
0.03!). Therefore, with this exception, we can also expect these differences in
sample means to exist between the populations, and with great confidence.
However, the differences are again relatively small.

Table 8.4 presents the categorical versions of these variables, plus Type of
Support for environmental groups.2 In the case of WILLACT, we find that in
the ‘Very high’ category the Student percentage is 13.5 higher than for the
Residents, and the reverse is the case for the ‘Low’ category (8.4 per cent). The
differences in Willingness to Act are clearly evident in Figure 8.2.

In both samples, there is a small core of respondents (13.9 per cent of
Students and 12.7 per cent of Residents) who ‘Regularly’ support environmen-
tal groups (see Table 8.4). However, the Students are more likely to provide
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Table 8.4 Sample comparison of Environmentally Responsible Behaviour categorical
variables (percentages)

Categorical variables Students Residents Difference

WILLACT Low 21.5 29.9 −8.4
Moderate 30.1 33.3 −3.2
High 24.5 26.4 −1.9
Very high 23.9 10.4 +13.5

Support Groups Never 43.9 60.7 −16.8
Occasionally 42.2 26.6 +15.6
Regularly 13.9 12.7 +1.2

Type of Support No support 42.5 60.7 −18.2
Moral support 10.6 6.7 +3.9
Donations 23.9 14.2 +9.7
Financial member 7.2 11.2 −4.0
Attend meetings 3.5 1.7 +1.8
Voluntary work 9.5 2.7 +6.8
Demonstrate 0.7 1.2 −0.5
On committees 2.2 1.5 +0.7

Avoid Products Yes 77.5 77.4 +0.1
None 25.5 25.1 +0.4
One 28.6 26.6 +2.0
Two 27.9 30.6 −2.7
Three or more 17.9 17.7 +0.2

Recycling Low 22.3 6.7 +15.6
Moderate 33.5 16.5 +17.0
High 39.4 64.1 −24.7
Very high 4.8 12.7 −7.9
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‘Occasional’ support (42.2 per cent compared with 26.6 per cent) and the
Residents are more likely to provide ‘No support’ (43.9 per cent and 60.7 per
cent, respectively).

Support for Environmental Groups was also measured in terms of the kind
of support offered. Seven categories were provided in a random order and respon-
dents were asked to tick as many as were relevant to them. Later, the categories
were recoded to form a hierarchy from low to high, the first being added to
include those who did not tick any category: ‘No support’, ‘Moral support only’,
‘Donations’, ‘Financial member’, ‘Attend meetings’, ‘Voluntary work’, ‘Demon-
strate’ and ‘On committees’. The highest-level category ticked was then coded
as the response. This measurement also shows Students as being more active
supporters than Residents, perhaps because they have more opportunities with
the existence of campus-based environmental groups, and may have stronger
peer support for such activities. However, the data do not support the view that
participating in demonstrations on environmentally related issues is a common
student activity (see Table 8.4).3

When the results are examined for Avoid Products, both the ‘Yes/No’
response and the number of products mentioned, we find only minor differ-
ences between the samples. The ‘Yes’ response differs by only 0.1 per cent, and
the percentages for the four categories covering the number of products
mentioned are very similar. 

When we come to the Recycling index, the ordinal categories confirm the
reversed pattern found in the difference between the means. In the ‘Very high’
Recycling category, the Resident percentage is 7.9 per cent higher than for the
Students, and the difference is 15.6 per cent in the reverse direction in the
‘Low’ category. The sample differences on these three ERB variables are clearly
evident in Figures 8.3–8.5.
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Figure 8.2 WILLACT categories (both samples)
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What we seem to have found are relatively small but consistent differences
between the samples in their EWV, in their Willingness to Act in support of
environmental causes, and in their Support for Environmental Groups. A greater
proportion of Students than Residents are environmentalists. However, when it
comes to Avoiding Environmentally Damaging Products, the differences largely
disappear and for Recycling behaviour the situation is reversed; Residents are
more regular recyclers than Students.
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We will come back to the differences between the samples on these variables
later in the chapter. At this point, it is worth exploring why there are differ-
ences in the patterns. On the issue of Avoiding Products, it is possible that
media campaigns that were mounted in the late 1980s and early 1990s, parti-
cularly on the connection between aerosol sprays and the developing hole in the
ozone layer, caught most people’s attention. This is supported by the fact that
by far the most commonly mentioned product to be avoided was spray cans;
almost everyone in the two samples knew about CFCs. Southern hemisphere
residents are now all too familiar with the consequences of ozone depletion.
Other products, such as household chemicals, also got caught up in this campaign.
On the issue of recycling, there may be some practical explanations. For a start,
students are likely to have fewer household responsibilities and are therefore
less likely to have to be concerned about recycling household waste. In addi-
tion, the introduction of convenient systems for the separation and collection
of household garbage has meant that most householders do this fairly automati-
cally. They do not have to be avid environmentalists to be motivated to under-
take this form of environmentally responsible behaviour.

Bivariate Descriptive Analysis

Three of our research questions, 3, 4 and 5, require some form of associational
analysis. As we saw in Chapter 4, associational analysis is a search for patterns
in the data, within a sample or population rather than between them. While
such analysis is just an elaborate form of description, it serves two purposes.
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Figure 8.5 Recycling index (both samples)

3055-ch08.qxd  1/10/03 3:38 PM  Page 257



From one point of view, it is necessary to establish associations before we can
begin to undertake explanatory analysis. From another point of view, patterns
of association among variables can provide some understanding, even possible
explanations, of a social phenomenon and may facilitate making predictions
about it. For the present, we will be concerned with using the most appropri-
ate method for establishing the associations that are called for in the following
research questions.

3. In what ways and to what extent is environmentally responsible behaviour
related to environmental worldviews?

4. In what ways and to what extent is age related to environmental world-
views and environmentally responsible behaviour?

5. In what ways and to what extent is gender related to environmental world-
views and environmentally responsible behaviour?

Environmental Worldview and Environmentally Responsible Behaviour

Given the range of variables used to measure both EWV and ERB, including
both metric and categorical forms, a variety of measures of association can be
used to answer question 3.

Metric Variables

Let us start with the metric variables. The associations between the EWV scales
and subscales, for the combined samples, were examined in Table 7.12. It is
now possible to provide the coefficients for the two samples separately, and to
include the metric versions of the ERB variables. The appropriate statistic for
this is Pearson’s r (see Tables 8.5 and 8.6).4

Focusing for the moment on the EWV scales and subscales, it is evident that
there are some differences between the samples in the correlation coefficients,
but the overall pattern in both is consistent with those for the combined
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Table 8.5 Correlation matrix for EWV and ERB variables (Pearson’s r; Students)
EWV & ERB 1 1a 1b 1c 2 3 4 5 6 7 8

1 EWVGSC 1.00
1a HUSENV 0.78 1.00
1b ECGROW 0.69 0.35 1.00
1c GOVCONT 0.75 0.42 0.40 1.00

2 SCITEK 0.48 0.36 0.43 0.22 1.00
3 IMPACT 0.54 0.36 0.36 0.49 0.33 1.00
4 ALTENGY 0.46 0.26 0.34 0.39 0.08*** 0.28 1.00
5 WILLACT 0.73 0.52 0.49 0.57 0.40 0.43 0.41 1.00
6 Support Gps 0.40 0.32 0.28 0.25 0.32 0.21 0.19 0.50 1.00
7 Avoid Prods 0.43 0.34 0.25 0.28 0.30 0.19 0.19 0.49 0.39 1.00
8 Recycling 0.20 0.12** 0.14* 0.19 0.11** 0.09** 0.13* 0.24 0.23 0.18 1.00

***Not significant. **p < 0.05. *p < 0.01. For all other coefficients, p < 0.001.
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samples. However, there is a tendency for the coefficients in the Resident sample
to be higher than in the Student sample. Most of the differences are around
0.05, and only two exceed 0.10, between HUSENV and ECGROW (0.11) and
SCITEK and IMPACT (0.18). With one exception in the Student sample
(SCITEK and ALTENGY), and two exceptions in the Resident sample (SCITEK
with both IMPACT and ALTENGY), all coefficients are significant at the 0.001
level. The exception in the Student sample is not significant, while the two in
the Resident sample are at the 0.01 level.

When we examine the associations between the four ERB variables, we find
that the strongest ones in both samples are WILLACT with Support Groups
(Students, r = 0.50; Residents, r = 0.44)5 and WILLACT with the Avoid Prod-
ucts index (Students, r = 0.49; Residents, r = 0.44). The weakest associations
in both samples are all between the Recycling index and the three other vari-
ables. For Recycling with WILLACT, r = 0.24 in the Student sample and
r = 0.09 in the Resident sample; with Support Groups, 0.23 and 0.14, and with
Avoid Products, 0.18 and 0.16, respectively. The coefficients are all significant
at the 0.001 level in the Student sample, but the levels are mostly lower in the
Resident sample, with the association between WILLACT and Recycling being
not significant (see Tables 8.5 and 8.6).

Now we come to the associations between EWV and ERB (research question 3).
As there are 28 possible combinations here, we will not discuss them all. The
central Environmental Worldview variable, EWVGSC, shows a strong association
with WILLACT (Student r = 0.73; Resident r = 0.62), and moderate associations
with both Support Groups (0.40 and 0.41) and Avoid Products (both 0.43). As
might be expected, the coefficients with Recycling are weaker (Student r = 0.20;
Resident r = 0.04). All the associations are significant at the 0.001 level, except
that with Recycling for Residents, which is not significant. You may like to explore
the differences on the other EWV scales and subscales (see Tables 8.5 and 8.6).

Just a few comments here about these patterns. It is interesting to note that
the associations between WILLACT and the other three ERB variables are
generally stronger than between the EWV scales and subscales and the ERB
variables. Hence, WILLACT turns out to be a better predictor of ERB than
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Table 8.6 Correlation matrix for EWV and ERB variables (Pearson’s r; Residents)
EWV & ERB 1 1a 1b 1c 2 3 4 5 6 7 8

1 EWVGSC 1.00
1a HUSENV 0.80 1.00
1b ECGROW 0.72 0.46 1.00
1c GOVCONT 0.72 0.33 0.42 1.00

2 SCITEK 0.42 0.37 0.36 0.24 1.00
3 IMPACT 0.53 0.33 0.38 0.47 0.15** 1.00
4 ALTENGY 0.49 0.33 0.33 0.44 0.13** 0.33 1.00
5 WILLACT 0.62 0.35 0.43 0.56 0.24 0.42 0.44 1.00
6 Support Gps 0.41 0.29 0.34 0.30 0.23 0.19 0.28 0.44 1.00
7 Avoid Prods 0.43 0.33 0.34 0.30 0.22 0.19 0.26 0.44 0.35 1.00
8 Recycling 0.04*** 0.03*** 0.08*** −0.01*** 0.02*** 0.02*** −0.06*** 0.09*** 0.14 0.16 1.00

***Not significant. **p < 0.05. *p < 0.01. For all other coefficients, p < 0.001.
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EWVGSC, and certainly much better than the other EWV scales and subscales.
It is perhaps not surprising that GOVCONT has comparatively strong associa-
tions with the ERB variables. They are all concerned with interventions on
behalf of the environment, one by governments and the other by individuals.

Categorical Variables

Establishing associations between the categorical forms of the variables is rather
more cumbersome than for the metric forms. It is necessary to prepare cross-
tabulations for each pair of variables. Apart from the 28 combinations between
the seven EWV scales and subscales and the four ERB variables, there are 21
between the EWV scales and subscales themselves and another 6 between the ERB
variables. And then there are two samples, making a total of 110 cross-tabulations!
This is how many correlation coefficients there are altogether in Tables 8.5 and 8.6.
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Table 8.7 Cross-tabulations between EWVGSC and WILLACT, Support Groups, Avoid
Products and Recycling (percentages; both samples)

EWVGSC
Students Residents

WILLACT Low Mod. High V. high Total Low Mod. High V. high Total
Low 64 27 9 2 22 64 21 16 6 30
Moderate 26 41 38 17 30 23 49 39 21 33
High 10 26 33 25 24 12 27 34 38 26
Very high 0 6 20 56 24 1 3 11 35 10

Gamma = 0.70; p < 0.001 Gamma = 0.62; p<0.001

Support Groups

Never 69 55 45 20 44 85 63 56 26 61
Occasionally 28 39 50 47 42 12 30 28 41 27
Regularly 3 6 6 33 14 3 6 16 33 13

Gamma = 0.52; p < 0.001 Gamma = 0.57; p<0.001

Avoid Products

None 52 29 20 11 25 51 22 11 6 25
One 30 28 35 22 29 27 28 25 27 27
Two 12 31 30 34 28 18 33 39 36 31
Three+ 6 12 15 32 18 4 17 25 31 18

Gamma = 0.42; p < 0.001 Gamma = 0.47; p < 0.001

Recycling

Low 35 22 23 13 22 9 6 2 9 7
Moderate 23 34 40 35 34 20 15 15 15 16
High 40 39 34 44 39 58 64 72 65 64
Very high 2 5 3 8 5 13 14 11 11 13

Gamma = 0.16; p < 0.01 Gamma = 0.05; not significant

Total 100 100 100 100 100 100 100 100 100 100
n 88 109 124 144 465 120 112 89 81
402
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Therefore, we will need to be selective. I will concentrate on four cross-
tabulations, between EWVGSC and the four ERB variables (see Table 8.7).

With the exception of Recycling, the forms of the relationships in both
samples are generally linear and very similar. The associations between EWVGSC
and WILLACT are strong in both samples (Student gamma = 0.70; Resident
gamma = 0.62). Similar patterns can be found with Support Groups; the asso-
ciations are moderate in both samples (0.52 and 0.57, respectively). However,
in the Student sample, there is a tendency for the relationship to be slightly
curved. The relationship in the Resident sample is definitely linear.

There is a moderate, linear relationship between EWVGSC and Avoid Prod-
ucts in the Student sample (gamma = 0.42). The relationship is slightly stronger
for Residents (gamma = 0.47), but there is a slight curve due mainly to both the
‘2’ and ‘3+’ Avoid Products categories having overrepresentation in both the
‘High’ and ‘Very high’ EWV categories. However, this degree of curve should
have little bearing on the calculation of both Pearson’s r and gamma. 

The situation with the Recycling categories is very different. The coefficient
is very weak in the Student sample and close to zero, and not significant in the
Resident sample. An inspection of the cells with overrepresentation will indi-
cate why this is so.

These contingency tables can help us to understand the nature of the associ-
ations – in particular, to spot any deviations from the linear form. Pearson’s r
can mask such deviations, with the result that its coefficients may be conserv-
ative at best, and close to zero at worst. I believe it is good practice to recode
metric-level variables into categories and then examine the contingency tables
for evidence of the form of the relationship. The same thing can be achieved by
plotting graphs of one variable on the other.

To compensate for not examining all 110 contingency tables, two matrices of
the gamma coefficients from all the cross-tabulations are presented in Tables 8.8
and 8.9.6 As software packages such as SPSS do not generate such matrices,
they have been constructed from the coefficients produced from individual
contingency tables. They provide a comparison with the Pearson’s r coefficients
that appear in Tables 8.5 and 8.6.
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Table 8.8 Correlation matrix for EWV and ERB variables (gamma; Students)
EWV & ERB 1 1a 1b 1c 2 3 4 5 6 7 8

1 EWVGSC 1.00
1a HUSENV 0.83 1.00
1b ECGROW 0.72 0.42 1.00
1c GOVCONT 0.75 0.46 0.42 1.00

2 SCITEK 0.49 0.39 0.46 0.20 1.00
3 IMPACT 0.59 0.45 0.41 0.53 0.35 1.00
4 ALTENGY 0.48 0.27 0.43 0.47 0.11** 0.37 1.00
5 WILLACT 0.70 0.52 0.45 0.56 0.40 0.45 0.47 1.00
6 Support Gps 0.52 0.41 0.42 0.38 0.43 0.34 0.34 0.71 1.00
7 Avoid Prods 0.42 0.35 0.26 0.28 0.35 0.22 0.21 0.53 0.53 1.00
8 Recycling 0.16* 0.12** 0.13** 0.17* 0.10*** 0.05*** 0.13** 0.21 0.23 0.25 1.00

***Not significant. **p < 0.05. *p < 0.01. For all other coefficients, p < 0.001.
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Comparing Metric and Categorical Variables

There is a high level of agreement between the metric (r) and categorical
(gamma) coefficients. In both samples, the differences are almost all in the
second decimal place, and most are no greater than 0.05. However, one vari-
able, Support Groups, is a major exception. In the Student sample, all but two
of the gamma coefficients with the other variables are at least 0.10 higher, and
one is 0.21 higher than the corresponding r coefficients (see Tables 8.5 and 8.8).
The differences between the two coefficients in the Resident sample are negli-
gible, again with Support Groups being the exception – here the differences are
even greater than in the Student sample (see Tables 8.6 and 8.9).

How can we explain the fact that the gamma coefficients are higher than r
for the Support Groups variable in association with all the others? One possi-
bility is that the relationship is curvilinear, which leads to r being an underesti-
mate of the overall level of association. Another is that the distribution is badly
skewed, and that this has affected the values for r. The first possibility can be
dismissed as the variable is dichotomized, with the result that a curve cannot
be detected. However, the fact that the variable has been dichotomized to
allow the use of Pearson’s r may partly account for the lower r values. When
the three ordinal-level categories for Support Groups are assumed to be interval-
level, and r is calculated on this basis, the values are, on average, about 0.05
higher in the Student sample and 0.03 higher in the Resident sample. In the
Student sample, the differences are more in line with those for the other vari-
ables, mostly around 0.07, although still 0.16 with WILLACT. However, the
differences remain higher in the Resident sample, ranging from 0.10 to 0.18.

To explore this further, let us examine two cross-tabulations for Support
Groups with EWVGSC (Table 8.7) and WILLACT (Table 8.10). In the
Student sample, the dichotomized version of Support Groups is distributed
reasonable evenly (44 per cent for ‘No’ and 56 per cent for ‘Yes’). However,
when the three-category version is used the distribution is skewed. There is also
a definite curve in the relationships with EWVGSC and, to a lesser extent, with
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Table 8.9 Correlation matrix for EWV and ERB variables (gamma; Residents)
EWV & ERB 1 1a 1b 1c 2 3 4 5 6 7 8

1 EWVGSC 1.00
1a HUSENV 0.83 1.00
1b ECGROW 0.76 0.52 1.00
1c GOVCONT 0.72 0.37 0.48 1.00

2 SCITEK 0.41 0.36 0.40 0.28 1.00
3 IMPACT 0.62 0.41 0.48 0.58 0.23 1.00
4 ALTENGY 0.53 0.40 0.37 0.49 0.17* 0.39 1.00
5 WILLACT 0.62 0.37 0.43 0.55 0.26 0.41 0.50 1.00
6 Support Gps 0.57 0.43 0.49 0.46 0.36 0.37 0.47 0.63 1.00
7 Avoid Prods 0.47 0.36 0.35 0.31 0.26 0.20* 0.30 0.42 0.49 1.00
8 Recycling 0.05***0.01*** 0.04***−0.05***−0.04*** 0.03***−0.03*** 0.12*** 0.22* 0.17** 1.00

***Not significant. **p < 0.05 level. *p < 0.01 level. For all other coefficients p < 0.001 level.
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WILLACT. In the Resident sample, the distribution on the dichotomized
version of Support Groups is badly skewed (61 per cent ‘No’ and 39 per cent
‘Yes’), and this makes the three-category version even more skewed. However,
with both EWVGSC and WILLACT, the relationships are essentially linear.
Therefore, the explanations for the ‘deviant’ differences in the measures of
association for Support Groups might be different for each sample. Neverthe-
less, neither explanation seems to provide a satisfactory answer.

Conclusion

The overall answer to research question 3, concerning the associations between
EWV and ERB is as follows:

1. With one exception, the relationships are positive, generally linear and very
significant in both samples.

2. The strengths of the associations vary depending on which variables are
considered.

3. Of all the Environmental Worldview scales and subscales, EWVGSC has
the strongest associations with each of the ERB variables.

4. All the EWV scales and subscales have stronger associations with
WILLACT than the other ERB variables.

5. The strengths of the associations between the EWV scales and subscales on
the one hand, and Support Groups and Avoid Products on the other, are
very similar.

6. The Recycling variable has the weakest associations with the EWV scales
and subscales, all of which are not significant in the Resident sample.

7. With the latter exception, the patterns of the associations in the two samples
are very similar.

This analysis cannot be interpreted as suggesting any causal relationships
between these variables. However, on theoretical grounds, it could be argued
that Environmental Worldview influences Willingness to Act on environmental
issues and that this willingness can lead to Environmentally Responsible Behavi-
our of various kinds. This possibility will be taken up later in the chapter.
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Table 8.10 Cross-tabulations of Support Groups with WILLACT (percentages; both
samples)

WILLACT
Students Residents

Support Groups Low Mod. High V. High Total Low Mod. High V. High Total

Never 79 59 31 8 44 87 60 49 14 61
Occasionally 16 40 61 49 42 13 33 31 36 27
Regularly 5 1 8 43 14 0 7 20 50 13

Total 100 100 100 100 100 100 100 100 100 100
n 98 140 113 111 462 120 134 106 42 402

Gamma = 0.71; p <0.001 Gamma = 0.63; p < 0.001
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Age, Environmental Worldview and Environmental Responsible Behaviour

Research question 4 is concerned with the associations between Age and the
EWV and ERB variables. The reason for asking this question is that previous
research has shown some consistent patterns as well as some alternatives. For
the most part, environmentalism seems to be of more concern to the young
than to the elderly, that is, there is generally a linear, negative association
between Age and environmentalism. However, the two 1989/90 samples
showed a curvilinear relationship in which respondents between 30 and 40 had
the most positive EWV, followed by the younger respondents and then the
elderly. An explanation for this was suggested in terms of both an ‘ageing’ and
a ‘cohort’ influence (see Blaikie, 1992). The latter refers to the fact that the
early middle-aged cohort (in 1989) was, in the late 1960s and early 1970s, part
of the youth cohort. At that time, there was a high level of environmental
awareness and concern, and it was the youth who were heavily involved in
environmental issues. It was suggested that this age cohort has maintained its
environmental commitment and has responded more favourably than the other
age cohorts to the ‘second wave’ of environmentalism that commenced in the
late 1980s. If this theory is correct, then the peak in environmentalism should
now appear in a later age category than was found in 1989/90.

Metric Variables

In order to explore this idea, a number of types of analysis can be undertaken.
However, because of the very skewed Age distribution in the Student sample,
the analysis will only be done with the Resident sample. The simplest analysis
is to correlate Age (in years) with the metric versions of the EWV and ERB vari-
ables. Of course, this will be based on the assumption that the relationships are
linear. We can explore deviations from linearity with the categorical versions of
the variables.

Table 8.11 reports Pearson’s r for Age with the metric versions of the EWV
and ERB variables. With one exception, all the coefficients are negative, which
indicates that as Age increases EWV and ERB decrease; the young are stronger
environmentalists than the elderly. The strongest associations are with
EWVGSC (−0.34), HUSENV (−0.31) and WILLACT (−0.31), followed
closely by ECGROW (−0.27), Support Groups (−0.26) and Avoid Products
(−0.25). The other EWV variables have rather weak coefficients, and for
Recycling it is almost zero. All the coefficients above 0.25 are significant at the
0.001 level, and two, both those below 0.10, are not significant.

Another way to examine these associations is to calculate the mean scores for
each of the Age categories, six in this case (see Table 8.12). What we are look-
ing for are changes in the means across the Age categories, for each of the vari-
ables. With the exception of Recycling, there is a consistent pattern. The
highest mean scores are for either the ‘18–24’ or the ‘35–44’ Age categories.
There is a dip in the means in the ‘25–34’ Age category and then the scores tail
off in the older Age categories. Take the EWVGSC for example (variable 1 in
the table). The highest mean score is for the ‘18–24’ category (4.03), followed
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closely by the ‘35–44’ category (3.99), then, in order, the ‘25–34’ (3.89),
‘45–54’ (3.85), ‘55–64’ (3.71) and ‘65+' (3.46) categories. For some of the
other variables, the mean scores for the ‘35–44’ category are higher than for the
‘18–24’ category, and the ‘45–54’ category are sometimes higher than the ‘25–34’
category. This is the case for ECGROW (variable 1b) and ALTENGY (variable 4)
but, more particularly, for Support Groups (variable 6) and Avoid Products
(variable 7). It is in the area of ERB that the bimodal distribution in the mean
scores is the most obvious, with the ‘35–44’ Age category having the highest
mean scores.7

This pattern has some similarities to and some differences from that in the
1989/90 data. It is clear that the peak in these earlier studies has moved on
about five years, precisely the difference between the dates of the two studies.
However, the other peak in the youngest Age category is new. Perhaps this age
cohort has been most influenced by the ‘second wave’ of environmentalism.
They may either represent a second peak to pass through the age cohorts, or
they may represent a more lasting plateau in the level of environmentalism.
Such an interpretation of these data goes against the idea that level of environ-
mentalism simply declines with age and suggests, rather, that the level is
more dependent on the influence of high-priority issues in different periods on
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Table 8.11 EWV and ERB by Age (Pearson’s r and gamma; Residents)
EWV and ERBa

Age 1 1a 1b 1c 2 3 4 5 6 7 8 n
r −0.34 −0.31 −0.27 −0.15 −0.14 −0.09 −0.13 −0.31 −0.26 −0.25 0.04 401
p <0.001 <0.001 <0.001 <0.01 <0.01 n.s. <0.01 <0.001 <0.001 <0.001 n.s.

G −0.35 −0.31 −0.25 −0.19 −0.17 −0.17 −0.16 −0.28 −0.31 −0.23 0.11 401
p <0.001 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 n.s.

a See Table 8.5 for key to variable names.

Table 8.12 EWV and ERB means and standard deviations by Age (Residents)
EWV and ERBa

Age 1 1a 1b 1c 2 3 4 5 6 7 8 n
18–24 x– 4.03 3.92 3.83 4.16 3.04 4.19 4.21 3.61 0.57 1.55 7.28 47

s 0.52 0.84 0.69 0.54 0.81 0.57 0.75 0.64 0.50 1.02 1.62
25–34 x– 3.89 3.84 3.66 4.00 2.81 3.90 4.11 3.47 0.38 1.46 7.60 81

s 0.57 0.79 0.83 0.65 0.73 0.68 0.61 0.76 0.49 1.11 1.19
35–44 x– 3.99 3.84 3.94 4.14 3.03 4.09 4.28 3.67 0.59 1.81 7.76 79

s 0.43 0.61 0.70 0.53 0.70 0.59 0.68 0.58 0.49 0.98 1.13
45–54 x– 3.85 3.66 3.79 4.10 2.89 4.06 4.21 3.43 0.46 1.58 7.63 59

s 0.45 0.69 0.67 0.43 0.61 0.58 0.60 0.65 0.50 0.89 1.26
55–64 x– 3.71 3.56 3.62 3.97 2.82 3.99 4.00 3.11 0.23 1.41 7.63 56

s 0.48 0.74 0.70 0.68 0.55 0.58 0.55 0.77 0.43 1.06 1.21
65+ x– 3.46 3.23 3.15 3.81 2.65 3.88 3.99 3.02 0.16 0.76 7.72 79

s 0.44 0.67 0.72 0.58 0.67 0.54 0.55 0.71 0.37 0.89 1.22

Total x– 3.81 3.66 3.65 4.02 2.56 4.00 4.13 3.38 0.39 1.41 7.63 401
s 0.52 0.75 0.77 0.59 0.69 0.60 0.63 0.73 0.49 1.05 1.26

a See Table 8.5 for key to variable names.
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‘susceptible’ youth. These periods seem to have less influence on older cohorts,
except to possibly reinforce the views and behaviour of those who developed a
high level of commitment in their youth, that is, in the ‘35–44’ Age category in
this case.

It is interesting to note that the behaviour scores for the ‘35–44’ Age cate-
gory are comparatively higher than for the ‘18–24’ cohort for the ERB com-
pared with the EWV variables. This would suggest that it is ERB rather more
than EWV that has been reinforced by the ‘second wave’ in the ‘35–44’ Age
category. Clearly, there are some interesting issues to be explored here, but this
is beyond the scope of this book.

Categorical Variables

The size of the differences between the mean scores in the analysis just com-
pleted might suggest that the patterns are not worth taking very seriously. To
some extent this contention is supported by the size of the r coefficients,
although six of them are certainly high enough to warrant attention. Table 8.11
also reports the gamma coefficients for Age with the EWV and ERB variables.
Most of the values are very similar to those for r, the majority being within
0.05. The major exceptions are IMPACT and Recycling, the former having a
non-significant r value and the latter being not significant for both coefficients.

To explore these relationships further, we can turn to the cross-tabulations
between Age and the EWV and ERB variables. Just as for the analysis between
the EWV and ERB variables themselves, we cannot examine all the cross-
tabulations here, although in this case there are only 11.

Let us begin with the associations between Age and the two EWV variables
with the highest and lowest gamma coefficients, EWVGSC and IMPACT (see
Table 8.13). The cross-tabulation between Age and EWVGSC is generally
linear and negative. However, some of the cells with overrepresentation deviate
from this pattern. For example, respondents in the ‘25–34’ Age category are
fairly evenly distributed across the EWVGSC categories, and this accounts for
the ‘dip’ in the means scores at this category (see Table 8.12). It is not difficult
to see why the association between Age and IMPACT is so weak. There is a hint
of a curvilinear relationship, but the distribution for the ‘25–34’ and ‘35–44’
categories, in particular, works against this.

Now we can turn to a comparison of the association of Age with the four ERB
variables. The pattern of association between Age and WILLACT is very clearly
linear and negative (gamma = −0.28). However, we find a reasonably even dis-
tribution across the WILLACT categories for both the ‘25–34’ and ‘45–54’ Age
categories and, to a lesser extent, across the ‘35–44’ Age category. Therefore,
while the pattern of the relationship is clear, its strength is reduced by the dis-
tributions in the ‘25–54’ Age categories. It is also these distributions that have
given the double peak in the patterns for the mean scores. Hence, while the
relationship has a linear appearance, there is an S-curve lurking in there.

It should be fairly obvious why there is a weak association between Age and
Recycling (gamma = 0.11). The cells in which there is overrepresentation are
scattered across the table and are mostly small. However, there is a trend
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towards a positive but a rather curved (possibly S-shaped) relationship. Both r
and gamma have picked up the positive trend, although both are unable to
handle the curve (r = 0.04). Certainly, the young appear not to be involved in
recycling, and most of the other Age categories are rather mixed. The question
arises as to whether there might be a gender difference here; we will come back
to this shortly.

Given the particular pattern in the means scores across the six Age categories
for Support Groups and Avoid Products, it is worth examining both their cross-
tabulations with Age (see Table 8.13). With Support Groups, the pattern of
cells with overrepresentation is clearly S-shaped, thus confirming the pattern
for the mean scores (gamma = −0.31). There is a very definite peak in the
‘35–44’ Age category, supported, to some extent, by the ‘45–54’ category, and
then followed by the ‘18–24’ category, and a clear ‘dip’ in the ‘25–34’ category.
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Table 8.13 Cross-tabulation for Age with EWVGSC, IMPACT, WILLACT, Recycling,
support Groups and Avoid Products (percentages; Residents)

Age

EWVGSC 18–24 25–34 35–44 45–54 55–64 65+ Total Gamma p
Low 13 18 19 15 21 38 20
Moderate 25 41 34 32 50 47 39
High 30 20 35 41 21 13 26
Very high 32 21 22 12 7 2 15 −0.35 < 0.001

IMPACT

Low 9 21 20 14 18 27 19
Moderate 34 38 30 37 41 49 39
High 25 25 24 34 27 13 24
Very high 32 16 25 15 14 11 18 −0.17 < 0.01

WILLACT

Low 23 27 10 29 39 49 30
Moderate 32 31 35 32 36 34 33
High 21 27 43 29 20 15 26
Very high 23 15 11 10 5 1 11 −0.28 < 0.001

Recycling

Low 9 6 5 10 4 6 6
Moderate 32 17 10 8 20 17 17
High 51 65 71 70 68 58 64
Very high 9 11 14 12 9 19 13 0.11 n.s.

Support Groups

Never 43 62 40 54 77 83 61
Occasionally 38 31 32 29 20 14 27
Regularly 19 7 28 17 4 3 13 −0.31 < 0.001

Avoid Products

0 19 27 11 8 27 51 25
1 26 21 24 44 21 27 27
2 36 31 37 29 36 19 31
3+ 19 21 28 19 16 4 18 −0.23
< 0.001

Total 100 100 100 100 100 100 100
n 47 81 79 59 56 79 401
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The relationship between Age and Avoid Products shows something of the same
pattern, except in the ‘25–34’ Age category (gamma = −0.23). Unlike with
Support Groups, this Age category is very divided with Avoid Products, having
a slight overrepresentation at each extreme but a relatively even distribution
across all four categories. The ‘55–64’ Age category is similarly dispersed.

Coming back to research question 4, we can conclude the following:

• There are moderate and very significant associations between Age and the
key EWV variable (EWVGSC), two of the subscales (HUSENV and
ECGROW), WILLACT and two of the ERB variables, Support Groups and
Avoid Products.

• The remaining variables have either weak and less significant associations
(GOVCONT, SCITEK, ALTENGY), or negligible and not significant asso-
ciations (IMPACT and Recycling).

• While all but IMPACT and Recycling have negative linear associations, there is
evidence that the distributions across the six Age categories are bimodal, with
peaks in the ‘18–24’ and ‘35–44’ categories, and a tail extending into old age.

Gender, Environmental Worldview and Environmentally Responsible Behaviour

Research question 5 is concerned with the associations between Gender and
the EWV and ERB variables. In spite of the fact that Gender is a nominal-level
variable, its dichotomous nature means that it can be regarded as a dummy vari-
able; men are coded ‘0’ and women ‘1’. Hence, the analysis required is very
similar to that for Age with these variables, except that Gender is a less
complex variable, and it can be analyzed in both samples.

Table 8.14 provides the r coefficients for the associations between Gender
and the EWV and ERB variables. In the Student sample, three of the EWV vari-
ables, EWVGSC (variable 1), HUSENV (variable 1a) and SCITEK (variable 2),
have weak to moderate and highly significant associations (0.26, 0.25 and 0.30,
respectively). The same is the case for three of the ERB variables, WILLACT
(variable 5; 0.25), Support Groups (variable 6; 0.24) and Avoid Products
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Table 8.14 EWV and ERB by Gender (Pearson’s r and G; both samples)
EWV and ERBa

1 1a 1b 1c 2 3 4 5 6 7 8 n
Students

r 0.26 0.25 0.12 0.15 0.30 0.16 0.00 0.25 0.24 0.30 0.13 464
p <0.001 <0.001 <0.01 <0.001 <0.001 <0.001 n.s. <0.001 <0.001 <0.001 <0.01

G 0.36 0.33 0.17 0.21 0.42 0.24 0.00 0.36 0.39 0.45 0.12 464
p <0.001 <0.001 <0.05 <0.01 <0.001 <0.001 n.s. <0.001 <0.001 <0.001 n.s.

Residents
r 0.13 0.14 0.07 0.08 0.12 0.14 −0.04 0.04 −0.03 0.17 0.13 402
p <0.01 <0.01 n.s. n.s. <0.05 <0.01 n.s. n.s. n.s. <0.001 <0.01

G 0.18 0.15 0.08 0.10 0.17 0.15 0.05 0.07 0.01 0.25 0.18 399
p <0.05 <0.05 n.s. n.s. <0.05 <0.05 n.s. n.s. n.s. <0.001 <0.05

a See Table 8.5 for key to variable names.

3055-ch08.qxd  1/10/03 3:38 PM  Page 268



(variable 7; 0.30). While ALTENGY (variable 4) has no association and is
therefore not significant, the other variables all have weak but still significant
associations. What this means is that women have higher mean scores than men
on all these variables except ALTENGY.

The situation in the Resident sample, however, is rather different; the coeffi-
cients are generally much lower. While Avoid Products is the highest (0.17), as
it also is in the Student sample (joint top with SCITEK), it is much lower. Five
other variables have weak associations – EWVGSC (0.13), HUSENV (0.14),
SCITEK (0.12), IMPACT (0.14) and Recycling (0.13) – all of which are signifi-
cant at the 0.05 level. However, the remaining five variables have negligible
associations that are not significant. This means that Gender differentiates
EWV and ERB much less in the Resident sample than it does in the Student
sample. This probably also means that female Students have higher scores than
female Residents on all the variables, and the same may be the case for male
respondents from the two samples. We can now explore this possibility.

Table 8.15 reports the means and standard deviations, for males and females
in both samples, on each of the EWV and ERB variables. The patterns in these
data confirm what was concluded from the r coefficients. Except for ALTENGY
in both samples, and Support Groups in the Resident sample, females have
higher mean scores than males on all variables in both samples. In addition,
except for Recycling, Student females have higher mean scores than Resident
females. However, the situation is rather mixed between Student and Resident
males. Resident females have higher means than Student males, except for
ALTENGY and Support Groups (where they are lower) and GOVCONT
(where they are the same). Given that the mean age of Students (21.2) is much
lower than the mean age for Residents (46.1), these differences support the
earlier analysis on Age and EWV and ERB variables in the Resident sample.
However, Gender differences complicate this.

Now the question is whether the differences between these means, both
within each sample and between them, are significant. To establish this, we
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Table 8.15 EWV and ERB means and standard deviations by Gender (both samples)
EWV and ERBa

Gender 1 1a 1b 1c 2 3 4 5 6 7 8 n

Students
Male x– 3.82 3.63 3.59 4.06 2.70 3.90 4.30 3.38 0.43 1.03 6.21 210

s 0.55 0.78 0.83 0.72 0.80 0.65 0.63 0.79 0.50 1.03 2.31
Female x– 4.09 4.00 3.79 4.26 3.20 4.10 4.30 3.77 0.67 1.67 6.76 254

s 0.49 0.68 0.76 0.63 0.80 0.62 0.60 0.67 0.47 0.98 1.83
Total x– 3.97 3.83 3.70 4.17 2.97 4.01 4.30 3.59 0.56 1.38 6.51 464

s 0.54 0.75 0.80 0.68 0.84 0.64 0.61 0.75 0.50 1.05 2.08

Residents
Male x– 3.74 3.56 3.59 3.97 2.78 3.92 4.15 3.35 0.41 1.23 7.46 200

s 0.56 0.81 0.83 0.62 0.71 0.67 0.61 0.77 0.49 1.07 1.42
Female x– 3.88 3.77 3.70 4.06 2.94 4.09 4.11 3.41 0.38 1.59 7.79 199

s 0.47 0.68 0.71 0.55 0.66 0.52 0.65 0.68 0.49 0.99 1.04

Total x– 3.81 3.66 3.65 4.02 2.86 4.00 4.13 3.38 0.39 1.41 7.62 399
s 0.52 0.75 0.77 0.59 0.69 0.60 0.63 0.72 0.49 1.05 1.26

a See Table 8.5 for key to variable names.
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would need to do group t tests for both the within-sample and between-sample
comparisons, 66 of them! You might like to try doing some of these.

Just as for the analysis between Age and EWV and ERB, we can also do cross-
tabulations between Gender and some of these variables (see Table 8.16).
SCITEK was chosen rather than IMPACT here because it differentiates males
and females in the Student sample more than any of the other variables. In the
Student sample, there are moderate linear associations between Gender and
both EWVGSC (G = 0.36) and SCITEK (G = 0.42), with females being over-
represented in the higher categories and males in the lower categories. What
this means is that female Students have a more favourable EWV than male
Students, and they also have less faith in the ability of science and technology
to solve problems.8 The associations in the Resident sample are much weaker
(G = 0.18 for EWVGSC and G = 0.17 for SCITEK). This is due to a more even
distribution across the four categories and, perhaps, to the fact that both asso-
ciations in this sample show evidence of being curved; females are overrepre-
sented across three categories, from ‘Very high’ to ‘Moderate’.

The associations between Gender and the four ERB variables are rather
mixed and are generally weaker than for the two EWV variables just examined.
Again, they are stronger in the Student sample than in the Resident sample.
The strongest association of all six variables in Table 8.16 is Avoid Products in
the Student sample; the association is linear, with female Students scoring
higher then male Students (G = 0.45). This association is only weak in the Resi-
dent sample (G = 0.18). The associations of Gender with WILLACT (G = 0.36)
and Support Groups (G = 0.39) are both moderate in the Student sample, but
negligible and not significant in the Resident sample (G = 0.07 and 0.01,
respectively). The curve in the association with WILLACT no doubt con-
tributes to the low value of gamma. Gender and Recycling show weak associa-
tions in both samples, with females being more regular recyclers than males.
However, in the Student sample, the association is not significant. The com-
plete set of gamma coefficients, and levels of significance, for all EWV and ERB
variables, are shown in Table 8.14.

The conclusion to be drawn from this analysis with Gender is that, overall,
females have a more favourable EWV than males and practice higher levels of
ERB. However, the Gender differences are much more striking in the Student
sample. Perhaps the most interesting aspect of the Resident sample is the fact
that Willingness to Act and Support Groups are largely undifferentiated
by Gender. The cross-tabulations not only confirm the analysis of the metric
versions of the variables, but also indicate more clearly the forms of the
relationships.

Explanatory Analysis

Explanatory analysis takes us on to the last stage of our journey through the
examples of methods of data analysis. As we discovered in Chapter 5, it is by
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Table 8.16 Cross-tabulation of Gender with EWVGSC, SCITEK, WILLACT, Recycling, Support Groups and Avoid Products
(percentages; both samples)

Students Residents

EWVGSC Male Female Total Gamma p Male Female Total Gamma p
Low 26 13 19 37 23 30
Moderate 28 19 23 25 31 28
High 25 28 27 19 26 22
Very high 21 39 31 0.36 <0.001 19 21 20 0.18 <0.05

SCITEK
Low 27 12 19 26 13 19
Moderate 31 19 24 31 36 34
High 28 37 33 27 32 30
Very high 14 32 24 0.42 <0.001 16 19 17 0.17 <0.05

WILLACT
Low 31 13 21 33 26 30
Moderate 31 29 30 31 37 34
High 22 26 25 25 28 26
Very high 15 31 24 0.36 <0.001 11 9 10 0.07 n.s.

Recycling
Low 25 20 22 9 3 6
Moderate 34 33 34 18 15 17
High 38 41 39 61 68 64
Very high 3 6 5 0.12 n.s 12 14 13 0.18 <0.05

Support Groups
Never 57 33 44 59 62 61
Occasionally 33 50 42 32 22 27
Regularly 10 17 14 0.39 <0.001 9 16 12 0.01 n.s.

Avoid Products
0 38 15 25 33 16 25
1 33 25 29 25 29 27
2 16 38 28 27 34 31
3 13 22 18 0.45 <0.001 15 21 18 0.18 <0.05

Total 100 100 100 100 100 100
n 210 254 464 200 199 399
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far the most complex in terms of the methods themselves, the principles
behind them, and the theoretical background that is required to inform what
should be done. It is for this reason that ‘why’ research questions are much
more difficult to answer than ‘what’ questions. Whereas the kind of analysis
required to answer ‘what’ questions is usually obvious, ‘why’ questions them-
selves give us no clues as to where to look for the answers. We have a number
of ways of solving this, depending on the research strategy that is adopted – see
Blaikie (1993a, 2000) and the discussion in Chapter 1.

Only one research question in the list requires explanatory analysis:

6. Why are there variations in the levels of environmentally responsible
behaviour?

In other words, what accounts for the fact that some people behave very
responsibly towards the environment, others exhibit only moderate behaviour,
and some seem to be indifferent? It would also be possible to ask the same kind
of question about EWV: why some people have favourable worldviews and
others not. However, this second question will not be attempted here. Some
analysis related to it was done in Chapter 5 as an example of regression analy-
sis. Here we will concentrate on explaining differences in ERB, such as avoid-
ing the use of environmentally damaging products and providing support for
environmental groups. Because Recycling has already been shown to have no
meaningful association with the EWV variables and the other ERB variables, it
will not be considered in the remainder of the analysis. Either the method used
to measure it is not valid, or the explanation for recycling behaviour has to be
found elsewhere.

The analysis to be undertaken here is based on the well-established idea that
attitudes influence behaviour, that the beliefs and views that a person has about
a particular object or issue are likely to influence the way they act towards it.
In one area of research, the strength of a person’s religious beliefs might be
expected to influence the level of their religious practices; a highly committed
believer would be expected to engage in religious practices at a much higher
level than a moderate believer, and certainly more than a weak believer or non-
believer. The same model has been applied to the role of various types of atti-
tudes and related behaviour.

As EWV has been operationalized here, it can be regarded as including envi-
ronmental attitudes. In some of the analysis in Chapter 5, the influence of
EWV on ERB was explored. The model behind this is very simple:

EWVGSC ERB Model A

Until now in this analysis, WILLACT has been regarded as an ERB variable.
However, it differs from the other three ERB variables in that it measures will-
ingness to act rather than actions themselves. This raises the theoretical possi-
bility that WILLACT could also have an influence on the two ERB variables,
Support Groups and Avoid Products. Again, the model is a simple one:
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WILLACT ERB Model B

It is possible that EWVGSC and WILLACT operate in tandem to influence
ERB. This model suggests that individuals have both attitudes towards the
environment and a propensity to behave in an environmentally responsible way.
While these two variables have a somewhat independent influence on ERB,
they are also related. In this case, the model would be represented thus:9

EWVGSC

ERB Model C

WILLACT

It is also possible to postulate a sequence of influence between these three vari-
ables – that EWVGSC influences WILLACT, which in turn influences ERB:

EWVGSC WILLACT ERB Model D

This model assumes that EWVGSC has no direct influence on ERB; that
WILLACT is an intervening variable. However, it is possible to modify this
model to include both direct and indirect influence:

EWVGSC ERB Model E

WILLACT

Now the effect of EWVGSC on ERB operates both directly and also through
WILLACT. Models such as these were discussed and interpreted in Chapter 5
and outlined in Table 5.7. They will now be explored with this set of
variables.

Bivariate Analysis

Simple bivariate analysis uses models A and B. This is the most elementary
form of explanatory analysis available. It uses asymmetrical coefficients that
indicate the degree of statistical influence of one variable on another. This
method of analysis only goes a small step beyond associational analysis based on
symmetrical coefficients. While a convincing explanation requires much more
than this, it is a useful first step. We will examine models A and B with both
categorical and metric versions of the variables.
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Categorical Variables

As the categorical versions of all three variables are at the ordinal level, the appro-
priate coefficient is Somer’s d, with Avoid Products and Support Groups as the
outcome variables.10 Data from both samples are analyzed (see Table 8.17).

The influence of the two explanatory variables, EWVGSC and WILLACT,
on Avoid Products is linear and positive in both samples. The relationships are
similar with Support Groups, but there is evidence of slight curves in the
Student sample. The values for Somer’s d for both samples are: EWVGSC on
Support Groups, 0.33 (both samples);11 EWVGSC on Avoid Products, 0.32
(Students) and 0.35 (Residents);12 WILLACT on Support Groups, 0.46 and
0.37;13 and WILLACT on Avoid Products, 0.41 and 0.32.14 All these values are
significant at the 0.001 level. There is clearly a similar degree of influence of
EWVGSC on both outcome variables, and in both samples. The influence of
WILLACT is similar to EWVGSC in the Resident sample, but is stronger in the
Student sample. We can conclude from this analysis that EWV does have a
moderate influence on ERB for both Students and Residents and that the higher
level of support for environmental groups among Students is due to their
greater Willingness to Act on behalf of the environment.

In addition to EWV and Willingness to Act, other variables could also be
expected to influence ERB. We have already had good theoretical reasons for
exploring the association of Age and Gender with all three variables. Let us
examine the influence of Age (Resident sample only) and Gender (both sam-
ples) on the two ERB variables. If we use the categorical version of Age,
Somer’s d is the appropriate coefficient, while for Gender (regarded as two
nominal categories) it is lambda. We find that the influence of Age on Support
Groups and Avoid Products in the Resident sample is rather weak but highly
significant (d = −0.17 and p < 0.001 in both cases). The influence of Gender is
weak in the Student sample (lambda is 0.17 with p < 0.05 for Support Groups,
and 0.14 with p < 0.05 for Avoid Products) and is even weaker in
the Resident sample (lambda is 0.00 and 0.05, respectively, and both are not
significant). This analysis confirms the patterns of associations established
earlier (see Tables 8.13 and 8.16).

One other variable, Religion, is examined briefly. There are good theoretical
reasons for doing so. Extensive research has shown that religion has an influence
on behaviour, although in complex ways. Some religions also include beliefs
about the need for humans to act as stewards of the environment, particularly
flora and fauna. While religion may also influence environmental attitudes, it is
only the influence of religious affiliation on ERB that will be discussed here; reli-
gious beliefs were not measured in this research. It turns out that the influence
of Religion (in seven categories) is negligible in the Student sample (lambda is
0.05 and 0.03, respectively, and both are not significant) and in the Resident
sample (lambda is 0.01 and 0.04, respectively, and both are not significant).

We need to note that as it is not appropriate to compare the values of Somer’s d
and lambda. Hence, we cannot draw any definite conclusions about the relative
influence of these ordinal-level and nominal-level variables. In any case, the
values for the coefficients are so low that there is nothing to say. However, other
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Table 8.17 Influence of EWVGSC and WILLACT on Support Groups and Avoid Products (percentages; both samples)
Students

EWVGSC WILLACT
Support Groups Low Mod. High Very high Total Low Mod. High Very high Total

Never 69 55 45 20 44 79 59 31 8 44
Occasionally 28 39 50 47 42 16 40 61 49 42
Regularly 3 6 6 33 14 5 1 8 43 14

Somer’s d = 0.33; p<0.001 Somer’s d = 0.46; p<0.001
Avoid Products
0 52 29 20 11 25 57 27 14 7 25
1 30 28 35 22 29 31 33 27 23 29
2 12 31 30 34 28 8 31 40 30 28
3+ 6 12 15 32 18 4 9 19 40 18

Somer’s d = 0.32; p<0.001 Somer’s d = 0.41; p<0.001

Total 100 100 100 100 100 100 100 100 100 100
n 87 108 123 144 462 98 140 113 111 462

Residents
Support Groups
Never 85 63 56 26 61 87 60 49 14 61
Occasionally 13 30 28 41 27 13 33 31 36 26
Regularly 2 6 16 33 13 0 7 20 50 13

Somer’s d = 0.33; p<0.001 Somer’s d = 0.37; p<0.001
Avoid Products
0 51 22 11 6 25 49 21 12 2 25
1 27 28 25 27 27 28 22 34 19 27
2 18 33 39 36 30 18 34 31 53 30
3+ 4 17 25 31 18 4 23 23 26 18

Somer’s d = 0.35; p<0.001 Somer’s d = 0.32; p<0.001

Total 100 100 100 100 100 100 100 100 100 100
n 120 112 89 81 402 120 134 106 42 402
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methods of analysis using the metric versions of the variables, and some other
tricks, may reveal a different picture.

Categorical and Metric Variables: Means Analysis

When the outcome variable is metric it is possible to compare the means on this
variable between the categories of the predictor variable. This involves the use
of eta (η). Age, Gender and Religion can be analyzed by this method, although
only Gender and Religion can be usefully analyzed in the Student sample. For
the purpose of this analysis, Support Groups is regarded as a dummy variable
with ‘Yes’ coded 1 and ‘No’ coded 0.

Table 8.18 shows the means for Support Groups and Avoid Products on the
categories of each variable, as well as the eta values and levels of significance for
each combination. In the Student sample, Gender has a moderate influence on
both ERB variables (eta is 0.24 for Support Groups and 0.30 for Avoid Products,
with p < 0.001 in each case). The influence of Religion is rather weak
(eta is 0.17 for both Support Groups and Avoid Products, with the former not
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Table 8.18 Means analysis of Gender and Religion (Students), and Age, Gender and 
Religion (Residents), with Support Groups and Avoid Products

Students

Support Groups Avoid Products

x– s n Eta/p x– s n Eta/p

Gender Male 0.43 0.50 210 0.24 1.03 1.03 209 0.30
Female 0.67 0.47 252 <0.001 1.67 0.98 249 <0.001

Religion Catholic 0.48 0.50 138 1.22 1.02 136
Anglican 0.59 0.50 56 1.18 0.95 57
Uniting 0.62 0.49 29 1.39 1.03 28
Greek Orth. 0.47 0.51 17 1.19 0.91 16
Baptist 0.20 0.42 10 0.80 0.79 10
Other 0.57 0.50 46 0.17 1.52 1.03 46 0.17
No religion 0.61 0.49 146 n.s. 1.53 1.10 146 <0.05

Residents

Age 18–24 0.57 0.50 47 1.55 1.02 47
25–34 0.38 0.49 81 1.46 1.11 81
35–44 0.59 0.49 79 1.81 0.98 79
45–54 0.46 0.50 59 1.58 0.89 59
55–64 0.23 0.43 56 0.33 1.41 1.06 56 0.33
65+ 0.16 0.37 79 <0.001 0.76 0.89 79 <0.001

Gender Male 0.41 0.49 200 0.03 1.23 1.07 200 0.17
Female 0.38 0.49 199 n.s. 1.59 0.99 199 <0.001

Religion Catholic 0.36 0.48 85 1.24 1.03 85
Anglican 0.27 0.45 91 1.41 1.04 91
Uniting 0.40 0.49 55 1.33 1.06 55
Greek Orth. 0.22 0.44 9 1.44 1.13 9
Other 0.27 0.47 11 0.23 1.36 1.12 11 0.13
No religion 0.57 0.50 100 <0.01 1.61 1.01 100 n.s.
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significant and for the latter p < 0.05). In the Resident sample, Gender has
virtually no influence on Support Groups (eta is 0.03 and not significant) and only
a weak influence on Avoid Products (eta is 0.17 with p < 0.001). Age turns out
to have the greatest influence (eta is 0.33, with p < 0.001, for both variables),
followed by Religion (eta is 0.23 and 0.13, with p < 0.01 and not significant,
respectively). Leaving aside categories with small numbers, the highest means
are to be found in the ‘35–44’ Age category and among those with ‘No religion’.
The lowest means are amongst those 65 years and over.

Metric Variables

The obvious candidate for measuring the influence between two metric
variables is simple regression. Again, we will examine the two models to see what
influence both EWVGSC and WILLACT have on the same two ERB variables,
but this time using the metric versions of the variables. Table 8.19 provides the
results of the regression calculations. We can compare the ability of the two
predictor variables to explain the two outcome variables within and between
the two samples. The relevant coefficients are beta, the standardized coeffi-
cient for the slope (b) of the regression line, and R2, the coefficient of deter-
mination or the measure of how well the line fits the data. In the Student
sample, the beta values suggest that WILLACT is a slightly better predictor of
both Support Groups and Avoid Products than is EWVGSC, ranging from 0.55
for WILLACT and Support Groups, down to 0.43 for EWVGSC and Avoid
Products. In the Resident sample, both predictor variables are about as equally
powerful (beta ranges from 0.48 to 0.43) with WILLACT on Support Groups
being slightly ahead. WILLACT accounts for more of the variance in Support
Groups (23.0 per cent) compared with around 19 per cent in the other three.
This analysis produces a very similar picture to that obtained from the categori-
cal versions of the variables (see Table 8.17).
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Table 8.19 Regression of ERB variables on WILLACT and EWVGSC (both samples)
Predictor Outcome Intercept Slope Std. Error Beta p R R2 seest

Studentsa

WILLACT Support Gps −1.12 0.51 0.04 0.55 <0.001 0.55 0.298 0.59
Avoid Prods −1.06 0.68 0.06 0.49 <0.001 0.49 0.238 0.92

EWVGSC Support Gps −1.68 0.60 0.05 0.46 <0.001 0.46 0.211 0.62
Avoid Prods −1.93 0.83 0.08 0.43 <0.001 0.43 0.181 0.95

Residents (n = 401)

WILLACT Support Gps −1.06 0.47 0.04 0.48 <0.001 0.48 0.230 0.62
Avoid Prods −0.72 0.63 0.07 0.44 <0.001 0.44 0.192 0.94

EWVGSC Support Gps −1.77 0.60 0.06 0.44 <0.001 0.44 0.195 0.64
Avoid Prods −1.89 0.87 0.09 0.43 <0.001 0.43 0.185 0.95

an = 457 for Avoid Products and 461 for Support Groups.
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Multivariate Analysis

As a first step in the direction of multivariate analysis, model C will be explored
(see p. 273). This model links models A and B by introducing an association
between the two explanatory variables. If it turns out that there is little or no
association between EWVGSC and WILLACT, it can be concluded that they
influence ERB independently. However, if they are highly associated, their
influence can be seen as combined in some way. This would need to be
explored. Initially, this can be done by examining the extent to which
WILLACT influences the ERB variables when the influence of EWVGSC is
removed, and the extent to which EWGSC influences the ERB variables when
the influence of WILLACT is removed.

The second step is to explore models D and E to establish whether WILLACT
is an intervening variable between EWVGSC and the ERB variables. As we saw
in Chapter 5, it is the interpretation of the differences in the magnitudes of the
coefficients of association and influence that allows conclusions to be drawn.

These analyses are done using both the categorical and metric versions of the
variables. Other variables will be added at certain points.

Categorical Variables

The first step is to examine the associations between categorical versions of
EWVGSC and WILLACT in light of their separate influences on the categori-
cal versions of the ERB variables (model C). We know from earlier analysis that
gamma for the association between the two explanatory variables is 0.70 for
Students and 0.62 for Residents (Table 8.7). We know from Table 8.17 that
WILLACT has a greater influence on Support Groups (d = 0.46 and 0.37) and
Avoid Products (d = 0.41 and 0.32) than EWVGSC has on both (for Support
Groups, d = 0.33 for both Students and Residents; for Avoid Products, d = 0.32
and 0.35, respectively). We also know that the associations between WILLACT
and the two ERB variables are strong (with Support Groups, G = 0.71 for
Students and 0.63 for Residents; with Avoid Products, G = 0.53 and 0.42,
respectively). The associations between EWVGSC and the ERB variables are
generally a bit weaker than these (with Support Groups, G = 0.52 and 0.57,
respectively; with Avoid Products, G = 0.42 and 0.47, respectively).

A conclusion that can be drawn from all these data is that the strongest associa-
tions are between EWVGSC and WILLACT and between WILLACT and Support
Groups, with the coefficients being marginally higher for Students than Residents.
In addition, we know that WILLACT has more influence on Support Groups and
Avoid Products than does EWVGSC. What happens when we control one of these
predictor variables by the other? Does WILLACT continue to influence the two
ERB variables when the influence of EWVGSC is controlled, and vice versa? This
analysis tells us the extent to which WILLACT and EWVGSC influence the ERB
variables independently. If WILLACT continues to influence the ERB variables
when EWVGSC is controlled, but EWVGSC does not influence the ERB variables
when WILLACT is controlled, then this would indicate that WILLACT is an inter-
vening variable between EWVGSC and ERB (see model E).

Analyzing quantitative data
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In order to sort this out with categorical variables we can turn to three-way
contingency tables. Such tables allow us to introduce a control variable and to
see to what extent a bivariate relationship still exists when the influence of a
third variable is controlled – in effect, removed. This allows us to gauge the
extent to which two predictor variables, which are related to some extent,
independently influence the outcome variable.

We already know that in order to be able to claim that some form of influ-
ence is involved between combinations of two variables, it is necessary to use
asymmetrical measures such as lambda when at least one of the variables is
nominal, and Somer’s d when they are both ordinal. When a third categorical
variable is applied as a control, it does not matter whether it is nominal or ordi-
nal. The decision about the appropriate coefficient must be based on the level
of measurement of the two variables between which influence is assumed.
However, in three-way analysis of categorical variables, it is also useful to use
measures of association, such as Cramér’s V and the standardized contingency
coefficient (when at least one variable is nominal) and gamma (when both are
ordinal). In three-way analysis, we are looking for the degree of change in the
coefficients as the result of introducing a control variable. While this can be
done by using either symmetric or asymmetric coefficients, the latter are more
appropriate when the model indicates influence rather than association.

EWVGSC and WILLACT with ERB

To save space, only the tables for the Student sample will be examined. Tables 8.20
and 8.21 present conditional contingency tables when both versions of the
controls are introduced. Table 8.20 presents EWVGSC controlled for WILLACT
with both of the ERB variables. Compared with the values for Somer’s d in the
uncontrolled table (d = 0.33 for Support Groups and 0.32 for Avoid Products;
see Table 8.17), all but one of the values for d are lower. The exception is in the
‘Very high’ WILLACT category with Avoid Products (d = 0.39). The same
EWVGSC category with Support Groups has a d similar to the uncontrolled
table (0.32), and the d values in these two conditional tables are the only ones
that are significant. These patterns are confirmed by the values for gamma,
shown in brackets below the d values. Hence, introducing this control essen-
tially eliminates the influence of EWVGSC on the two ERB variables in all but
the ‘Very high’ WILLACT conditional tables. It is only respondents in this cat-
egory whose ERB is also influenced by their EWV.

The situation is quite different in Table 8.21, although the conclusion is
similar. When WILLACT is controlled for EWVGSC, the values of Somer’s d for
the ‘Very high’ EWVGSC category are higher than for the uncontrolled table
(see Table 8.17), 0.52 compared to 0.46 for Support Groups and 0.43 com-
pared to 0.41 for Avoid Products. For the other three EWVGSC categories, the
values for d are lower but still significant. This would suggest that WILLACT
continues to have an influence on the ERB variables, regardless of EWV. Again,
these patterns are confirmed by the values for gamma.

What can we conclude from these two tables? They suggest that the influ-
ence of EWVGSC on ERB only occurs in the highest WILLACT category, while
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Table 8.20 Influence of EWVGSC on Support Groups and Avoid Products controlled for WILLACT (percentages; Students)
Control Predictor Support Groups Avoid Products
WILLACT EWVGSC Never Occ. Reg. Total n d (G) 0 1 2 3+ Total d (G)
Low Low 82 13 5 100 55 0.05*** 60 31 5 4 100 0.09***

Moderate 72 24 3 100 29 (0.15)*** 55 31 10 3 100 (0.15)***
High 82 18 0 100 11 55 27 9 9 100
Very high 67 0 33 100 3 33 33 33 0 100

Total 79 16 5 100 98 57 31 8 4 100

Moderate Low 56 44 0 100 23 −0.03*** 50 23 18 9 100 0.01***
Moderate 53 44 2 100 45 (−0.06)*** 16 33 42 9 100 (0.01)***
High 66 34 0 100 47 24 35 28 13 100
Very high 56 40 4 100 25 32 36 28 4 100

Total 59 40 1 100 140 27 33 31 9 100

High Low 22 78 0 100 9 0.09*** 11 44 33 11 100 0.05***
Moderate 43 50 7 100 28 (0.18)*** 21 14 39 25 100 (0.06)***
High 32 58 10 100 40 12 34 42 12 100
Very high 22 69 8 100 36 11 26 40 23 100

Total 31 61 8 100 113 14 27 40 19 100

Very high Low 0 0 0 0 0 0.32* 0 0 0 0 0 0.39
Moderate 33 17 50 100 6 (0.51)* 40 40 0 20 100 (0.52)
High 8 80 12 100 25 12 42 21 25 100
Very high 6 41 53 100 80 4 16 34 46 100

Total 8 49 43 100 111 7 23 29 40 100

Total 462 0.33/(0. 52) (n = 458) 0.32/(0.42)

***Not significant. **p < 0.05 level. *p < 0.01 level. For all other coefficients, p < 0.001 level.
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Table 8.21 Influence of WILLACT on Support Groups and Avoid Products controlled for EWVGSC (percentages; Students)
Control Predictor Support Groups Avoid Products

EWVGSC WILLACT Never Occ. Reg. Total n d (G) 0 1 2 3+ Total d (G)
Low Low 82 13 5 100 55 0.32 60 31 5 4 100 0.29*

Moderate 56 44 0 100 23 (0.59) 50 23 18 9 100 (0.43)*
High 22 78 0 100 9 11 44 33 11 100
Very high 0 0 0 0 0 0 0 0 0 0

Total 69 28 3 100 87 52 30 12 6 100

Moderate Low 72 24 3 100 29 0.22 55 31 10 3 100 0.31
Moderate 53 44 2 100 45 (0.40) 16 33 42 9 100 (0.41)
High 43 50 7 100 28 21 14 39 25 100
Very high 33 17 50 100 6 40 40 0 20 100

Total 55 39 6 100 108 29 28 31 12 100

High Low 82 18 0 100 11 0.41 55 27 9 9 100 0.18**
Moderate 66 34 0 100 47 (0.70) 24 35 28 13 100 (0.25)**
High 32 58 10 100 40 12 34 42 12 100
Very high 8 80 12 100 25 12 42 21 25 100

Total 45 50 6 100 123 20 35 30 15 100

Very high Low 67 0 33 100 3 0.52 33 33 33 0 100 0.43
Moderate 56 40 4 100 25 (0.75) 32 36 28 4 100 (0.57)
High 22 69 8 100 36 11 26 40 23 100
Very high 6 41 53 100 80 4 16 34 46 100

Total 20 47 33 100 144 11 22 34 32 100

Total 462 0.46/(0.71) (n = 458)
0.41/(0.53)

**p < 0.05 level. *p < 0.01 level. For all other coefficients, p < 0.001 level.
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the influence of WILLACT on ERB occurs in spite of EWVGSC. Therefore,
the relatively strong association that we have found between EWVGSC and
WILLACT (gamma = 0.70), and between both of these variables and the two
ERB variables (gamma = 0.52 and 0.42 for EWVGSC with Support Groups
and Avoid Products respectively, and 0.71 and 0.53 for WILLACT and these
two variables) only reveals part of the picture. This analysis provides support
for model D, although it only partially applies to those respondents with ‘Very
high’ scores on both WILLACT and EWVGSC.

A rather different picture emerges when this analysis is undertaken in the
Resident sample. Table 8.22 shows the values for Somer’s d and gamma. No
clear pattern emerges. The only conclusion that can be drawn is that both
predictor variables have an influence on the outcome variables. This varies across
the categories of the predictor variables, such that when one predictor has some
influence the other seems to have less. While the ‘Very high’ category of both
predictor variables with Support Groups shows a pattern similar to that for the
Student sample, that is, this category has a higher d value than the other cate-
gories, and similar to the uncontrolled table, the complete reverse occurs with
Avoid Products. In general, these reversed patterns for the two ERB variables
in the Resident sample suggest that both predictor variables have a direct influ-
ence on the outcome variable, even if there are some differences across the
categories. However, the interpretation of the Resident sample data is not
straightforward. What we can conclude is that the relationships between
EWVGSC, WILLACT and the ERB variables are different in the two samples.

WILLACT, Age and Gender with ERB

Further three-way analysis can be done with other variables. In light of research
questions 3 and 4, we will examine the extent to which the influence of
WILLACT on ERB varies according to Age and Gender. In other words, what
happens to the influence of WILLACT when Age and Gender are controlled
separately? Only the analysis with Gender can be done with the Student sample.
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Table 8.22 Influence of EWVGSC and WILLACT on Support Groups and Avoid
Products with controls for WILLACT and EWVGSC (Residents)

Support Groups Avoid Products

Control Predictor d G p d G p
WILLACT EWVGSC Low 0.11 0.41 n.s. 0.25 0.36 <0.01

Moderate 0.25 0.46 <0.001 0.26 0.35 <0.001
High 0.15 0.24 n.s. 0.28 0.38 <0.001
Very high 0.32 0.49 <0.05 −0.02 −0.03 n.s.

Total 0.33 0.57 <0.001 0.35 0.47 <0.001

EWVGSC WILLACT Low 0.23 0.66 <0.01 0.21 0.31 <0.05
Moderate 0.13 0.26 n.s. 0.18 0.24 <0.05
High 0.25 0.43 <0.01 0.17 0.23 <0.05
Very high 0.38 0.55 <0.001 0.10 0.14 n.s.

Total 0.37 0.63 <0.001 0.32 0.42
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Table 8.23 Influence of WILLACT on Support Groups and Avoid Products controlled for Gender (percentages; both samples)
WILLACT

Students Males Females
Support Groups Low Mod. High V. high Total d (G) Low Mod. High V. high Total d (G)

Never 85 67 36 12 57 0.43 67 51 27 6 33 0.44
Occasionally 11 33 57 41 33 (0.70) 27 46 64 52 50 (0.68)
Regularly 5 0 6 47 10 6 3 9 42 17

Total 100 100 100 100 100 100 100 100 100 100 0.46
n 65 66 47 32 210 33 74 66 79 252 (0.71)

Avoid Products

No products 63 33 26 16 38 0.34 46 21 6 4 15 0.40
One product 29 35 35 34 33 (0.47) 33 31 22 18 25 (0.53)
Two products 3 23 24 16 16 18 39 51 35 38
Three or more 5 9 15 34 13 3 10 21 43 22

Total 100 100 100 100 100 100 100 100 100 100 0.41
n 65 66 46 32 209 33 72 67 77 249 (0.53)

Residents
Support Groups
Never 87 57 43 17 59 0.39 88 63 55 11 62 0.34
Occasionally 13 39 41 44 32 (0.66) 12 27 23 26 22 (0.60)
Regularly 0 3 16 39 9 0 10 21 63 16

Total 100 100 100 100 100 100 100 100 100 100 0.37
n 67 61 49 23 200 51 73 56 19 199 (0.63)

Avoid Products
No products 57 31 18 4 33 0.33 37 12 7 0 16 0.29
One product 19 25 33 22 25 (0.44) 41 19 36 16 29 (0.38)
Two products 21 26 27 48 27 16 41 34 58 34
Three or more 3 18 22 26 15 6 27 23 26 21

Total 100 100 100 100 100 100 100 100 100 100 0.32
n 67 61 49 23 200 51 73 56 19 199 (0.42)

For all coefficients, p<0.001 level. Tests are two-tailed.
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In both samples, it is clear that the influence of WILLACT on Support
Groups and Avoid Products is not really affected by Gender (see Table 8.23).
With one exception, the values for d in the two conditional tables for each of
the ERB variables, and in both samples, differ from the values of d in the uncon-
trolled tables by no more than 0.03. The exception is in the Student sample for
males with Avoid Products, but even here the difference is only 0.07. This sug-
gests that male Avoidance of Environmentally Damaging Products is slightly less
dependent on their Willingness to Act than it is for females.

The conditional tables have not been presented for the control by Age on the
influence of WILLACT on the two ERB variables. Instead, Table 8.24 provides
the values for Somer’s d and gamma for the six Age categories in the Resident
sample. We know that the level of Support for Environmental Groups, and the
Avoidance of Environmentally Damaging Products, is much lower for older
respondents (55+) than for younger respondents (see Tables 8.13 and 8.18). We
also know that the Willingness to Act is much lower among older respondents
(see Table 8.13). What we now know is that the influence of WILLACT on Sup-
port Groups shows very limited differentiation in terms of Age; the influence is
only marginally lower among older respondents. However, for Avoid Products, it
is respondents in the ‘35–44’ and ‘45–54’ Age categories who show the least
influence from their Willingness to Act. The values of d are about 0.20 lower than
for all uncontrolled influences and are about 0.30 lower than for the ‘25–34’ Age
category. Again, the gamma coefficients confirm the patterns, although the value
of 0.75 for the ‘65+’ Age category, compared with 0.63 for the uncontrolled asso-
ciation, is ‘deviant’. Hence, Avoiding Environmentally Damaging Products is not
as easily explained by these variables, as is Support for Enviromental Groups.

An extension of these three-way analyses would involve controlling Age by
Gender to see to what extent these two variables have independent influences,
that is, whether Age is somehow ‘contaminated’ by Gender. For example, are
differences between Age categories in the way the predictor variable
(WILLACT) influences the outcome variables (Support Groups and Avoid
Products) due just to Age or, to some extent, to different Gender compositions
in the Age categories? We could test this by doing a four-way analysis. However,
this would stretch the Resident sample beyond the capabilities of its size. As
other methods are available when the metric versions of the variables are used,
this will be explored later.
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Table 8.24 Influence of WILLACT on Support Groups and Avoid Products controlled
for Age (Residents)

Support Groups Avoid Products

Predictor    Control Somers’ d Gamma p Somers’ d Gamma p
WILLACT    Age 18–24 0.34 0.51 <0.001 0.31 0.41 <0.001

25–34 0.32 0.59 <0.001 0.42 0.54 <0.001
35–44 0.32 0.48 <0.001 0.13 0.17 n.s.
45–54 0.36 0.58 <0.001 0.12 0.17 n.s.
55–64 0.25 0.61 <0.05 0.27 0.36 <0.05
65+ 0.26 0.75 <0.01 0.23 0.34 <0.05

Total 0.37 0.63 <0.001 0.32 0.42 <0.001
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Categorical and Metric Variables: Means Analysis

Earlier, in Table 8.18, we undertook a comparison of means for the two ERB
variables across a number of categorical variables. It is also possible to introduce
a third variable into this type of analysis, with a similar logic to that used
in three-way contingency tables. For example, we can calculate means instead
of distributions across the categories of the ERB variables, for categories of
WILLACT controlled for EWVGSC, and vice versa. The only real difference
between a means analysis on these variables and the use of conditional contin-
gency tables is the way the data are utilized. In the latter, the outcome variable
is categorical, while in the former it is metric. Again, the two versions of
the two ERB variables are used here just to illustrate the different types of
analysis. For this purpose, the Avoid Products categories can be regarded as
either categorical or metric, while the Support Groups categories need to be
dichotomized into a dummy variable to make them the equivalent of a metric
variable.

Real data analysis
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Table 8.25 Means analysis of EWVGSC on Support Groups and Avoid Products
controlled for WILLACT (Students)

Control Predictor Support Groups Avoid Products
WILLACT EWVGSC x– s n x– s n

Low Low 0.18 0.39 55 0.53 0.77 55
Moderate 0.28 0.45 29 0.62 0.82 29
High 0.18 0.40 11 0.73 1.01 11
Very high 0.33 0.58 3 1.00 1.00 3

Total 0.21 0.41 98 0.59 0.81 98

Mod. Low 0.43 0.51 23 0.86 1.04 22
Moderate 0.47 0.50 45 1.44 0.87 45
High 0.34 0.48 47 1.30 0.99 46
Very high 0.44 0.51 25 1.04 0.89 25

Total 0.41 0.49 140 1.23 0.95 138

High Low 0.78 0.44 9 1.44 0.88 9
Moderate 0.57 0.50 28 1.68 1.09 28
High 0.68 0.47 40 1.54 0.87 41
Very high 0.78 0.42 36 1.74 0.95 35

Total 0.69 0.46 113 1.63 0.95 113

V. High Low 0.00 0.00 0 0.00 0.00 0
Moderate 0.67 0.52 6 1.00 1.22 5
High 0.92 0.28 25 1.58 1.02 24
Very high 0.94 0.24 80 2.23 0.86 80

Total 0.92 0.27 111 2.03 0.97 109

Low 0.31 0.47 87 0.71 0.89 86
Moderate 0.45 0.50 108 1.26 1.01 107
High 0.55 0.50 123 1.39 0.97 122
Very high 0.80 0.40 144 1.87 0.99 143

Total 0.56 0.50 462 1.38 1.05 458
Eta 0.36 0.39
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EWVGSC and WILLACT with ERB

Table 8.25 presents the analysis with EWVGSC as the predictor variable,
controlled for WILLACT, and Table 8.26 reverses the role of these two variables.
The patterns in the results confirm those found in Tables 8.20 and 8.21. In
Table 8.25, the overall mean for Support Groups is 0.56, which ranges across
the EWVGSC categories from 0.31 (‘Low’) to 0.80 (‘Very high’), with an eta
of 0.36 (see the section at the foot of the table). When WILLACT is intro-
duced as a control variable, this pattern changes in all the conditional tables; the
influence of EWVGSC tends to disappear. This is evident from the similar
values for the means across the EWVGSC categories in each conditional table,
thus indicating that WILLACT influences Support Groups regardless of EWV.
To put this into non-statistical language, the level of a person’s Willingness to
Act to protect the environment influences their level of Support for Environ-
mental Groups, regardless of their Environmental Worldview.

When the roles of predictor and control variables are reversed, the results are
very different (see Table 8.26). This time the Support Groups mean ranges
from 0.21 (‘Low’) to 0.92 (‘Very high’) across the WILLACT categories, with
an eta of 0.52 (see the section at the foot of the table). The linear relationship
between WILLACT and Support Groups is maintained across all the conditional
tables. However, this pattern simply reinforces what was found in Table 8.25;
it is WILLACT rather than EWVGSC that influences Support Groups.

To conclude this analysis, we need to discuss the influence of EWVGSC and
WILLACT on Avoid Products (see Tables 8.25 and 8.26). Again, the relationships
are linear. In Table 8.25, the overall mean for Avoid Products is 1.38, ranging from
0.71 (‘Low’) to 1.87 (‘Very high’) across the EWVGSC categories, with an eta of
0.39 (see the section at the foot of the table). When WILLACT is introduced as
a control, the same pattern appears in the partial tables for the extreme
WILLACT categories, but not for the two middle categories. This would suggest
that both EWV and Willingness to Act influence the level of Avoiding Environ-
mentally Damaging Products of respondents with extreme WILLACT scores, but
this is not the case for the other respondents. The latter are not particularly influ-
enced by either their EWV or their Willingness to Act. This confirms the findings
of the analysis in the three-way contingency tables (see Tables 8.20 and 8.21).

Now, returning to Table 8.26, we find that the Avoid Products mean ranges
from 0.59 (‘Low’) to 2.03 (‘Very high’) across the WILLACT categories, with
an eta of 0.48 (see the section at the foot of the table). While we know that
WILLACT influences Avoid Products (see Table 8.17), there is some evidence
in Table 8.26 that EWVGSC may have an influence on Avoid Products along-
side WILLACT. This is certainly the case for those in the extreme EWVGSC
categories, but not in the two middle categories. Therefore, we have further
evidence to support the conclusion drawn from the control of WILLACT on
EWVGSC (see Table 8.25). The patterns for both the ERB variables, with both
methods of control, could be further supported if eta coefficients were calcu-
lated for each of the partial tables, as Somer’s d was in Tables 8.20 and 8.21.
Unfortunately, SPSS does not do this, although it could be done with a calcu-
lator. You might like to try this.
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WILLACT and Gender with ERB

To complete this means analysis, we can now turn to the combinations that we
explored previously with the categorical forms of the variables in Table 8.23.
Table 8.27 shows the effects of controlling for Gender on the association
between WILLACT and both Support Groups and Avoid Products in Student
sample (see also Figures 8.6 and 8.7). The mean scores for each conditional
table indicate a strong linear relationship for both males and females, with a
range between the ‘Low’ and ‘Very high’ WILLACT categories of 0.73 for
males and 0.61 for females for Support Groups, and of 1.20 for males and 1.38
for females for Avoid Products. In addition, females have higher means than
males across all the WILLACT categories, particularly for Avoid Products. We
can conclude that while females have higher mean scores than males on both
the ERB variables, WILLACT differentiates both males and females.

The same strong linear relationships between WILLACT and the two ERB
variables are evident in the Resident sample for both males and females (see
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Table 8.26 Means analysis of WILLACT on Support Groups and Avoid Products
controlled for EWVGSC (Students)

Control Predictor Support Groups Avoid Products
EWVGSC WILLACT x– s n x– s n

Low Low 0.18 0.39 55 0.53 0.77 55
Moderate 0.43 0.51 23 0.86 1.04 22
High 0.78 0.44 9 1.44 0.88 9
Very high 0.00 0.00 0 0.00 0.00 0

Total 0.31 0.47 87 0.71 0.89 86

Mod. Low 0.28 0.45 29 0.62 0.82 29
Moderate 0.47 0.50 45 1.44 0.87 45
High 0.57 0.50 28 1.68 1.09 28
Very high 0.67 0.52 6 1.00 1.22 5

Total 0.45 0.50 108 1.26 1.01 107

High Low 0.18 0.40 11 0.73 1.01 11
Moderate 0.34 0.48 47 1.30 0.99 46
High 0.68 0.47 40 1.54 0.87 41
Very high 0.92 0.28 25 1.58 1.02 24

Total 0.55 0.50 123 1.39 0.97 122

V. high Low 0.33 0.58 3 1.00 1.00 3
Moderate 0.44 0.51 25 1.04 0.89 25
High 0.78 0.42 36 1.74 0.95 35
Very high 0.94 0.24 80 2.23 0.86 80

Total 0.80 0.40 144 1.87 0.99 143

Low 0.21 0.41 98 0.59 0.81 98
Moderate 0.41 0.49 140 1.23 0.95 138
High 0.69 0.46 113 1.63 0.95 113
Very high 0.92 0.27 111 2.03 0.97 109

Total 0.56 0.50 462 1.38 1.05 458
Eta 0.52 0.48
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Table 8.27 Means analysis of WILLACT on Support Groups and Avoid Products
controlled for Gender (Students)

Control Predictor Support Groups Avoid Products
Gender WILLACT x– s n x– s n

Males Low 0.15 0.36 65 0.49 0.77 65
Moderate 0.33 0.48 66 1.08 0.97 66
High 0.64 0.49 47 1.28 1.03 46
Very high 0.88 0.34 32 1.69 1.12 32

Total 0.43 0.50 210 1.03 1.03 209

Females Low 0.33 0.48 33 0.79 0.86 33
Moderate 0.49 0.50 74 1.38 0.93 72
High 0.73 0.45 66 1.87 0.81 67
Very high 0.94 0.25 79 2.17 0.86 77

Total 0.67 0.47 252 1.67 0.98 249

Low 0.21 0.41 98 0.59 0.81 98
Moderate 0.41 0.49 140 1.23 0.95 138
High 0.69 0.46 113 1.63 0.95 113
Very high 0.92 0.27 111 2.03 0.97 109

Total 0.56 0.50 462 1.38 1.05 458
Eta 0.52 0.48

Difference Low 0.18 0.30
(F − M) Moderate 0.16 0.30

High 0.09 0.59
Very high 0.06 0.48

Total 0.24 0.64
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Figure 8.6 Support Groups by WILLACT controlled for Gender
(Students)
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Table 8.28). The range between the ‘Low’ and ‘Very high’ WILLACT categories
is 0.70 for males and 0.77 for females with Support Groups and is 1.26 for
males and 1.21 for females with Avoid Products (see also Figures 8.8 and 8.9).
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Figure 8.7 Avoid Products by WILLACT controlled for Gender
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Table 8.28 Means analysis of WILLACT on Support Groups and Avoid Products
controlled for Gender (Residents)

Control Predictor Support Groups Avoid Products
Gender WILLACT x– s n x– s n

Males Low 0.13 0.34 67 0.70 0.90 67
Moderate 0.43 0.50 61 1.31 1.10 61
High 0.57 0.50 49 1.53 1.04 49
Very high 0.83 0.39 23 1.96 0.82 23

Total 0.41 0.49 200 1.23 1.07 200

Females Low 0.12 0.33 51 0.90 0.88 51
Moderate 0.37 0.49 73 1.84 0.97 73
High 0.45 0.50 56 1.73 0.90 56
Very high 0.89 0.32 19 2.11 0.66 19

Total 0.38 0.49 199 1.59 0.99 199

Low 0.13 0.33 118 0.79 0.89 118
Moderate 0.40 0.49 134 1.60 1.06 134
High 0.50 0.50 105 1.64 0.97 105
Very high 0.86 0.35 42 2.02 0.75 42

Total 0.39 0.49 399 1.41 1.05 399
Eta 0.45 0.41

Difference Low −0.01 0.20
(F − M) Moderate −0.06 0.53

High −0.12 0.20
Very high 0.06 0.15

Total −0.03 0.36
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However, in this sample, there are very small differences between males and
females across the WILLACT categories for Support Groups (males are actually
higher in all except the ‘Very high’ category). However, females do have higher
means than males for Avoid Products across all the WILLACT categories, rang-
ing from 0.20 (‘Low’ and ‘High’) to 0.53 (‘Moderate’).15 Nevertheless, both
males and females are differentiated in their ERB in terms of their Willingness
to Act.
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It is also possible to use Age as a control instead of Gender in the Resident
sample (see Table 8.29).16 On the basis of the difference in the mean scores for
the two extreme WILLACT categories, for each of the six Age categories, we
can conclude that Willingness to Act is less important in determining the level
of Support for Environmental Groups among those in the ‘18–24’ Age category
than in any other Age category. The difference in means in the youngest age
category is 0.55 while the others range between 0.64 and 0.95 (overall the differ-
ence is 0.73).17 The reverse is the case for the Avoid Products; the differences
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Table 8.29 Means analysis of WILLACT on Support Groups and Avoid Products
controlled for Age (Residents)

Control Predictor Support Groups Avoid Products
Age WILLACT x– s n x– s n

18–24 Low 0.27 0.47 11 1.00 0.89 11
Moderate 0.67 0.49 15 1.53 1.13 15
High 0.50 0.53 10 1.50 1.08 10
Very high 0.82 0.40 11 2.18 0.60 11

Total 0.57 0.50 47 1.55 1.02 47

25–34 Low 0.18 0.39 22 0.68 0.95 22
Moderate 0.32 0.48 25 1.44 1.19 25
High 0.41 0.50 22 1.77 0.92 22
Very high 0.83 0.39 12 2.33 0.49 12

Total 0.38 0.49 81 1.46 1.11 81

35–44 Low 0.25 0.46 8 0.88 0.99 8
Moderate 0.57 0.50 28 1.96 0.92 28
High 0.62 0.49 34 1.85 0.96 34
Very high 0.89 0.33 9 2.00 0.87 9

Total 0.59 0.49 79 1.81 0.98 79

45–54 Low 0.12 0.33 17 1.06 0.75 17
Moderate 0.53 0.51 19 2.11 0.81 19
High 0.59 0.51 17 1.47 0.87 17
Very high 0.83 0.41 6 1.67 0.82 6

Total 0.46 0.50 59 1.58 0.89 59

55–64 Low 0.09 0.29 22 1.05 1.09 22
Moderate 0.25 0.44 20 1.50 1.05 20
High 0.27 0.47 11 1.91 0.94 11
Very high 1.00 0.00 3 1.67 0.58 3

Total 0.23 0.43 56 1.41 1.06 56

65+ Low 0.05 0.22 39 0.49 0.72 39
Moderate 0.15 0.36 27 1.11 1.01 27
High 0.50 0.52 12 0.92 0.90 12
Very high 1.00 1 0.00 1

Total 0.16 0.37 79 0.76 0.89 79

Low 0.13 0.33 119 0.78 0.89 119
Moderate 0.40 0.49 134 1.60 1.06 134
High 0.51 0.50 106 1.64 0.97 106
Very high 0.86 0.35 42 2.02 0.75 42

Total 0.39 0.49 401 1.41 1.05 401
Eta 0.45 0.41

3055-ch08.qxd  1/10/03 3:38 PM  Page 291



in the means are higher in the three youngest age categories, particularly in the
‘25–34’ category (1.65, compared with 0.61 for the ‘45–54’ category and 1.24
overall). Again, the conclusion is that while WILLACT differentiates all Age
categories on both ERB variables, it has more influence in some Age categories
than others.

The results from the two samples would suggest that young females are the
most likely category to have their ERB influenced by their Willingness to Act.
However, to be confident about this conclusion we would need to control for
both Age and Gender together, and, to draw any conclusions about influence,
we would need to calculate eta coefficients and tests of significance for all the
conditional tables in such an analysis. On the latter point, the three-way means
analysis just reported, on its own, only produces differences between categories
that suggest but do not establish influence. Unfortunately, such a four-way
analysis is beyond the scope of the Resident sample.

Metric Variables

Before proceeding to the most important method of multivariate analysis to be
discussed here, I want to explore the use of partial correlation.

Partial correlation

This method goes beyond three-way cross-tabulations and means analysis in
that it produces two coefficients, one for the two-way (zero-order) analysis and
another for the three-way analysis. In the latter, the effect of the control vari-
able is partialled out statistically. In multivariate analysis using categorical vari-
ables, the effects of introducing a control variable were assessed by comparing
the coefficients, say Somer’s d for each partial table, with each other and with
the uncontrolled relationship (see, for example, Tables 8.22 and 8.24). In par-
tial correlation, there is only one coefficient when the control variable is intro-
duced. It represents what is left in an association once the influence of the
controlling variable has been removed (see discussion in Chapter 5).

Let us begin with the three-way association between EWVGSC, WILLACT
and the ERB variables. We have already examined this with the categorical
versions of these variables (see Tables 8.20–8.22). Now we can explore a method
of analysis appropriate for the metric versions in order to answer the research
question, using both samples (see the first part of Table 8.30). It is clear that
when EWVGSC is introduced as a control on the associations between
WILLACT and both Support Groups and Avoid Products, the size of all coeffi-
cients is reduced. For Support Groups, this is by 0.17 (34 per cent) in the
Student sample and by 0.19 (43 per cent) in the Resident sample. For Avoid
Products it is reduced by 0.20 in both samples (41 per cent for Students and
45 per cent for Residents). What this means is that while WILLACT accounts
for about 25 per cent of the variance in the two ERB variables in the Student
sample, when the control for EWVGSC is applied, WILLACT continues to
account for only between 8 per cent (Avoid Products) and 11 per cent (Support
Groups). In the Resident sample, WILLACT on its own accounts for 19 per cent
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of the variance in both ERB variables, but the control variable reduces this to
6 per cent in both cases.

This result is not surprising as there is a strong association between
EWVGSC and WILLACT in both samples (r = 0.73 for Students and 0.62 for
Residents). What we now know is that EWVGSC is playing some part here.
However, we cannot conclude from this analysis what is the percentage of the
variance. This requires reversing the role of EWVGSC and WILLACT, that is,
using the latter as a control on the relationships of the ERB variables with the
former (see the second part of Table 8.30). What this reveals is that while
EWVGSC accounts for 16–17 per cent of the variance in Support Groups and
18 per cent of Avoid Products in both samples, the application of WILLACT as
a control reduces this to almost nothing in the Student sample, and to 4 per
cent for Support Groups and 5 per cent for Avoid Products in Resident sample.
What we can conclude from this is that WILLACT appears to play a greater
role in predicting the two ERB variables than does EWVGSC, but more parti-
cularly for Students where the latter plays no part. This conclusion is consistent
but more precise than that arrived at by the other methods of analysis.

Multiple regression

The use of three-way contingency tables, means analysis and partial correlation
can provide elementary explanatory analysis. Certainly, the relative influence of
two explanatory variables on an outcome variable can be revealed, including
identifying intervening or moderating variables. Models C, D and E can be
explored, and this can be done with either symmetrical or asymmetrical coeffi-
cients. We can now take these methods of analysis another step forward by
applying multiple regression to establish the influence of a number of predictor
variables on an outcome variable.

Multiple regression allows us to establish the independent influence of a set
of predictor variables on an outcome variable. In determining the influence of
a particular predictor variable, the influence of all the other predictors is held
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Table 8.30 WILLACT by Support Groups and Avoid Products controlled for EWVGSC 
(Pearson’s r; both samples)

Students Residents
WILLACT EWVGSC Support Avoid Products EWVGSC Support Avoid Products

Groups Groups
Zero order r 0.73 0.50 0.49 0.62 0.44 0.44

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Controlled r 0.33 0.29 0.25 0.24
for EWVGSC p <0.001 <0.001 <0.001 <0.001
EWVGSC
Zero order r 0.73 0.40 0.43 0.62 0.41 0.43

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Controlled for r 0.06 0.12 0.20 0.22
WILLACT p n.s. <0.05 <0.001 <0.001
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constant, that is, their influence is controlled. The basic model on which
multiple regression is based is as follows:

Predictor 1

Predictor 2 Outcome

Predictor 3

Further predictor variables can be added to the model. However, a major limi-
tation of this type of analysis is that it is not useful for identify intervening and
moderating variables. All predictor variables are regarded as having the same
role, that is, of possibly contributing to an explanation of the outcome variable.

In order to pursue an answer to research question 6, about variations in ERB,
multiple regression is first applied to the variables that have been the core of
the explanatory analysis so far: EWVGSC, WILLACT, Age (Resident sample
only), Gender and the two ERB variables, Support Groups and Avoid Products.
The aim is to sort out the level of influence of the predictor variables on the
two outcome variables. To illustrate how the analysis works with these vari-
ables, bivariate regression will be used first with each of the outcome variables.
Then combinations of the predictors will be dealt with in turn (see Table 8.31
for Students and Table 8.32 for Residents).

When Support Groups is the outcome variable, WILLACT explains 25 per
cent of the variance, EWVGSC explains 16 per cent and Gender only 6 per cent
(see R2 values), all of which are significant at the 0.001 level (see Table 8.31).
There is clearly a hierarchy in terms of the capacity of these variable to predict
the outcome variable.

When WILLACT and EWVGSC are used together as predictors, there is
only a marginal improvement in the percentage of the variance explained (26
per cent). Their individual contributions, with the effects of the other predic-
tors controlled, are indicated by the beta coefficients; the former is now 0.45
and the latter is 0.07. In addition, the latter is not significant. This would sug-
gest that EWVGSC adds nothing to our capacity to predict the outcome;
WILLACT is fine on its own. However, we need to be cautious. You will recall
from Chapter 5 that when predictor variables are themselves highly correlated,
the regression procedure is unable to sort out the contributions of each one.
This is the problem of collinearity, or multiple collinearity. In order to deter-
mine whether this is the case, two diagnostics can be used, tolerance and the
variance inflation factor (VIF). A tolerance value of 1 indicates that the vari-
able is not correlated with the other(s) and a value of 0 that it is perfectly cor-
related. Likewise, a VIF value of more than 2 indicates a close correlation and
a value approaching 1 as little or no association. These diagnostics confirm the
collinearity between WILLACT and EWVGSC. Of course, examining Pearson’s r
for the bivariate associations adds further confirmation.

When WILLACT and Gender are used as predictor variables there is a slight
improvement in the percentage of the variance explained (now 27 per cent). The
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beta coefficients are 0.47 for the former and 0.12 for the latter (see Table 8.31).
In this case, there are absolutely no problems with collinearity, as is indicated by
the two diagnostics. When all three predictor variables are used together, there
is no further improvement in the percentage of variance explained. Again, there
is collinearity between EWVGSC and WILLACT. Hence, only one of these vari-
ables should be included, and this should be WILLACT because it makes a
higher individual contribution. Including Gender with it is also worthwhile.

Staying with the Student sample, and turning to the other outcome variable,
Avoid Products, we find a very similar picture (see Table 8.31). The percent-
ages of variance explained by the various predictor variables, individually and in
the various combinations, are almost identical. The only difference worth
noting is that EWVGSC plays a marginally more important role, as is evidenced
by the various beta values and the fact that it is significant in combinations with
the other two variables. However, the collinearity problem is also present here.
WILLACT with Gender accounts for 27 per cent of the variance, compared
with 24 per cent for WILLACT on its own.

When this same analysis is done with the Resident sample, with Age now
included, the results are similar. The R and beta coefficients are generally a
little lower than in the Student sample, for WILLACT and EWVGSC and their
combination, with both of the ERB variables (see Table 8.32). However, both of
these predictors make almost equal contributions to the two outcome variables
and the collinearity issue is less pronounced. On its own, and in combination
with WILLACT, Gender is a weaker predictor of both variables in this sample.
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Table 8.31 Regression of ERB variables on EWVGSC, WILLACT and Gender (Students)
Outcome Predictor R R2 Intercept Slope Std error Beta p Tolerance VIF

Support WILLACT 0.50 0.25 −0.63 0.33 0.03 0.50 <0.001

Groups EWVGSC 0.40 0.16 −0.91 0.37 0.04 0.40 <0.001

Gender 0.24 0.06 0.43 0.24 0.05 0.24 <0.001

WILLACT 0.50 0.26 −0.77 0.30 0.04 0.45 <0.001 0.47 2.12
EWVGSC 0.06 0.05 0.07 n.s. 0.47 2.12

WILLACT 0.52 0.27 −0.62 0.31 0.03 0.47 <0.001 0.94 1.07
Gender 0.12 0.04 0.12 <0.01 0.94 1.07

WILLACT 0.52 0.27 −0.72 0.29 0.04 0.44 <0.001 0.94 1.07
Gender 0.12 0.04 0.12 <0.01 0.94 1.07
EWVGSC 0.05 0.05 0.05 n.s. 0.47 2.15

Avoid WILLACT 0.49 0.24 −1.06 0.68 0.06 0.49 <0.001

Products EWVGSC 0.43 0.18 −1.93 0.83 0.08 0.43 <0.001
Gender 0.30 0.09 1.03 0.64 0.09 0.30 <0.001

WILLACT 0.50 0.25 −1.67 0.53 0.08 0.38 <0.001 0.47 2.14
EWVGSC 0.29 0.12 0.15 <0.05 0.47 2.14

WILLACT 0.52 0.27 −1.03 0.61 0.06 0.44 <0.001 0.94 1.07
Gender 0.38 0.09 0.18 <0.001 0.94 1.07

WILLACT 0.53 0.28 −1.52 0.50 0.08 0.36 <0.001 0.46 2.15
Gender 0.38 0.09 0.18 <0.001 0.92 1.09
EWVGSC 0.23 0.12 0.12 <0.05 0.46 2.17
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Table 8.32 Regression of ERB variables on EWVGSC, WILLACT and Gender (Residents)
Outcome Predictor R R2 Intercept Slope Std error Beta p Tolerance VIF
Support Groups WILLACT 0.44 0.19 −0.60 0.29 0.03 0.44 <0.001

EWVGSC 0.41 0.17 −1.08 0.39 0.04 0.41 <0.001

Age −0.26 0.07 0.72 −0.01 0.00 −0.26 <0.001

Gender 0.03 0.00 0.41 0.00 0.05 −0.03 n.s.

WILLACT 0.47 0.22 −1.09 0.20 0.04 0.29 <0.001 0.61 1.64
EWVGSC 0.21 0.05 0.23 <0.001 0.61 1.64

WILLACT 0.45 0.21 -0.31 0.26 0.03 0.39 <0.001 0.91 1.10
Age 0.00 0.00 −0.14 <0.01 0.91 1.10

WILLACT 0.44 0.19 −0.57 0.29 0.03 0.43 <0.001 1.00 1.00
Gender −0.01 0.04 −0.05 n.s. 1.00 1.00

WILLACT 0.46 0.21 −0.29 0.26 0.03 0.39 <0.001 0.91 1.10
Age −0.03 0.00 −0.15 <0.01 0.91 1.10
Gender −0.06 0.04 −0.06 n.s. 1.00 1.00

WILLACT 0.48 0.23 −0.80 0.18 0.04 0.27 <0.001 0.60 1.66
EWVGSC 0.20 0.06 0.21 <0.001 0.58 1.72
Age 0.00 0.00 −0.11 <0.05 0.87 1.15
Gender 0.08 0.04 −0.08 n.s. 0.98 1.02

Avoid Products WILLACT 0.44 0.19 −0.72 0.63 0.07 0.44 <0.001

EWVGSC 0.43 0.19 −1.89 0.87 0.09 0.43 <0.001

Age −0.25 0.07 2.09 −0.01 0.00 −0.25 <0.001

Gender 0.17 0.03 1.24 0.36 0.10 0.17 <0.001
WILLACT 0.48 0.23 −1.91 0.40 0.08 0.28 <0.001 0.61 1.64
EWVGSC 0.52 0.11 0.26 <0.001 0.61 1.64

WILLACT 0.45 0.21 −0.15 0.57 0.07 0.40 <0.001 0.91 1.10
Age −0.01 0.00 −0.13 <0.01 0.91 1.10

WILLACT 0.46 0.21 −0.82 0.61 0.07 0.43 <0.001 1.00 1.00
Gender 0.32 0.09 0.15 <0.001 1.00 1.00

WILLACT 0.47 0.22 −0.29 0.56 0.07 0.39 <0.001 0.91 1.10
Age −0.07 0.00 −0.13 <0.01 0.91 1.10
Gender 0.31 0.09 0.15 <0.01 1.00 1.00

WILLACT 0.50 0.25 −1.41 0.38 0.08 0.26 <0.001 0.60 1.66
EWVGSC 0.43 0.12 0.22 <0.001 0.58 1.73
Age −0.01 0.00 −0.09 <0.05 0.87 1.15
Gender 0.27 0.09 0.13 <0.01 0.98 1.02
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Age makes some contribution and, in the end, about the same as Gender.
Hence, while there are some minor differences in the two samples in the way
these variables combine, WILLACT remains the best predictor. On its own,
WILLACT accounts for 19 per cent of the variance on both ERB variables in
combination with Age it accounts for 21 per cent on both ERB variables and; in
combination with Gender, 19 per cent on Support Groups and 21 per cent on
Avoid Products. Perhaps, the most useful combinations are WILLACT with Age
on Support Groups and WILLACT with Age and Gender on Avoid Products.

To complete the examination of research question 6, we can do a more exten-
sive multiple regression in which a wider range of variables is included. In prac-
tice, the inclusion of such variables needs to be justified theoretically rather
than being a trial and error process. Such justification could be provided for all
the variables to be discussed here, but space neither permits it nor is it required
by the purpose of illustrating this method of analysis.

Given what we have discovered thus far, research question 6 could have some
subsidiary questions added to it. For example: 

Why are younger people and women more inclined than older people and
men to practice environmentally responsible behaviour?

The analysis already undertaken in this chapter should have provided a clear
picture of the Age and Gender patterns, and their combinations, with ERB. We
also know that there are Age and Gender differences in EWV; that middle-aged
people and women are more inclined than older people and men to hold a
favourable EWV. There are other variables, such as Religion, Religiosity, Educa-
tion, Occupation, Political Party Preference and Number of Children, which
have yet to be explored. Each of these variables could be justified theoretically,
although this would involve postulating links between some of these variables.
This leads us to a further question:

What is the relative contribution of these variables to the prediction of a
person’s level of environmentally responsible behaviour?

One way of answering this question, as well as research question 6, is to use
multiple regression. However, some words of caution are in order before we do
this. First, this analysis will be cumbersome because a number of these predic-
tor variables are categorical and will each need to be converted into a set of
dummy variables. Second, as some of these variables, such as Education, Occu-
pation, Marital Status and Number of Children, are not useful in the Student
sample, this analysis can only be conducted with the Resident sample. Third,
there are bound to be associations between some of these variables and this will
require us to be alert to problems of collinearity.

One way to be clearer about this third issue is to do a correlation matrix of all
the predictor variables. This requires the use of sets of dummy variables for all
the strictly categorical variables (Gender, Marital Status, Education, Occupation,
Religion, Religiosity and Political Party Preference). To simplify the analysis, three
variables have been dichotomized; Marital Status (0 = ‘No partner’, 1 = ‘Has
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Table 8.33 Correlation matrix of potential predictor variables (Pearson’s r, Residents)
Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 Support Gps 1.00
2 Avoid Prods 0.35*** 1.00
3 Age −0.26*** −0.25*** 1.00
4 Gender −0.03 0.17*** −0.06 1.00
5 Partnered −0.04 0.08 0.19*** 0.09 1.00
6 Children −0.14** −0.05 0.55*** 0.13* 0.52*** 1.00
7 Univ. Edn. 0.25*** 0.20*** −0.13* −0.01 −0.16** −0.01 1.00
8 Manage Prof −0.20*** −0.14** −0.05 0.01 −0.15** −0.09 −0.55*** 1.00
9 White collar 0.07 −0.01 −0.01 −0.04 −0.03 −0.02 0.15** −0.48*** 1.00

10 Manual 0.06 0.11* −0.03 0.26*** 0.10* 0.08 0.30*** −0.35*** −0.32*** 1.00
11 Unemployed 0.12* 0.09 0.11* −0.23*** 0.12* 0.06 0.21*** −0.32*** −0.30*** −0.21*** 1.00
12 Protestant −0.13** −0.03 0.27*** 0.04 0.12* 0.24*** −0.04 −0.08 −0.06 0.09 0.07 1.00
13 Catholic −0.03 −0.09 0.05 0.11* 0.01 0.02 −0.07 0.09 0.03 −0.02 −0.13* −0.40*** 1.00
14 Other −0.04 0.00 −0.06 0.06 −0.01 −0.04 −0.02 0.05 −0.02 −0.04 0.00 −0.34*** −0.23*** 1.00
15 No Religion 0.21*** 0.11* −0.30*** −0.20*** −0.13** −0.25*** 0.12* −0.04 0.06 −0.05 0.04 −0.45*** −0.30*** −0.26*** 1.00
16 Religiosity 0.02 0.09 0.15** 0.10* 0.01 0.08 0.00 −0.09 0.02 0.11* −0.03 0.05 0.12* 0.14** −0.29*** 1.00
17 Liberal 0.25*** 0.18*** −0.12* −0.07 −0.04 −0.07 0.07 −0.03 −0.05 0.00 0.09 −0.24*** 0.01 0.06 0.21*** 0.02 1.00
18 Conservative −0.28*** −0.18*** 0.26*** 0.05 0.11* 0.20*** −0.06 −0.01 0.01 0.01 −0.01 0.21*** −0.02 0.01 −0.23*** 0.12* −0.52*** 1.00
19 Undecided 0.02 −0.01 −0.13** 0.02 −0.07 −0.12* −0.01 0.04 0.05 −0.01 −0.09 0.04 0.01 −0.07 0.01 −0.14** −0.52*** −0.46*** 1.00

*p < 0.05. **p < 0.01. ***p < 0.001. All other coefficients are not significant.
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partner’); Number of Children (0 = ‘No children’, 1 = ‘Some children’); and
Education (0 = ‘Not university educated’, 1 = ‘University educated’).

Table 8.33 presents a matrix of correlation coefficients for the two ERB vari-
ables and possible predictors of these. The first thing to note is the threshold at
which the coefficients reach the three levels of significance. A coefficient is
significant at the 0.05 level as long as it is at least 0.10, at the 0.01 level if it is
at least 0.13,18 and at the 0.001 level if it is at least 0.17. These values are all
very low and are very much related to the size of the sample; they would be
even lower with a larger sample. Hence, level of significance is not a useful
criterion on which to decide whether a variable should be included in the multi-
ple regression. The absolute value of the coefficient must be used. However,
there are no rules of thumb for deciding this; it must be a matter of judgement.

At first glance, it is clear that the variables that have at least a reasonable asso-
ciation with Support Groups and Avoid Products are Age (negative for both),
Gender (positive for Avoiding Products), Have Children (negative for Support
Groups), University Education (positive for both), being in a Managerial/
Professional occupation (negative for both), being Protestant (negative for Support
Groups), having No Religion (positive for Support Groups) and Political Party
Preference (positive for Liberal and negative for Conservative). They are all
worth considering. In fact, the only variable in the correlation matrix that is left
out of this list is Marital Status, shown as the Partnered dummy variable.

We also need to note whether there are associations between these variables
that could create collinearity problems. Age is associated with Have Children,
with being Protestant, with having No Religion, and with supporting a Conser-
vative political party. Have children is also related to being Protestant, profess-
ing No Religion and supporting a Conservative political party. Education is
associated with all the occupational categories in the expected directions. Being
Protestant is associated with not supporting a Liberal political party and with
supporting a Conservative one. Having No Religion is also associated with
support of these two types of political parties, but in the opposite direction.
Hence, there are a number of interrelationships of which we need to be aware.

We can now proceed with the multiple regression with some expectations
about what is likely to happen. However, what we want to find out is what the
contributions of these variables are to predicting ERB when, for each one, the
influence of all other predictors is controlled. You will recall that in the case of
the sets of dummy variables, one category needs to be left out. All the variables
listed above, plus EWVGSC and WILLACT, were entered into the regression
analysis. In the case of Occupation, ‘White collar’ was left out; for Religion,
‘Other’; and for PPP, ‘Undecided’.

Table 8.34 presents four different combinations of predictor variables with
Support Groups. Before your eyes glaze over at the sight of all these figures, let
me explain the steps that were taken in the analysis. In the first section of
the table, all predictor variables are included. While together they account for
29 per cent of the outcome variance (R2), it is clear that many of them make very
little contribution (see the beta values). I then decided to limit the analysis to
those that did seem to be making a contribution, persisting with both Age and
Gender because of the earlier analysis. The second section of the table reports
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300 Table 8.34 Regression of Support Groups on selected predictor variables (Residents)
Outcome Predictors R R2 Intercept Slope Std error Beta p Tolerance VIF

Support Groups WILLACT 0.54 0.29 −0.54 0.14 0.04 0.21 <0.01 0.54 1.87
EWVGSC 0.17 0.06 0.18 <0.01 0.53 1.90
Age −0.002 0.002 −0.09 n.s. 0.57 1.74
Gender −0.05 0.05 −0.05 n.s. 0.83 1.21
Children −0.01 0.06 −0.01 n.s. 0.67 1.50
Univ. Edn 0.08 0.06 0.08 n.s. 0.63 1.59
Man/Prof −0.15 0.06 −0.14 <0.05 0.57 1.76
Manual −0.02 0.07 −0.01 n.s. 0.70 1.43
Unemployed 0.04 0.07 0.03 n.s. 0.71 1.40
Protestant −0.01 0.07 −0.01 n.s. 0.44 2.26
Catholic 0.06 0.07 0.05 n.s. 0.54 1.85
No Religion 0.05 0.07 0.05 n.s. 0.49 2.06
Liberal 0.04 0.06 0.04 n.s. 0.65 1.54
Conservative −0.11 0.06 −0.10 n.s. 0.66 1.52

WILLACT 0.53 0.28 −0.46 0.51 0.04 0.22 <0.001 0.56 1.78
EWVGSC 0.16 0.05 0.17 <0.01 0.57 1.77
Age −0.003 0.001 −0.10 <0.05 0.83 1.20
Gender −0.06 0.04 −0.07 n.s. 0.98 1.03
Education 0.08 0.05 0.08 n.s. 0.65 1.53
Man/Prof −0.15 0.06 −0.14 <0.01 0.67 1.50
Conservative −0.13 0.05 −0.13 0.01 0.83 1.21

WILLACT 0.52 0.27 −0.02 0.21 0.03 0.32 <0.001 0.80 1.26
Age −0.004 0.001 −0.13 <0.01 0.87 1.16
Gender −0.05 0.04 −0.05 n.s. 0.99 1.01
Education 0.08 0.05 0.08 n.s. 0.65 1.53
Man/Prof −0.16 0.06 −0.16 <0.01 0.67 1.49
Conservative −0.15 0.05 −0.14 <0.01 0.83 1.20

WILLACT 0.51 0.26 0.02 0.22 0.03 0.32 <0.001 0.81 1.24
Man/Prof −0.21 0.05 −0.20 <0.001 0.99 1.01
Age −0.004 0.001 −0.14 <0.01 0.88 1.14
Conservative −0.15 0.05 −0.14 <0.01 0.84 1.19
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this analysis. There is only a 1 per cent reduction in the percentage of the variance
accounted for. At the same time, we have eliminated some of the collinearity
problems.

The next step was to remove EWVGSC because of its close association with
WILLACT. The latter was preferred in this choice, as we have already demon-
strated that it has a more direct influence on the ERB variables (see the third
section of the table). Again the reduction in the explanatory power is only a
further 1 per cent. Finally, the regression analysis was run with these remaining
variables being entered in the forward mode (see the discussion of this proce-
dure in Chapter 5). The last section of the table reports the variables that this
procedure included, and the order in which they were entered. While there has
been a further reduction of 1 per cent in the variance accounted for, we now
have sets of relatively powerful predictors, all of which are significant, and
without any collinearity problems. Only four variables were included: in addi-
tion to WILLACT and Age, Managerial/Professional occupations and Conserv-
ative PPP (both negative). In other words, there is a decided lack of Support
for Environmental Groups in the highest-status Occupational category, com-
pared to all other occupations, as well as among the elderly and those who
prefer Conservative political parties.

Table 8.35 presents the same analysis with Avoid Products as the outcome
variable. The full set of predictor variables accounts for 28 per cent of the vari-
ance, although this declines to 24 per cent in the third section of the table and
to 23 per cent in the fourth section. The same variables (as in Table 8.34) were
retained in the second and third sections. However, when a forward analysis
was undertaken, in addition to WILLACT and Age, Gender and Education
were included, both with positive contributions. Hence, we can conclude that
Avoiding of Environmentally Damaging Products is more common among
women, the better-educated and younger people.

Even though we have ended up with only four variables to explain these two
forms of ERB, the explanations are parsimonious. This means that we can achieve
almost as powerful an explanation, and a more satisfactory one, with four vari-
ables as was achieved with many more. It is important to note, however, that
different decisions about which variables to include in the analysis may produce
different conclusions. What is important in this process is to be able to justify
the decisions and, preferably, have theoretical as well as statistical reasons for
making them.

Finally, let us summarize the results of the use of multiple regression to
answer the research question. Focusing on the Resident sample, we have found
that Willingness to Act is the best predictor of a person’s ERB, although EWV
comes a close second. Age makes some contribution to predicting both of the
ERB variables. Occupation and Political Party Preferences also contribute to
predicting the support offered to environmental groups, and Gender and
Education to avoiding environmentally damaging products. As the student sample
is homogeneous with respect to Age and Education, and the majority do not
have an occupation19 or children, we are left with Gender as the major addi-
tional predictor. Religion, which was not included in the analysis, may also play
some role. While these conclusions are consistent with the limited analysis that
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Table 8.35 Regression of Avoid Products on selected predictor variables (Residents)
Outcome Predictors R R2 Intercept Slope Std error Beta p Tolerance VIF
Avoid Products WILLACT 0.53 0.28 −1.26 0.35 0.09 0.24 <0.001 0.54 1.87

EWVGSC 0.40 0.12 0.20 <0.01 0.53 1.90
Age −0.007 0.003 −0.13 <0.05 0.57 1.74
Gender 0.28 0.10 0.13 <0.01 0.83 1.21
Children 0.12 0.12 0.05 n.s. 0.67 1.50
Univ. Edn 0.15 0.12 0.07 n.s. 0.63 1.59
Man/Prof −0.13 0.13 −0.06 n.s. 0.57 1.76
Manual −0.001 0.15 0.00 n.s. 0.70 1.43
Unemployed 0.16 0.15 0.06 n.s. 0.71 1.40
Portestant 0.02 0.14 0.01 n.s. 0.44 2.26
Catholic −0.09 0.15 −0.03 n.s. 0.54 1.85
No Religion −0.09 0.15 −0.04 n.s. 0.49 2.06
Liberal 0.03 0.12 0.02 n.s. 0.65 1.54
Conservative −0.05 0.12 −0.02 n.s. 0.66 1.52

WILLACT 0.51 0.26 −1.30 0.37 0.09 0.26 <0.001 0.56 1.78
EWVGSC 0.42 0.12 0.21 <0.001 0.57 1.77
Age −0.004 0.003 −0.07 n.s. 0.83 1.20
Gender 0.26 0.09 0.13 <0.01 0.98 1.03
Education 0.15 0.12 0.07 n.s. 0.65 1.53
Man/Prof −0.17 0.12 −0.08 n.s. 0.67 1.50
Conservative −0.03 0.11 −0.01 n.s. 0.83 1.21

WILLACT 0.49 0.24 −0.16 0.53 0.07 0.37 <0.001 0.80 1.26
Age −0.006 0.003 −0.10 <0.05 0.87 1.16
Gender 0.31 0.09 0.15 <0.01 0.99 1.01
Education 0.15 0.12 0.07 n.s. 0.65 1.53
Man/Prof −0.21 0.12 −0.10 n.s. 0.67 1.49
Conservative −0.05 0.11 −0.02 n.s. <0.83 1.20

WILLACT 0.48 0.23 −0.42 0.54 0.07 0.38 <0.001 0.89 1.23
Gender 0.31 0.09 0.15 <0.01 1.00 1.00
Education 0.27 0.10 0.13 <0.01 0.97 1.03
Age −0.006 0.003 −0.10 <0.05 0.90 1.11
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was done using the other methods, the major advantages of multiple regression
over them are that it can handle a large number of predictor variables at once,
and that it can provide a measure of the relative contributions of all of these
variables.

Conclusion

Two important conclusions need to be drawn from the analysis conducted in
this chapter. The first is that while metric data are generally preferred to cate-
gorical data, because the procedures appropriate for the former are regarded as
being more powerful and usually less cumbersome than those appropriate for
latter, there are many situations in which using categorical data, or categorical
versions of metric data, will tell you more about what is going on than will the
statistically more sophisticated procedures. Patterns in data can invariably be
understood better using cross-tabulations and comparison of means across
categories. Hence, the pressure to use the most advanced level of analysis needs
to be at least complemented by lower-level analysis. While some analysis must
remain at a lower level because of the restrictions that result from the level of
measurement used, for example, nominal-level data, recoding metric data into
categories and using lower-level analysis can help a researcher get a better feel
for what is happening.

There are, of course, many limitations associated with the use of categorical
data. One that is obvious from this analysis is the limited scope these data have for
undertaking multivariate analysis. It is clear that multiple regression, and other
more advanced methods that have not been discussed here, are more adept at this
kind of analysis. Given the use of dummy variables, it is possible to include vari-
ables covering the full range of measurement. However, there is a price to be paid
for this. Dichotomizing categorical variables inevitably means the loss of informa-
tion. For example, converting an extensive range of religions into a simple dichotomy
must mask important variations across such categories. While doing trials using
various possible dichotomies can help to highlight the more important differences,
there is a bluntness about such procedures. This is an interesting paradox because
the advantage of metric variables over categorical ones is that the former can handle
greater detail, for example, Age in years compared with categories.

This brings me to the second main conclusion. I hope that this excursion
through the various types of analysis applied in these two samples to the set of
research questions has produced a reasonably detailed picture of environmen-
tal attitudes and behaviour, and their interconnection. There are many more
research questions that could have been explored and other types of analysis
that could have been undertaken. Nevertheless, when it comes to the most
challenging aspect of any research, providing satisfactory answers to ‘why’ ques-
tions, quantitative analysis can leave us rather dissatisfied.

Quantitative data analysis is absolutely essential for answering many types
of research questions. Sometimes, there are no alternatives. It is useful for
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describing characteristics of and patterns between relatively ‘simple’ variables.
However, the problem is that variables used in quantitative analysis inevitably
entail assumptions about the nature of social life and, in particular, about how
it is understood by the social actors. At the same time, the process of convert-
ing the characteristics of people and social processes into variables keeps the
researcher at arm’s length (or further) from social reality, that is, reality as it is
constructed and maintained by social actors.

There is a temptation to push quantitative data analysis beyond its practical
and theoretical limits, just because it is easy to do this. In the end, the social
world can end up being represented by a network of variables that may have
little relationship to the social process experienced by the participants. Of course,
if you work with ontological assumptions that social reality exists indepen-
dently of people, then this may not seem to be a problem. On the other hand,
if you work with the ontological assumptions of interpretivism or similar philo-
sophical or theoretical positions, in which social reality is seen to be socially
constructed and maintained by social actors, then the capacity of quantitative
analysis to misrepresent or distort social reality is a serious problem.

The solution is to turn to other methods of analysis and different kinds of
data that are compatible with these latter ontological assumptions, namely,
qualitative methods. While these methods may lack the statistical rigour that is
desired by many social researchers, in the right hands they have the advantage
of getting much closer to people and their social situations and, in the end, can
provide more satisfying answers to research questions.20

Notes

1I have reiterated this procedure here in order to suggest that you might like to calculate
some of these tests by hand, as I have had to do! Note that with the high value for degrees of
freedom (865), we can also use the values in the z distribution.

2The latter could also be dichotomized, but would produce essentially the same result as for
Support Groups dichotomized.

3Note that the percentages for the categories ‘Never’ and ‘No support’ are the same for the
Residents (60.7) but differ slightly for the Students (43.9 and 42.5). It is possible that the first
question, ‘Do you support any environmental groups?’ was interpreted narrowly as active sup-
port, while the second question (‘In what ways do you support these groups?) allowed for some-
thing as weak as moral support.

4The ns for the correlation coefficients in the Student sample range from 458 to 465, indi-
cating that for some of the variables (mostly Avoid Products) data are missing for some respon-
dents. However, in the Resident sample, the ns are either 401 or 402.

5An alternative to this dichotomized version of Support Groups would be to treat the three
response categories, ‘Regularly’, ‘Sometimes’ and ‘Never’ as interval-level measurement. This
would be another example of adopting the controversial assumption that ordinal-level
measurement can, for all practical purposes, be treated as interval. When this is done, these two
coefficients become 0.55 and 0.48, respectively. Generally, they would be between 0.02 and
0.05 higher than the other variables in the matrix. The reason for this is that more information
is being used with three rather than two categories.

6Depending on the level of measurement being used, other coefficients, such as Cramér’s V
for nominal-level data, could be used in such a matrix. However, it would be inadvisable to
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include a mixture of coefficients as each one has it own particular characteristics, and they are
not really comparable.

7It would be possible to do a multiple analysis of variance (MANOVA) to test the significance
of the differences between the means across the Age categories.

8As indicated earlier, the items in the SCITEK scale were weighted such that a high score
represented less faith in science and technology.

9In models of this kind, a double-headed arrow indicates an association while a single-headed
arrow indicates an influence in the direction of the arrow.

10While they are not strictly appropriate for the purpose at hand, the values for Cramér’s V,
the standardized contingency coefficient (Cs) and gamma are also reported just to show how
these values for symmetric measures differ from asymmetric values. Gamma, of course, would
be the most appropriate measure of association for linear relationships, but the other two are
useful for other types of relationship.

11V = 0.32, Cs = 0.49 and G = 0.52 for Students; V = 0.33, Cs = 0.50 and G = 0.57 for
Residents.

12V = 0.24, Cs = 0.44 and G = 0.42 for Students; V = 0.26, Cs = 0.48 and G = 0.47 for
Residents.

13V = 0.45, Cs = 0.64 and G = 0.71 for Students; V = 0.38, Cs = 0.56 and G = 0.63 for
Residents.

14V = 0.30, Cs = 0.54 and G = 0.53 for Students; V = 0.26, Cs = 0.47 and G = 0.42 for
Residents.

15It would be possible to do a MANOVA on the comparison of the means on each variable
to establish whether the differences are significant.

16There are rather too many distributions here to be represented pictorially.
17However, note that in the two oldest Age categories the numbers are too small to draw any

definite conclusions.
18One coefficient of 0.13, Education with Partnered, is only significant at the 0.05 level. In

fact, this coefficient is only 0.126 but rounding up shows it as 0.13.
19It is not possible to be precise about how many students were currently employed at the

time of the study, or who might have had previous occupational experiences, as this was not
addressed. However, we can assume that their future employment is most likely to be in higher-
status occupations.

20For a discussion of the range of ontological positions in the social sciences, see Blaikie
(1993a), and for some suggestions on alternative ways to answer research question 6, see the
fourth sample research design in Chapter 8 of Blaikie (2000).

Real data analysis

305

3055-ch08.qxd  1/10/03 3:38 PM  Page 305



Glossary

The number in parentheses at the end of each entry is the page number on
which the term first appears and/or receives considerable attention.

abductive logic A strategy for advancing social science knowledge, derived
from social actors’ meanings and interpretations. (34)

alternative hypothesis (H1) A statement specifying that a relationship exists
between two variables in a population, different from that specified in the null
hypothesis. (179)

analysis of variance (ANOVA) Tests the significance of the differences
between more than two means, either within a sample (between categories of
one predictor variable) or between samples (the same predictor variable in
different samples). (154, 201)

applied research Deals with social or practical problems and is concerned
with practical outcomes, with trying to solve some practical problem, with
helping practitioners accomplish tasks, and with the development and
implementation of policy. (12)

arithematic mean See mean. (71)

association Two variables are said to be associated if the values of one variable
vary or change together with the values of the other variable; the variables are
said to be co-related. (89)

asymmetrical measure of association A measure of the directional influence
of one variable on another. (96, 120)

bar chart A graphical representation of a frequency distribution across the
categories of a categorical variable, represented by a set of vertical or horizon-
tal bars. (63, 101)

basic research Deals with theoretical problems and is concerned with advancing
fundamental knowledge about the social world, in particular with the develop-
ment and testing of theories. (12)

bell curve See normal distribution. (67)

beta (β) Standardized regression coefficient. (130, 149)
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between-sample comparisons A procedure for establishing whether differences
between the means of two or more samples also exist between the
populations from which the samples were drawn. (184)

between-sample variance The extent of the differences between means, of
either categories of a variable or different samples. (202)

biased sample See sampling bias. (162)

bivariate descriptive analysis Analysis concerned with establishing either associ-
ations between two variables. (29, 47, 89)

bivariate explanatory analysis Analysis concerned with establishing influence
between two variables. (120)

bivariate regression A procedure for predicting the values of one variable
from those of another variable by establishing a straight line that best represents
the relationship between the two variables. (125)

categorical measurement The classification of objects, events or people into a
set of nominal-level or ordinal-level categories. Any numbering of such cate-
gories is only for identification, and cannot be used for mathematical manipu-
lation. However, it is possible to analyze the frequencies within categories and
compare these across the categories. (23)

causality The distribution on one variable is said to produce the distribution
on another variable if it can be established that the two variables are associated,
that the second variable follows the first in a time sequence, and that other pos-
sible causes can be eliminated. (117)

census A count of all elements in a population. (160)

central limit theorem The theorem states that when many probability samples
are drawn from a population, increasing the sample size will increase the possi-
bility of the distribution of sample means approaching the normal distribution
and the overall mean of the sample means approaching the population mean. This
is true regardless of the shape of the distribution of the population values. (165)

chi-square A test of significance for association between nominal-level variables.
(97)

cluster sampling A method of sampling that involves combining population
elements into groups or clusters and then selecting a number of the groups
rather than individual population elements. (169)

coefficient of multiple determination (R2) A measure of the total amount of
variance explained by all the predictor variables in regression analysis. (130)
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collinearity (multiple collinearity) A problem encountered in multiple regression
when two or more predictor variables are closely associated. (150, 294)

commonality The proportion of the total variance an item contributes to all
the factors produced by factor analysis. (221)

conditional associations See interacting variables and moderating variables.
(139)

concordant pairs Two objects, events or individuals that are ranked similarly
on two variables. (102, 124)

conditional tables Three-way contingency tables used to establish the form of
the relationships between three categorical variables. (138, 141)

confidence interval The range of values around the sample value within which
the population value is expected to lie. (172)

confidence level In inferential analysis, it is the degree to which we are
confident that the null hypothesis can be rejected in favour of the alternative
hypothesis, that values or differences found in a sample can be expected to be
present in the population from which the sample was drawn. Confidence levels
are commonly set at 95 per cent, 99 per cent and 99.9 per cent. See also
significance level. (172)

confidence limits The two extreme values of a confidence interval. (172)

contingency coefficient A measure of association, appropriate for relation-
ships between nominal-level variables, based on the sum of the chi-square
values for all cells in a contingency table. (97)

contingency table A table of two or more variables cross-tabulated into cells
that show the frequencies in the combination of categories of the variables. (91)

continuous scale Measurement that can have an unlimited number of inter-
mediate values (e.g. fractions or decimal points) between the whole numbers.
(26, 53)

correlation See association. (89)

correlation coefficient A measure of the extent to which two continuous
(interval-level or ratio-level) variables are related. (108)

covariance The extent to which two continuous variables vary together, that
is, the variance on one variable coincides with the variance on another variable.
(107, 159)
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Cramér’s V A measure of association, based on chi-square, that is appropriate
for two categorical variables, particularly at the nominal level, both of which
have more than two categories. (101)

critical rationalism The philosophy of science, based on the work of Karl
Popper, which rejects the inductive logic of positivism in favour of deductive
logic for theory testing. (17)

Cronbach’s alpha A measure of the reliability of a scale produced by factor
analysis. (219)

cross-sectional design Research in which all variables are measured at the
same time. (118)

cross-tabulation See contingency table. (91)

curvilinear relationship An association between two variables that can be
represented by a curved line. (96)

data In quantitative research, data are regarded as being the products of the
measurement of concepts according to agreed and replicable procedures. (15)

data analysis An essential step in the process of answering research questions
about characteristics, relationships, patterns or influences in social phenomena.
(28)

data reduction Procedures for reorganizing or combining response categories, or
combining a number of items of data into a single variable. (45, 214)

deductive logic A set of steps for advancing knowledge that starts with a theory
or possible explanation and then proceeds to test the theory by deducing from it
one or more hypotheses that are then matched against appropriate data. (34)

degrees of freedom The number of values that are free to vary when certain
restrictions are placed on the data. (190)

dependent samples A traditional method for classifying samples used in
experimental research where they are drawn from the same population. They
can be separate samples in which the members of one are matched against the
members of the other, perhaps to form an experimental and a control group, or
they can be produced by collecting data from one sample at two points in time,
usually before and after some treatment or intervention. They are also known
as related samples. (183)

dependence techniques Methods of explanatory analysis that examine the
influence of predictor variables on outcome variables. (153)
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dependent variable See outcome variable. (31, 119)

descriptive analysis Procedures used to summarize the characteristics of some
phenomenon in terms of distributions on variables (univariate), or patterns of
association between two variables (bivariate). (48)

discrete scale Measurement that involves units in whole numbers and, usually,
equal intervals between the numbers. (26, 53)

discordant pairs Two objects, events or individuals that are ranked differently
on two variables. (102, 124)

distribution-free tests See non-parametric tests. (171)

dummy variable A dichotomous variable of two categories created from a
categorical (nominal-level or ordinal-level) variable with three or more categories.
When converted into a set of dummy variables, such categorical variables can
be used in regression analysis. (135)

eigenvalue A measure of the amount of the variance accounted for by each
factor. (223)

empirical evidence Data collected on the assumption that unprejudiced
‘observation’, through the use of the human senses, produces reliable ‘evidence’
about the ‘empirical’ world. (15)

epistemological assumptions Assumptions about how social reality can be
known. (16)

error of estimation See sampling error. (162)

eta (η) A measure of influence in means analysis. (134)

experiment Procedure used to control the influence between variables and to
eliminate the influence of other variables in order to satisfy the criteria for
inferring causation. (117)

explanatory analysis Procedures for establishing the direction and strength of
influence between variables. (30, 47, 116)

explanatory variable See predictor variable. (119)

F statistic A procedure used in analysis of variance to establish whether or not
differences between means are significant. (201)

factor analysis A procedure for identifying underlying factors or latent
variables present in the patterns of correlations among a set of measures. (220)
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factor loading A measure of the contribution an item makes to a particular
factor. (221)

first-order relationships Relationships between three variables with one as a
control. (141)

frequency counts The numbers in the categories of categorical data and discrete
and grouped metric data. (53)

frequency distribution A table or graphical representation of frequencies in
the categories of categorical data and discrete and grouped metric data. (53, 59)

gamma (γ or G) An appropriate measure of association for use with contingency
tables that have two ordinal-level variables. (102)

generative view of causation The view of causality based on the idea that
events must be regarded as networks or systems and cannot be seen as discrete
and isolatable. (31)

group t test A procedure for establishing whether a sample characteristic or
pattern lies in the extreme tails of the normal curve of all possible samples, that
is, that the sample characteristic or pattern is not significant. The distribution
of values of t represents a theoretical symmetrical distribution with a mean of
zero but with a standard deviation that becomes smaller as the degrees of free-
dom increase. When the degrees of freedom exceed 100, the t distribution
approximates the normal distribution. (193)

heteroscedasticity The clustering of points towards one end of the length of
the line of best fit in the scatter plot of two associated variables. (134)

histogram A form of bar chart used mainly with interval-level or ratio-level
distributions that are based on whole numbers or grouped data. (64)

homoscedasticity A uniform spread of points on both sides of the length of
the line of best fit in the scatter plot of two associated variables. (134)

hypotheses Possible answers to ‘why’ questions. (13)

independent samples A traditional method for classifying samples used in
experimental research where they are drawn from different populations, or
from different groups or categories in the same population. They are also
known as unrelated samples. (183)

independent variable See predictor variable. (31, 119)

index A combination of measures that is not tested for unidimensionality.
(239)
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inductive logic A set of steps used to advance knowledge by generalizing
from accumulated data to produce patterns or connections between events or
variables. (33)

inferential analysis Procedures used to generalize sample statistics to popula-
tion parameters. Such procedures involve estimating whether the characteris-
tics or relationships found in a sample, or differences between samples, could
be expected to exist in the population or populations from which the sample or
samples were randomly drawn. (32, 47, 159)

inferential statistics Measures for estimating population parameters from
sample statistics. (161)

interacting variables Interaction occurs when the influence of one variable on
another is contingent on the presence of a third variable. (137)

interdependence techniques Methods that do a simultaneous analysis of all
the variables in the set with no assumptions about direction of influence. (153)

interquartile range A measure of the dispersion of distributions of ordinal-
level data, and discrete and grouped interval-level and ratio-level data, by sub-
tracting the value for the first quartile from that of third quartile. It is used in
association with the median. (78)

interpretivism The philosophy of social science based on the ontological
assumption that social reality consists of intersubjectively shared, socially con-
structed meaning and knowledge that is produced and reproduced by social
actors in the course of their everyday lives. It is assumed that knowledge of
social reality can only be achieved by collecting social actors’ accounts of their
reality and then redescribing these accounts in social scientific language, using
abductive logic. Also known as social constructionism. (17)

interval-level measurement Metric-level measurement that uses a scale with
known and usually equal intervals between the categories or scores. The zero
point is arbitrary. (25)

intervening variable A variable that links two other in a causal chain: a pre-
dictor variable influences an intervening variable which, in turn, influences an
outcome variable. (137)

Kendall’s rank correlation coefficient (ττ) A symmetric measure of association
used with a small number of objects, events or individuals that are given unique
rankings on two variables. (105)

Kendall’s tau-b A symmetric measure of association for ordinal-level vari-
ables, particularly in tables with the same number of rows and columns. It
allows for ties on both variables and is an alternative to gamma. (104)
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lambda (λ) A symmetric measure of association and an asymmetric measure
of the influence between two nominal-level variables in any size of contingency
table. (120)

latent variable An unmeasured variable that lies behind a set of measure-
ments. (220)

levels of measurement Different ways of assigning numbers to objects, events
or people, or of assigning objects, events or people to a numerical scale, accord-
ing to sets of predetermined but arbitrary rules. The former is referred to as
categorical measurement and the latter as metric measurement. Within each of
these two types of measurement are two further levels: categorical measure-
ments may be at the nominal or ordinal level, and metric measurements
interval or ratio. (22)

line graph An area graph or a frequency polygon produced by joining with
straight lines the midpoints of equal-width bars in a histogram. (66)

linear relationship An association between two variables that can be repre-
sented by a straight line. (96)

Mann–Whitney U test A distribution-free test that is appropriate either when
the parametric requirements of the t test cannot be met, or with ordinal-level
variables. (197)

marginal The total of cell values of rows and columns in a contingency table.
(91)

mathematical adjective The modification of a mathematical noun by attaching
a subscript to it to identify the values of a variable to which it refers. (48)

mathematical adverb The modification of a mathematical verb by specifying
very precisely the values on which the operations are to be applied. (49)

mathematical noun Letter used as shorthand to refer to values on a variable
or the total of such values. (48)

mathematical verb Operator used to indicate actions to be taken on the
values of variables, such as summing, taking the root of or raising to a power.
(49)

mean A measure of central tendency in which the sum of a set of values is
divided by the number of the values in the set. It is the point in a distribution
of values about which the sum of the deviations is equal to zero. (71)

mean absolute deviation The mean of the deviations of all values from the
mean. (80)
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mean deviation method A method for calculating Pearson’s r (110) and the
slope of a regression line (128).

mean weighted percentage The overall mean of sample means when the sam-
ples are of different sizes. (75)

measurement The assignment of numbers to objects, events or people, or the
assignment of objects, events or people to a numerical scale, according to sets
of predetermined but arbitrary rules. (22)

measures of association Measures designed to indicate the strength of the
relationship between two variables. (89, 96)

measures of central tendency Measures designed to indicate the ‘middle’ or
‘most typical’ point (e.g. category or score) in a distribution. (68)

measures of dispersion Measures of the characteristics of a distribution in
terms of how widely it is spread. (78)

median A measure of central tendency that is the position in a distribution
above and below which one half of the frequencies fall. (69)

metric measurement The assignment to objects, events or people of a number
from a scale of numbers with equal intervals between the positions on the scale.
Adding equal or measurable intervals between positions on a continuum trans-
forms categorical measurement into metric measurement. (24)

mode A measure of central tendency that is the value for the category in a
distribution with the highest frequency. The most basic of the three measures
of central tendency. (68)

moderating variable A third variable that affects the relationship between
two other variables, depending on its value. (137)

multiple correlation coefficient (R) A measure of association between predictor
variables and an outcome variable. (130)

multiple regression A procedure for analyzing the relationship between a
single metric outcome variable and two or more predictor variables with, for each
predictor variable, the effects of all the other predictor variables held constant.
(146)

multi-stage sampling The selection of a sample in stages, using different
methods at each stage. (169)

multivariate analysis Procedures for examining the associations or influences
between three or more variables. (48)
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multivariate analysis of variance (MANOVA) A test of the significance of the
differences between the means of one or more predictor variables with several
dependent variables. (154, 202)

necessary condition A condition that needs to be present in order for an event
or relationship to occur. (30)

negative relationship An association between two variables in which an
increase in the values for one variable is accompanied by a decrease in the values
for the other variable. (90, 95)

negatively skewed distribution A distribution that tends to ‘lean’ towards the
end with the higher values and tail off at the end with the lower values. (67)

no relationship An association in which a position or score on one variable is
not associated with a position or score on the other variable. (90, 95)

non-parametric tests Tests of significance that are appropriate for categorical
variables (nominal-level and ordinal-level) and metric variables with non-
normal distributions. Also known as distribution-free tests. (171)

non-probability sample A sample that is drawn in such a way as not to give
every population element a chance of selection. (161)

nominal-level measurement Categorical-level measurement in which cate-
gories identify different types of objects, events or people that share the same
characteristics. Assignment to a category is in terms of some criterion and the
categories have no intrinsic order to them. Analysis is limited to frequency
counts in each category and a comparison of these. (23, 53)

normal distribution A frequency distribution in a symmetrical bell-shaped
form. (67)

null hypothesis (H0) A statement specifying that no relationship exists
between two variables in a population. Occasionally, a null hypothesis may
specify a specific value for a population parameter. (179)

observation The use of the human senses to produce ‘evidence’ about the
‘empirical’ world. (15)

one-sample tests Tests used to establish whether the value for a particular
variable in a sample is different from some known or assumed population value,
that is, whether or not the sample comes from a population with a particular
mean. (184)

one-tailed test A test of the significance of a directional alternative hypothesis.
(182)
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one-way analysis of variance A test of the significance of the difference
between the means of several categories of one predictor variable or the means
for the same variable in two different samples. (201)

ontological assumptions Assumptions about the nature of social reality. (16)

operationalize To specify the procedures used to classify or measure the
phenomenon being investigated. (22)

ordinal-level measurement Categorical-level measurement in which cate-
gories identify different types of objects, events or people that share the same
characteristics. Assignment to a category is in terms of some criterion and,
unlike nominal-level measurement, the categories are ordered along some
continuum. (23, 53)

outcome variable A variable whose values are influenced or predicted by one
or more predictor variables. (31, 119)

outliers The points that are very deviant from the dominant pattern in two
variables that are associated. (133)

parametric tests Test of significance appropriate for metric variables with
normal distributions. (171)

partial correlation A procedure for examining the effect of one variable, the
control, on the relationship between two other variables. It is possible to dis-
cover whether the relationship is spurious, and whether the control variable is
intervening in or moderating the relationship. (146)

Pearson’s product moment correlation coefficient (r) The measure of associ-
ation appropriate for two metric variables. It indicates the extent to which
objects, events or individuals occupy the same relative position on two variables.
(108)

percentage A proportion expressed to the base of 100. It is arrived at by divid-
ing a frequency by the total of all frequencies and multiplying the product by
100. (59)

percentiles The set of divisions of a distribution into 100 equal parts. (79)

phi (φ) The measure of association appropriate for two dichotomous, nominal-
level variables expressed in the form of a 2 by 2 contingency table, or for one
dichotomous variable and one multi-category variable. (101)

pie chart The pictorial representation of a categorical distribution in the form
of segments of a circle such that the area of a segment corresponds to the
frequency in that category. (63)
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pooled estimate A procedure used to estimate the standard error of the
difference between two means when the standard deviations of the two groups
are approximately equal; the two standard deviations are pooled together. (194)

population An aggregate of all units or cases that conform to some designated
set of criteria, also called the target population, universe or sampling frame.
(160)

population element A member or unit of a population, such as people, social
actions, events, places, times or things. (160)

population parameter The characteristic of some aspect of a population.
(161)

positive relationship An association between two variables in which an
increase in the values for one variable is accompanied by an increase in the
values for the other variable. (90, 95)

positively skewed distribution A distribution that tends to ‘lean’ towards the
end with the lower values and tail off at the end with the higher values. (67)

positivism The philosophy of science based on the assumptions that social
reality is external to the people involved and that knowledge of this reality can
be obtained by the unprejudiced use of the human senses. The measurement of
concepts is regarded as establishing a bridge between social reality and the
observer, and inductive logic is used to advance knowledge. (17)

post hoc fallacy The inappropriate use of correlations to establish causation.
(116)

predictor variable A variable that is involved in influencing or predicting the
values of an outcome variable. (31, 119)

primary data Data that are generated by a researcher who is responsible for
the design of the study and their collection, analysis and reporting. (18)

probability sample A sample in which every population element has a known
(usually equal) and non-zero chance of being selected. (161)

probability theory Uses the fact that the distribution of the means from
all possible samples drawn from a population approximates the normal curve
to estimate population parameters from sample statistics. It is based on the
theoretical chances of not drawing a representative sample. One important
principle of probability theory is the central limit theorem. (163)

proportion A measure of the contribution the frequency in a particular cate-
gory makes to the total of the frequencies in all categories of a distribution;
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calculated by dividing the frequency in that category by the total of the
frequencies in all categories. (59)

proportional reduction in error A measure of influence based on the ratio of
the prediction errors without information about the predictor variable to the
prediction errors having information about the outcome variable. (121)

quantitative data Data that are transformed into numbers immediately after
they are collected or prior to the analysis, that remain in numbers during the
analysis, and the findings from which are reported in numbers. (20)

qualitative data Data that are recorded in words, that remain in words
throughout the analysis, and the findings from which are reported in words.
(20)

quartile The set of divisions of a distribution into four equal parts. (78)

random sample See probability sample. (161)

range A measure of dispersion based on the interval between the highest and
lowest scores or frequencies. (79)

rate A comparative measure of the frequency of events occurring in a popu-
lation or category over time, or between different populations or categories.
(62)

ratio A method of comparing the relative size of the frequencies in two
categories; calculated by dividing the frequency in the larger category by the
frequency in smaller one. (61)

ratio-level measurement Metric-level measurement that uses a scale with
known and usually equal intervals between the categories or scores and has an
absolute or true zero. (25)

raw score method A method for calculating Pearson’s r (110) and the slope
of a regression line (129).

recoding A procedure for reordering categories, combining categories or
transforming metric variables into categorical variables. (241)

reference category The category of a multi-category dummy variable that is
excluded from multiple regression analysis, and against which the coefficients
of the other categories are compared. (150)

regression line A straight line that best represents the linear relationship
between two variables. (126)
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relationships See association. (89)

research objective The scientific purpose of social research: to explore,
describe, understand, explain, predict, change, evaluate or assess aspects of
social phenomena. (11)

research problem The social or theoretical issue, the solution of which the
research is designed to contribute. It provides the starting point in any research.
(11)

research questions Questions that a research project endeavours to answer.
They define its nature and scope and are the vital step between a research
problem and the choice of strategies and methods for its investigation. (13)

residual The deviation of a measurement’s value from its position had it fallen
on the regression line. (131)

response rate The percentage of usable responses from a sample survey. (167)

retroductive logic A method for advancing knowledge that involves the build-
ing of models of structures and mechanisms that might produce observed
effects. (34)

rotated solution A factor analytic method that rotates the factors to give
items maximum loading on only one factor. (224)

rules for rounding Conventions for eliminating the last digit in a number,
particularly the last decimal place. (53)

sample A selection of elements (members or units) from a population. (161)

sample statistic The characteristic of some aspect of a sample. (161)

sampling adequacy Measured by the Kaiser–Meyer–Olkin index that estab-
lishes whether a set of scale items are a suitable selection. (221)

sampling bias The extent to which the characteristics of a sample do not
represent those in the population from which it was drawn. (162)

sampling error The extent to which a sample statistic does not accurately
represent the parameters of the population from which it was drawn. (162)

sampling fraction See sampling ratio. (161)

sampling ratio A measure of the relationship between the size of a sample and
the size of the population from which it was drawn. (161)
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second-order relationships The relationships between four variables with two
as controls. (141)

secondary data Raw data that have been collected by someone other than the
researcher in question, either for some general information purpose, such as a
government census, or for a specific research project. (18)

scale A combination of measures, into a single score, and tasted for uni-
dimensionality. (215)

scatter diagram A graph in which all points of intersection between two vari-
ables are plotted. (107)

scientific realism The philosophy of science that rejects both positivism and
critical rationalism in favour of the view that reality consist of layers or domains,
the most important of which is an underlying ‘real’ layer consisting of the struc-
tures and mechanisms that produce the regularities that can be observed at the
surface layer. Knowledge of this ‘real’ layer can only be gained by constructing
imaginary models of how these structures and mechanisms might operate. (17)

scree plot A graph of the magnitude of the eigenvalues in factor analysis.
(223)

significance level The probability of wrongly accepting the alternative
hypothesis when the null hypothesis is true, that is, making a type I error. It is
based on the theoretical probability of the occurrence of rare sample values that
could have been produced using probability procedures. If the level set is
equalled or exceeded in the analysis, the sample value or difference is said to
be significant, that is to say, this value or difference is expected to be present
in the population from which the sample was drawn. Common significance
levels are 0.05, 0.01 and 0.001. See also confidence level. (172)

simple random sampling A method of sampling that gives every possible
sample of a particular size the same chance of selection. Tables of random
numbers are normally used to make the selections. (168)

simple regression See bivariate regression.

skewed distribution A distribution that deviates from the symmetrical by
‘leaning’ somewhat to one end and tailing off at the other end. (66)

skewness See skewed distribution. (76)

Somer’s d A measure of influence (or association) between ordinal-level
variables. (124)
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Spearman’s rank correlation coefficient (rS) A measure of association used
with a small number of objects, events or individuals that are given unique rank-
ings on two variables. (105)

spurious association A relationship between two variables that is the result of
their association with a third variable. (136)

standard deviation A measure of the dispersion of distributions of interval-
level and ratio-level data. The square root of the sum of the squared deviations
of all values from the mean, divided by the number of values. (80)

standard error of the difference An estimate of the standard deviation of the
distribution of the differences between all the means for two subsamples. (194)

standard error of the estimate In regression analysis, it is the standard devia-
tion of the distribution of errors between the predicted and actual values of the
outcome variable. (131)

standard error of the mean A theoretical standard deviation of the means of
a sample of a given size, drawn from a specified population. (165, 175)

standard error of the proportion An estimate of the standard deviation of the
sampling distribution of proportions. (173)

standard error of the slope An estimate of the standard deviation of the sam-
pling distribution of the slope of a regression line. (208)

standard normal distribution See normal distribution. (85)

standard score (z-score) A score, expressed in standard deviation units, that
represents the deviation of a specific score from the mean. (84)

standardized contingency coefficient (cs) The contingency coefficient corrected
for its upper limit.

statistical hypothesis A statement claiming that a relationship between two
variables in a probability sample also exists in the population from which the
sample was drawn. (178)

stratified sampling A method of sampling in which the population is first
divided into a number of strata, based on a specified criterion, and selections
made within each stratum. (169)

successionist view of causation The view of causality based on the idea that
events in the world can be explained if they follow a regular sequence. (30)

Glossary

321

3055-Glossqxd.qxd  1/10/03 10:30 AM  Page 321



sufficient condition A condition that on its own, or perhaps in combination
with one or two other conditions, will lead to the occurrence of an event. (30)

symmetrical distribution A distribution in which the two halves will coincide
when folded vertically along the middle. (66)

symmetrical measure of association A measure of the mutual association
between two variables. It assumes a relationship can be examined from the
point of view of either of the variables; no direction of influence is inferred.
(96, 120)

systematic sampling A method of sampling in which the list of the population
elements is divided into equal-sized zones and selections made from the same
position within each zone. (168)

tertiary data Data that have been analyzed either by the researcher who gen-
erated them or by an analyst of secondary data. The original raw data may not
be available, only the results of this analysis. (18)

test of significance A procedure used to establish whether a relationship
found in a sample could also be expected to exist in the population from which
the sample was drawn. (33, 177)

theoretical hypothesis A tentative answer to a ‘why’ question. (178)

three-way contingency table Cross-tabulation with three categorical variables.
(141)

tolerance A test for collinearity in multiple regression. (150, 294)

trimmed mean A mean in which both the upper and lower 5 per cent of
values have been excluded. (74)

trivariate analysis Analysis between three variables. (136)

truncated range A distribution that is skewed, that is, restricted across its
categories, positions or scores. (90)

two-sample test A test of significance used to establish either whether the
values for the same variable measured in two samples are different in the popu-
lations from which they were drawn, or whether, in terms of the same variable,
two categories of the same sample could have been drawn from different ‘popu-
lations’. (184)

two-tailed test A test of significance used for a non-directional alternative
hypothesis. (182)
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two-way analysis of variance A method for testing the significance of the dif-
ference between the means of a combination of categories from two predictor
variables. (202)

type I error The rejection of the null hypothesis when it is actually true,
which means claiming that an association exists in a population when it does
not. (180)

type II error The rejection of the null hypothesis when it is actually false,
which means claiming that an association does not exist when it does. (180)

unidimensional The property of a scale in which all the items measure the
same thing. (222)

univariate descriptive analysis The analysis of one variable at a time. (29, 47)

unrotated solution The initial factor analytic solution of the number of
factors present in the associations between a set of variables. (223)

variable Any characteristic of objects, events or people that can vary. (22)

variance The sum of the squared deviances of all values from the mean,
divided by the number of values. (80, 83)

variance inflation factor (VIF) A test for collinearity in multiple regression.
(150, 294)

weighted mean A method for calculating the mean of means that are based
on different-sized samples or populations. (74)

Wilcoxon test See Mann–Whitney U test. (198)

within-sample comparisons A procedure for establishing whether differences
between categories of a variable within a sample can be expected to exist within
the population from which it was drawn. (184)

within-sample variance The dispersion around the mean for each category or
sample being compared. (202) 

z-scores See standard scores. (84)

zero-order correlation coefficient See Pearson’s product moment correlation
coefficient. (111)

zero-order relationship A bivariate relationship. (141)
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Appendix A

SYMBOLS

Symbol Description Page

a Intercept of a regression line on the Y axis 127
b Slope of a regression line 127
β Regression coefficient (beta) 130
c Number of columns in a contingency table 100
C Concordant pairs 102
C Contingency coefficient of association 99
Cs Standardized contingency coefficient of association 100
χ2 Chi-square statistic 97
CI Confidence interval 173
Cov Covariance 108
d Somer’s coefficient of influence 124
df Degrees of freedom 190
D Discordant pairs 102
η Eta measure of influence 134
E Expected frequency 97
ε Error value in a regression equation 132
f Frequency 53
F Fisher’s test of significance 201
G or γ Gamma; Goodman and Kruskal’s coefficient of association 102
λ Lambda; Goodman and Kruskal’s coefficient of influence 120
L Upper limit of the contingency coefficient 100
µ Mean of population values (see also X

–
and Y

–
) 72

n Sample size 48
nt Total of sample totals 203
N Population size 72
O Observed frequency 97
% Percentage 60
%–w Mean weighted percentage 75
φ Phi coefficient of association for 2 by 2 contingency tables 101
p Proportion 59
p Significance level 172
r Pearson’s correlation coefficient (sample) 108
r Number of rows in a contingency table 100
r2 Total variance explained 111
ρ Pearson’s correlation coefficient (population) 205
rS Spearman’s rank correlation coefficient for ordinal-level data 105
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R Multiple correlation coefficient 130
R2 Coefficient of multiple determination 130
R1 The sum of the ranks for one category in calculating U 199
RE The sum of the ranks if there was no difference

between the categories in the U test 199
SK Coefficient of skewness 76
√ Square root 49
s Standard deviation (sample) 83
σ Standard deviation (population) 83
s2 Variance (sample) 83
σ2 Variance (population) 83
seest y Standard error of the estimate (sample) 131
sem Standard error of a sample mean 175
sep Standard error of a sample proportion 173
ses Standard error of the slope of a regression line (sample) 209
seU Standard error of the value of U 199
so Standard deviation of the outcome variable (sample) 130
sp Standard deviation of the predictor variable (sample) 130
sp Pooled estimate of the standard deviation (sample) 195∑

Summmation 49
t t-test of significance 193
τ (tau) Kendall’s rank order coefficient of association

for ordinal-level data (small samples with unique ranks) 105
τb (tau-b) Kendall’s rank order coefficient of association for

ordinal-level data (larger samples with grouped data) 104
Td Tied pairs on the outcome (dependent) variable 124
Tx The number of ties on the x variable 104
Ty The number of ties on the y variable 104
U Mann–Whitney coefficient of significance 198
V Cramér’s coefficient of association for nominal-level data 101
x Individual sample values (x1, x2, x3, etc.) 48
xm Midpoint of a category 72
X Individual population values (X1, X2, X3, etc.)
x2 Square of the value for x 49
x– Mean of all sample values for x 72
x–w Weighted mean of sample values 74
X
–

Mean of all population values for X 72
y Individual sample values (y1, y2, y3, etc.) 110
y2 Square of the value for y 110
y– Mean of all sample values for y 108
Y
–

Mean of all population values for Y
z Standard score (values in a standardized normal distribution) 85
< Less than 205
> Greater than
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Appendix B

EQUATIONS

To calculate: Use equation: Number Page

Beta coefficient sp(multiple β = b × (5.9) 130
regression)

so

(observed f − expected f)2

Chi-square χ2 = sum
expected f

(O − E)2

=
∑

(4.1) 97
E

n([a × d] − [b × c] − n/2)2

Chi-square (2 by 2) χ2 = (4.2) 98
(a + b)(c + d)(a + c)(b + d)

Confidence interval
of the proportion CI = p ± (z × sep) (6.2) 173

Confidence interval
of the mean CI = x– ± (z × sem) (6.4) 175

Confidence interval of
slope of the regression CI = b ± (z × ses) (6.26) 209
line

χ2

Contingency C =

√
(4.3) 99

coefficient n + χ2
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∑
(x − x–)(y − y–)

Covariance Covxy = (4.10) 108
n − 1

χ2

Cramér’s V V =

√
(4.7) 101

n × (smaller of r − 1 and c − 1)

between-sample variability
Fisher’s test F = (6.16) 202

within-sample variability

C − DGamma G = (4.8) 102
C + D

C − D
Kendall’s tau-b τ b = (4.9) 104

√(C + D + Tx)(C + D + Ty)

(errors using Rule I) − (errors using Rule II)
Lambda λ = (5.1) 121

errors using Rule I

sum of the within- modal frequency of
category modes of the outcome

the predictor variable
variable

= (5.2) 123
sample size −

modal frequency of
the outcome variable

−

n1(n1 + 1)
Mann–Whitney test U = n1n2 + − R1 (for small ns) (6.11) 198

2

R1 − REz = (when both nsseu are greater than 20) (6.12) 199

where

n1(n1 + n2 + 1)
RE = (6.13) 199

2

n1n2(n1 + n2 + 1)
seU = 

√
(6.14) 199

12

(6.15) 199
n1n2

(
n3 − n − ∑

T
)

seU = 
√

n(n − 1) 12
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sum of the values
Mean (sample) x– =

number of values

x1 + x2 + x3 + … + xn= (3.7) 72n
∑

x= n
∑

fx
Mean (ungrouped x– = (3.9) 72

frequencies)
n

∑
fx–

Mean (weighted) x–
W

= (3.11) 74∑
f

∑
%n

Mean (weighted %) %–w = (3.12) 75∑
n

∑
fxmMean (grouped x– = (3.10) 74

frequencies) n

∑
f|x − x–|

Mean absolute = (3.15) 80
deviation n

n + 1Median position = (3.6) 69
2

Mean (population)      µ
∑

x (3.8) 72
= n

n1x
–

1 + n2x
–

2 + n3x
–

3 + …
or = (6.17) 203

nt
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Covxy
Pearson’s r r = (4.11) 108sx sy

∑(x − x–)(y − y–)
= (4.12) 108

(n − 1)sx sy

∑
(x − x–)(y − y–)

= (4.13) 108√
[
∑

(xi − x–)2∑(yi − y–)2]

n(∑xy) − (∑x)(∑y)
= (4.14) 110√

[n(
∑x2) − (

∑x)2][n(
∑y2) − (

∑y)2]

∑(zx zy)
= (4.15) 111n

f
Percentage % = × 100 (3.2) 60n

χ2

Phi φ =
√

(4.6) 101n

f
Proportion p = (3.1) 59n

number of eventsRate = × 1000 (3.5) 62
total population of events

number in the largest category
Ratio = (3.4) 61

number in the smallest category

Regression line
(bivariate) y = intercept + (slope × x) = a + bx (5.5) 127

or = a + bx + ε (5.11) 132

(quantity at time 2) − (quantity at time 1) 
× 100Percentage change =

(3.3) 60
(quantity at time 1)
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Regression intercept a = y– − bx– (5.6) 129
(mean deviation
method) where

∑
(x − x–)(y − y–)

b = (5.7) 129∑
(x − x–)2

n(
∑xy) − (

∑x)(
∑y)

(raw score b = (5.8) 129
method) n(∑x2) − (∑x)2

Regression line
(multiple) y = a + b1x1 + b2x2 + … (5.12) 147

n1(x
–

1 − x–W)2 + n2(x
–

2 − x–W)2 + n3(x
–

3 − x–W)2 + …
Sample variability = (6.18) 203

(between sample) c − 1

(n1 − 1)s 2
1 + (n2 − 1)s2

2 + (n3 − 1)s2
3 etc.

Sample variability = (6.19) 203
(within-sample) nt − c

3(mean − median)
Skewness SK = (3.14) 76

standard deviation

C − DSomer’s d d = (5.3) 124
C + D + Td

2(C − D)
= (5.4) 125

n2 − sum of the squares of the
marginals for the outcome
variable

∑
f(x − x–)2

Standard deviation s =
√

(3.16) 83n

∑
fx2

Standard deviation s =
√

− x–2 (3.18) 84
(grouped data)

n
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n1s1
2 + n2s2

2

Standard deviation sp =

√
(s of groups approx. equal) (6.7) 195

(pooled estimate)
n1 + n2

s1
2 + s2

2

=

√
(6.8) 195

2

Standard error 1 1
of the difference

sed = sp 

√
+ (6.9) 195n1 n2

(size of categories approx. equal)

s1
2 s2

2

sp =

√
+ (s of groups approx. equal) (6.10) 195n1 n2

∑
(y − y′)2

Standard error seest y =

√
(5.10) 131

of the estimate n − 2

Standard error s
of the mean sem = (6.3) 175
(estimated) √n

Standard error p(1 − p)
of the proportion sep =

√
(6.1) 173

(estimated)
n

score − mean x − x–Standard score z = = (3.20) 85
standard deviation s

difference between the means
t test (group) t =

estimated standard error of the difference

x–1 − x–2= (6.6) 194sed

where
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n − 2t test (Pearson’s r) t = r
√

(6.20) 204
1 − r2

r − 1Upper limit of χ2 L =
√

(4.4) 100
(square table) r

4 r − 1 c − 1Upper limit of χ2 L =
√

× (4.5) 100
(other tables)

r c

∑
f(x − x–)2

Variance s2 = (3.17) 83n

∑
fx2

Variance s2 = − x–2 (3.19) 84
(grouped data)

n

C + Dz test for gamma z = G

√
(6.5) 191

n(1 − G2)

λ − predicted value of λ
z test for lambda z = (6.22) 205seλ

where
(

sum of within-category
)(

sum of within-category modal f of modal f in the row with the
)

n −
modes of the predictor modes of the predictor

+
the outcome

− 2 ×
modal f of the outcome

seλ = 

√
(n − modal f of the outcome)3

dz test for Somer’s d z = (6.23) 206
√vard

4 ×
∑

(each cell multiplied by the sum of its diagonal cells squared)
vard = (6.24) 207

[total squared −
∑

(each column marginal squared)]2

where

or, if population distributions can
be assumed to be uniform,

4(r2 − 1)(c + 1)
vard  = (6.25) 207

9nr2(c − 1)

(6.21) 205
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SPSS PROCEDURES

This appendix sets out the steps in the SPSS software for undertaking elementary
forms of the various types of analysis covered in Chapters 3–8. All analysis
starts with a selection from one of the pull-down menus and is then followed
by a choice from among the procedures offered. The selections to be made are
shown in bold type, such as Analyze, and arrows (�) are used as shorthand for
‘then click on’. What follows can be used with SPSS versions 8 to 10, and
possibly later versions.

Chapter 3 Descriptive Analysis: Univariate

Distribution, Central Tendency and Dispersion

From the Analyze menu, � Descriptive Statistics � Frequencies.
Select the variables to be analyzed by double-clicking on them in the left-hand
column.
Click on Statistics and then select the procedures desired for that level of
measurement.
Click on Continue.
Click on Charts if required and select the type desired. Click on Continue.
Click on OK.

Chapter 4 Descriptive Analysis: Bivariate

Cross-tabulations (nominal-level and ordinal-level variables)

From the Analyze menu, � Descriptive Statistics � Crosstabs.
Enter variables for analysis in Row and Column.
Click on Statistics and then select the procedures desired for the levels of mea-
surement, Contingency coefficient, or Phi or Cramér’s V for nominal-level
variables and Gamma for ordinal-level variables.
Click on Continue.
Click on Cells and select Counts and Percentages to be included in the
crosstabulations.
Click on Continue. Click on OK.
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Correlation (interval-level and ratio-level variables)

From the Analyze menu, � Correlate � Bivariate.
Enter variables to be analyzed by double-clicking on them in the left-hand column.
Select Correlation coefficient (Pearson’s r is already selected and would normally
be used).
Click on OK.
If a scatter diagram is desired, from the Graphs menu, � Scatter. Select Simple.
Click on Define. Enter variables for the X and Y axes by clicking on the vari-
able name and then on the appropriate arrow.
Click on OK.

Chapter 5 Explanatory Analysis

Bivariate Analysis with Categorical Variables

From the Analyze menu, � Descriptive Statistics � Crosstabs.
Enter variables for analysis in Row and Column.
Click on Statistics and then select the procedures desired for the levels of mea-
surement, Lambda for nominal-level variables and Somer’s d for ordinal-level
variables.
Click on Continue.
Click on Cells and select Counts and Percentages to be included in the
crosstabulations.
Click on Continue. Click on OK.

Bivariate Analysis with Metric Variables

From the Analyze menu, � Regression � Linear.
Enter one variable in each of the Independent (Predictor) and Dependent
(Outcome) spaces.
Select the Method of regression to be used.
Click on Statistics and select the coefficients desired.
Click on Continue. Click on OK.

Multivariate Analysis with Categorical Variables

From the Analyze menu, � Descriptive Statistics � Crosstabs.
Enter variables for the bivariate analysis in Row and Column and the control
variable in Layer 1 of 1.
Click on Statistics and select the procedures desired for the levels of measure-
ment, Contingency coefficient, Phi or Cramér’s V for nominal-level variables
and Gamma for ordinal-level variables.
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Click on Continue.
Click on Cells and select Counts and Percentages to be included in the
crosstabulations.
Click on Continue. Click on OK.

Multivariate Analysis with Metric Variables

Partial correlation

From the Analyze menu, � Correlate � Partial.
Enter the variables to be correlated in the Variables space and the control vari-
able in the Controlling for space.
Click on Options and selected the Statistics to be shown.
Click on Continue. Click on OK.

Multiple regression

From the Analyze menu, � Regression � Linear.
Enter one variable in the Dependent (Outcome) space and the desired number
of variables in the Independent (Predictor) space.
Select the Method of regression to be used.
Click on Statistics and select the coefficients desired.
Click on Continue. Click on OK.

Chapter 6 Inferential Analysis

Univariate Analysis with Categorical Variables

This is not available in SPSS and would need to be done manually.

Univariate Analysis with Metric Variables

From the Analyze menu, � Compare Means � One-sample T test.1

Select the Test Variable.
Click on Options and set the confidence level (shown as Confidence Interval).
The default level is 95%.
Click on Continue. Click on OK.
(The upper and lower confidence limits, as well as the level of significance, are
shown.)

Bivariate Analysis with Categorical Variables

From the Analyze menu, � Descriptive Statistics � Crosstabs.
Enter variables for analysis in Row and Column.

SPSS Procedures
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Click on Statistics and then select the procedures desired for the levels of
measurement.
Click on Continue. Click on OK.
The approximate levels of significance for the symmetric measures of associa-
tion are shown.
(This procedure would normally be done in conjunction with cross-tabulation
above.)

Bivariate Analysis with Metric Variables

From the Analyze menu, � Correlate � Bivariate.
Select the variables to be analyzed by double-clicking on them in the left-hand
column.
Select the Correlation Coefficient desired (Pearson’s r is already selected and
would normally be used).
Select either One-tailed or Two-tailed test, as appropriate.
Click on OK.
(This procedure would normally be done in conjunction with correlation
above.)

Inferential Analysis with Categorical Variables

Nominal-level variables

From the Analyze menu, � Descriptive Statistics � Crosstabs.
Enter variables for analysis in Row and Column following the convention for
the position of independent (predictor) and dependent (outcome) variables.
Click on Statistics and then select Lambda.
Click on Continue. Click on OK.
The value for lambda and the approximate level of significance are shown for
the designated dependent variable.2

(This procedure would normally be done in conjunction with cross-tabulation
above.)

Ordinal-level variables

Follow the procedure for nominal-level variables but select Somer’s d rather
than lambda.3

Inferential Analysis with Metric Variables

Regression

In bivariate regression, the procedure for testing the significance of the regres-
sion line is the same as the test of significance for Pearson’s r (see above).
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In multiple regression, it is necessary to first test the significance of the multiple
regression coefficient (R). If this turns out to be significant, then the signifi-
cance of the individual beta coefficients can be tested.
From the Analyze menu, � Regression � Linear.
Enter one variable in the Dependent (Outcome) space and the desired number
of variables in the Independent (Predictor) space.
Select the Method of regression to be used.
Click on Statistics and select Confidence intervals from the Regression
Coefficients section. Click on Continue.
Click on Options and set the level of probabilities or values for F. (Unless there
is some reason for doing otherwise, use the default values.)
Click on Continue. Click on OK.
The level of significance for R is shown in the table for ANOVA. Both the levels
of significance and confidence limits are provided for the beta coefficients for
each independent variable in the next table.
(This procedure would normally be done in conjunction with regression above.)

Comparing Means

From the Analyze menu, � Compare Means � Independent-Samples T Test
or Paired-Samples T Test, as appropriate.4

Click on Options and set the confidence level (shown as Confidence Interval).
The default level is 95%.
Click on Continue. Click on OK.
The upper and lower confidence limits, as well as the level of significance, are
shown.

Chapter 7 Data Reduction

Cronbach’s Alpha

From the Analyze menu, � Scale � Reliability Analysis.
Enter scale items to be analyzed by double-clicking on them in the left-hand
column.
Select the Model of analysis to be used (Alpha would normally be used).
Click on Statistics and select those to be used (normally not required).
Click on Continue. Click on OK.

Factor analysis

From the Analyze menu, � Data Reduction � Factor.
Enter scale items to be analyzed by double-clicking on them in the left-hand
column.
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Click on Descriptive and select Statistics (normally Initial solution).
Click on Continue.
If a Correlation Matrix is required, select Coefficients and possibly Signifi-
cance levels. In any case, KMO and Bartlett’s test of sphericity should be
selected.
Click on Continue.
Click on Extraction and select a Method (Principle components is commonly
used), Correlation matrix (if required), Unrotated factor solution, Scree plot
(can be useful) and Eigenvalues over 1 (normally used). The maximum number
of iterations can also be set (the default is 25).
Click on Continue.
Click on Rotation and select a Method (Varimax in commonly used).
Click on Continue. Click on OK.
This analysis may be done in stages, the unrotated solution first and a rotated
solution after consideration of these results.

Recoding metric variables into categorical variables

From the Transform menu, � Recode � Into Different Variables.
Select from the Input Variable list by double-clicking in the left-hand column.
Name and Label the Output Variable. Click on Change.
Click on Old and New Values and enter Old Values (using Range) and the
Value for the corresponding category (normally 1, 2 etc.). Click on Add.
Repeat the previous procedure to create the rest of the new categories.
Click on Continue. Click on OK.

Notes

1This procedure is normally used to test for the significance of a difference between the
mean of a variable and a specified value. However, it can also be used to establish confidence
limits about the sample mean.

2Note that lambda can be treated as both a symmetric and an asymmetric measure. Note also
that the procedure used by SPSS is different from that discussed in Chapter 6 (pp. 205–6) but
the outcome is the same.

3Note that the SPSS procedure is different from that discussed in Chapter 6 (pp. 206–8) but
the outcome is the same.

4For a discussion of alternative ways of classifying types of t tests, see pp. 183–5.
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Table 1 Chi-square distribution
One-tailed test Two-tailed test

df 0.05 0.01 0.001 0.05 0.01 0.001

1 3.84 6.63 10.83 5.02 7.88 12.12
2 5.99 9.21 13.82 7.38 10.60 15.20
3 7.82 11.34 16.27 9.35 12.84 17.73
4 9.49 13.28 18.47 11.14 14.86 20.00
5 11.07 15.09 20.52 12.83 16.75 22.11
6 12.59 16.81 22.46 14.45 18.55 24.10
7 14.07 18.48 24.32 16.01 20.28 26.02
8 15.51 20.09 26.12 17.53 21.95 27.87
9 16.92 21.67 27.88 19.02 23.59 29.67

10 18.31 23.21 29.59 20.48 25.19 31.42
11 19.68 24.72 31.26 21.92 26.76 33.14
12 21.03 26.22 32.91 23.34 28.30 34.82
13 22.36 27.69 34.53 24.74 29.82 36.48
14 23.68 29.14 36.12 26.12 31.32 38.11
15 25.00 30.58 37.70 27.49 32.80 39.72
16 26.30 32.00 39.25 28.85 34.27 41.31
17 27.59 33.41 40.79 30.19 35.72 42.88
18 28.87 34.81 42.31 31.53 37.16 44.43
19 30.14 36.19 43.82 32.85 38.58 45.97
20 31.41 37.57 45.31 34.17 40.00 47.50
21 32.67 38.93 46.80 35.48 41.40 49.01
22 33.92 40.29 48.27 36.78 42.80 50.51
23 35.17 41.64 49.73 38.08 44.18 52.00
24 36.42 42.98 51.18 39.36 45.56 53.48
25 37.65 44.31 52.62 40.65 46.93 54.95
26 38.89 45.64 54.05 41.92 48.29 56.41
27 40.11 46.96 55.48 43.19 49.64 57.86
28 41.34 48.28 56.89 44.46 50.99 59.30
29 42.56 49.59 58.30 45.72 52.34 60.73
30 43.77 50.89 59.70 46.98 53.67 62.16
35 49.80 57.34 66.62 53.20 60.27 69.20
40 55.76 63.69 73.40 59.34 66.77 76.09
45 61.66 69.96 80.08 65.41 73.17 82.88
50 67.50 76.15 86.66 71.42 79.49 89.56
55 73.31 82.29 93.17 77.38 85.75 96.16
60 79.08 88.38 99.61 83.30 91.95 102.69
65 84.82 94.42 105.99 89.18 98.11 109.16
70 90.53 100.43 112.32 95.02 104.21 115.58
75 96.22 106.39 118.60 100.84 110.29 121.94
80 101.88 112.33 124.84 106.63 116.32 128.26
85 107.52 118.24 131.04 112.39 122.32 134.54
90 113.15 124.12 137.21 118.14 128.30 140.78
95 118.75 129.97 143.34 123.86 134.25 146.99

100 124.34 135.81 149.45 129.56 140.17 153.17
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Table 2 The normal (z) distribution
Second Decimal Place of z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

This table shows p values for one-tailed tests. The value for a two-tailed test is double that shown
for a particular z score.  For example, the two-tailed p value for a z of 2.12 is 0.0348.
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Table 3 Student’s t distribution
One-tailed test Two-tailed test

df 0.05 0.01 0.001 0.05 0.01 0.001

1 6.314 31.821 318.309 12.706 63.657 636.619
2 2.920 6.965 22.327 4.303 9.925 31.599
3 2.353 4.541 10.215 3.182 5.841 12.924
4 2.132 3.747 7.173 2.776 4.604 8.610
5 2.015 3.365 5.893 2.571 4.032 6.869

6 1.943 3.143 5.208 2.447 3.707 5.959
7 1.895 2.998 4.785 2.365 3.499 5.408
8 1.860 2.896 4.501 2.306 3.355 5.041
9 1.833 2.821 4.297 2.262 3.250 4.781

10 1.812 2.764 4.144 2.228 3.169 4.587

11 1.796 2.718 4.025 2.201 3.106 4.437
12 1.782 2.681 3.930 2.179 3.055 4.318
13 1.771 2.650 3.852 2.160 3.012 4.221
14 1.761 2.624 3.787 2.145 2.977 4.140
15 1.753 2.602 3.733 2.131 2.947 4.073

16 1.746 2.583 3.686 2.120 2.921 4.015
17 1.740 2.567 3.646 2.110 2.898 3.965
18 1.734 2.552 3.610 2.101 2.878 3.922
19 1.729 2.539 3.579 2.093 2.861 3.883
20 1.725 2.528 3.552 2.086 2.845 3.850

21 1.721 2.518 3.527 2.080 2.831 3.819
22 1.717 2.508 3.505 2.074 2.819 3.792
23 1.714 2.500 3.485 2.069 2.807 3.768
24 1.711 2.492 3.467 2.064 2.797 3.745
25 1.708 2.485 3.450 2.060 2.787 3.725

26 1.706 2.479 3.435 2.056 2.779 3.707
27 1.703 2.473 3.421 2.052 2.771 3.690
28 1.701 2.467 3.408 2.048 2.763 3.674
29 1.699 2.462 3.396 2.045 2.756 3.659
30 1.697 2.457 3.385 2.042 2.750 3.646

40 1.684 2.423 3.307 2.021 2.704 3.551
50 1.676 2.403 3.261 2.009 2.678 3.496
60 1.671 2.390 3.232 2.000 2.660 3.460
70 1.667 2.381 3.211 1.994 2.648 3.435
80 1.664 2.374 3.195 1.990 2.639 3.416
90 1.662 2.368 3.183 1.987 2.632 3.402
100 1.660 2.363 3.174 1.984 2.626 3.390
120 1.658 2.358 3.160 1.980 2.617 3.373
∞(z) 1.645 2.326 3.090 1.960 2.576 3.291

3055-Appendix-D.qxd  1/10/03 10:36 AM  Page 341



Appendix D

342 Table 4 F distribution
Numerator df

Denominator
df 1 2 3 4 5 6 7 8 9 10 20 50 100
1 161 199 216 225 230 234 237 239 241 242 248 252 253

4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6209 6303 6334
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.48 19.49

98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.45 99.48 99.49
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.58 8.55

34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 26.69 26.35 26.24
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.70 5.66

21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.02 13.69 13.58
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.44 4.41

16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.55 9.24 9.13
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.75 3.71

13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.40 7.09 6.99
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.32 3.27

12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.16 5.86 5.75
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 3.02 2.97

11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.36 5.07 4.96
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 2.94 2.80 2.76

10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.81 4.52 4.41
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.64 2.59

10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.41 4.12 4.01
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.65 2.51 2.46

9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.10 3.81 3.71
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.54 2.40 2.35

9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 3.86 3.57 3.47
13 4.67 3.81 3.41 3.18 3.02 2.92 2.83 2.77 2.71 2.67 2.46 2.31 2.26

9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.66 3.38 3.27

Continued
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Table 4 Continued
Numerator df

Denominator
df 1 2 3 4 5 6 7 8 9 10 20 50 100
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.39 2.24 2.19

8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.51 3.22 3.11
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.33 2.18 2.12

8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.37 3.08 2.98
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.28 2.12 2.07

8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.26 2.97 2.86
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.23 2.08 2.02

8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.16 2.87 2.76
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.19 2.04 1.98

8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.08 2.78 2.68
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.16 2.00 1.94

8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.00 2.71 2.60
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.12 1.97 1.91

8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 2.94 2.64 2.54
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.78 1.60 1.52

7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.27 1.95 1.82
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.68 1.48 1.39

6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.07 1.74 1.60
1000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.58 1.36 1.26

6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 1.90 1.54 1.38

The first value in each row is the F required for a 0.05 level of significance.
The second value, in italics, is for a 0.01 level.
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categorical variables 96–106
metric variables 106–111
symmetrical 120
see also contingency coefficient, standardized

contingency coefficient, gamma and
Pearson’s r

measures of influence see influence, lambda,
regression and Somer’s d

median 69–71, 75–6, 87
Merton, R.K. 1
Miles, J. 133, 154, 158, 209
Mill, J.S. 33
Mills, C.W. 1
mode 68–9, 75–6, 87
Mol, J.J. 158
Mueller, C.W. 155, 248
multidimensional scaling 155–6
multiple correlation coefficient 130
multiple discriminant analysis 154, 157
multivariate analysis of variance see analysis of
variance

Narayan, R.K. 3
necessary condition 30, 116
Neuman, W.L. 158
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normal curve 67, 84–7, 90 see also standard
normal distribution

objectivity  16, 35, 182
observation 15
ontological assumptions 16–7, 19–20, 35, 304
operationalize(ation) 22, 40–3, 45
outliers 133

Pawson, R. 21, 30, 31, 158
Pearson’s r (product moment correlation

coefficient) 91, 108–14, 111, 115,
192, 204–5

percentages 52, 59–60, 87, 93
percentiles 79
Perles, B.M. 165, 182
phi 91, 101, 111–4, 120, 190
pie charts 52, 63–5, 87
pooled estimate of standard deviations 194–7
Popper, K.R. 34
population(s) 7, 28, 32, 35, 159–62, 177,

179, 183, 187–9, 209
element(s) 160, 210
parameter(s) 161–2, 172

positivism 17, 35
post hoc fallacy 116
probability

level of 210
theory 163–5, 181

proportions 52, 59, 87
proportional reduction in error (PRE) 121

quantitative methods 47
quartile 78–9, 216

range 79
interquartile see interquartile range
truncated 90

rates 52, 62, 87
ratios 52, 61–2, 87
raw score method 110–1, 129–30
recoding 27–8, 105–6, 113, 134, 241–4 see
also coding and transforming variables
reference category 150–2
regression

bivariate (simple linear) 125–34, 156, 158,
208–9, 277

error term 132
intercept 127–8, 147
line 126, 147, 208
multiple 146–53, 156–8, 209, 293–303
slope of line 127–8, 147, 208
test of significance 208–9

relationships 89
bivariate 120

relationships cont.
curvilinear 96
first-order 141
linear 96, 125–6, 305
multivariate 120
negative 90, 94–5, 125
no 90, 95
positive 90, 94–5, 125
second-order 141
spurious 136, 138–9, 142, 156
zero-order 141
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applied 12
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design 4
objectives 11–3, 34
problem 11, 34
questions 6, 13, 22, 28, 34, 38, 156

residual 131–2
response rate 159, 167–8, 179, 209
retroductive logic see logics of enquiry
Richmond, J.M. 41
rounding, rules for 53–4
Runyon, R.P. 87, 213

Salkind, N.J. 182, 187
sample(s) 7, 28, 32, 35, 161, 177,179, 183,

187–9, 209–11
biased 162–3, 210
dependent 183
independent 183
matched 183
non-probability 159, 161, 209
probability 32, 159, 161–3, 172, 177–9,

189, 209
random see sample, probability
size 166–7, 186, 189, 194, 198, 210, 212
statistic(s) 161–2, 172

sampling
adequacy 221, 247
cluster 169
error 162, 187
fraction 161
frame see population
methods 168–71
multi-stage 169
probability 7, 28
random see sample, probability
ratio 161
simple random 168
stratified 169
systematic 168–9

scales 214–39, 246–7
construction 220–39, 246–7
continuous 26
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scales cont.
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pretesting 216–8, 247
reliability 219–20

scatter diagrams 106–7, 109–10
scientific realism 17, 32, 35
Scott, M. 154
scree plot 223, 227, 229, 247
Secord, P.F. 34
Seuren, B. 42
Sevlin, H. 168
Shevlin, M. 133, 154, 158, 209
Siegel, A.F. 186, 188, 209, 212
Siegel, S. 171, 183, 185, 186, 191, 192,

198, 207, 213
significance, level of 178, 182, 186, 190–2,

212, 251
significance tests see tests of significance
skewness 76
social constructionism 17
social reality 16–7, 32, 304
Somer’s d 115, 120, 124–5, 156–8, 206–8,

213, 274, 279
Spearman’s rank correlation coefficient

105, 114
standard

deviation 80–3, 87
normal distribution 85 see also normal curve
scores see z scores

standard error
of the difference 194–7, 199–200
of the estimate 131, 149
of the mean 165, 175–7
of the proportion 173–5
of the slope 208

standardized contingency coefficient see
coefficient

Stanley, J.C. 158
statistics

inferential see inferential statistics
non-parametric see test of significance
parametric see test of significance
sample see sample statistics

Stern, P.C. 42
Stevens, J.P. 221
Stewart, D.W. 18
structural equation modelling 154–5, 157
sufficient condition 30, 116

t test 182, 204–5, 211, 213
group 193, 251, 254

Tatham, R.L. 133, 153–6, 158, 222, 248
tests of significance 6–7, 32, 177–210, 213

distribution free 197–201, 210
non-parametric 171–2, 197–8, 210

t test cont.
one-sample 183–5
one-tailed 181–2, 211, 213
parametric 171–2, 197, 210
two-sample 183–5
two-tailed 181–2, 211, 213

tied pairs 104–5, 199, 206
Tilley, N. 30,32, 158
tolerance 150, 294
transforming variables 27–8, 35, 105–6, 231
type I error 180–1, 183, 210
type II error 180–1, 183, 210

understanding 33
unidimensional(ity) 222, 236, 246

van Liere, K.D. 41
variable(s) 22, 32, 40

categorical 30,35, 53–4, 63–4, 78–9, 94,
96–106, 113, 117, 120–5, 134–6,
141–5, 173–5, 189–92, 260–2, 266–8,
274–6, 278–85, 285, 303

continuous 26, 35
dependent see variable, outcome
discrete 26, 135
dummy see dummy variable
explanatory 19
independent see predictor
nominal-level 91, 97–102, 120–4
ordinal-level 91, 102–6, 124–5
outcome 31, 36, 119, 158
interacting 137–8
interval-level see variables, metric
intervening see intervening variable
latent see latent variable
metric 35, 55–9, 64–6, 79–84, 106–13,

125–36, 146–53, 175–7, 192–205,
208–9, 211–2, 246, 258–60, 264–6,
277, 285, 292–3, 303

moderating 137, 139–40, 142–4, 157
predictor 31, 36, 119, 158
ratio-level see variables, metric
transforming see transforming variables

variance 80, 83–4, 87, 207–8
common 221
between-sample 202–4
random 221
unique 221
within-sample 202–4

variance inflation factor 150, 294
variation ratio 88

Ward, R. 38, 115, 215
Weber, M. 121, 158
Whewell, W. 33
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Wilcoxon test 193, 198, 211
Wright, D.B. 154, 212

Zaino, J. 9
z scores 84–7, 182, 191, 193, 211

z test see z scores
zero-order correlation coefficient see

Pearson’s r
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Type of analysis

Univariate
descriptive

Bivariate descriptive
(association)

Explanatory
(influence)

Inferential (tests
of significance)

Nominal

Central tendency:
Mode

Dispersion:
Variation ratio

Contingency tables:
(a) Three or more

categories
Cramér’s V
Contingency

coefficient (Cs)
(b) One or both

dichotomous
Phi

Contingency tables
Lambda

Three-way contingency
tables

Lambda
Cramér’s V or Cs

Means analysis
Eta

Contingency tables
Chi-square test
z test for lambda

Means analysis
Two means:

group t test
More than two:

F test

Level of measurement
Ordinal

Central tendency:
Median

Dispersion:
Interquartile range

Contingency tables
Gamma
Kendall’s tau-b

Ordered items,
small samples

Spearman’s rho
Kendall’s tau

Contingency tables
Somer’s d

Three-way contingency
tables

Somer’s d
Gamma

Means analysis
Eta

Contingency tables
Chi-square test
z test for gamma
z test for Somer’s d

Interval/ratio

Central tendency:
Mean

Dispersion:
Standard deviation

Pearson’s r

Bivariate regression
Partial correlation

(trivariate)
Multiple regression

t test for Pearson’s r
t test for R (regression)

Measures of Central Tendency, Dispersion, Association, Influence and Tests of Significance

Summary Chart of Methods
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